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a b s t r a c t

Neurologists have a particular interest in SARS-CoV-2 because the nervous system is a major

participant in COVID-19, both in its acute phase and in its persistent post-COVID phase. The

global spread of SARS-CoV-2 infection has revealed most of the challenges and risk factors

that humanity will face in the future. We review from an environmental neurology per-

spective some characteristics that have underpinned the pandemic. We consider the agent,

SARS-CoV-2, the spread of SARS-CoV-2 as influenced by environmental factors, its impact

on the brain and some containment measures on brain health. Several questions remain,

including the differential clinical impact of variants, the impact of SARS-CoV-2 on sleep and

wakefulness, and the neurological components of Long-COVID syndrome. We touch on the

role of national leaders and public health policies that have underpinned management of

the COVID-19 pandemic. Increased awareness, anticipation and preparedness are needed to

address comparable future challenges.
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1. Introduction

The World Federation of Neurology (WFN) Environmental

Neurology Specialty Group has been concerned with the

neurological aspects of the COVID-19 pandemic, which was
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officially declared by the World Health Organization on March

11, 2020. Given the involvement of the central nervous system

(CNS) in coronavirus-associated Severe Acute Respiratory

Syndrome (SARS), in the Middle East Respiratory Syndrome

(MERS) and in early reports on the neurological complications

of SARS-CoV-2, we had reviewed with a clinical approach the
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subject in depth [1] and along with others called for the

development of national and regional registries to report

neurological disorders in COVID-19 [2–4].

In this review, we point to some characteristics of the

pandemic from an environmental neurology perspective. We

consider the agent, SARS-CoV-2, the spread of SARS-CoV-2 as

influenced by environmental factors, its impact on the brain in

the short- and long-term, and some containment measures on

brain health. We also address from a public health policy

perspective, some aspects of the management of the COVID-

19 crisis, and our community responsibility to improve the

anticipation, mitigation and preparedness for foreseeable

environmental disasters.

2. The agent, SARS-CoV-2 and its variants

We know that viruses pose a major threat to human health

and notably to the human nervous system, which is targeted

by half of all known viruses. Infectious diseases, notably

zoonoses and epizootics, have and will continue to influence

the destiny of Homo sapiens [5]. History shows that viral

infections were responsible for several major reductions of the

human population. Numerous studies published in the early

21st century have documented several recent virus-driven

epidemics (e.g., SARS, Ebola, H1N1, Zika) and anticipated the

socio-economic impacts of a pandemic. Therefore, the COVID-

19 pandemic was absolutely not a surprise for virologists and

health-crisis managers across the world; they warned many

times about the threat of pandemics, notably the risks related

to RNA respiratory viruses [6,7] and in particular to SARS-like

coronaviruses [8]. Fan and colleagues [8] issued this stark

warning in March 2019: ‘‘It is generally believed that bat-borne

CoVs will re-emerge to cause the next disease outbreak. In this

regard, China is a likely hotspot. The challenge is to predict

when and where, so that we can try our best to prevent such

outbreaks.’’ By December 2019, the first cases of COVID-19

were hospitalized in the Chinese city of Wuhan.

2.1. SARS-CoV-2 discovery

The new coronavirus responsible for the COVID-19 pandemic

was successfully grown, sequenced and identified by three

different Chinese teams, which published their results in

January 2020. The International Committee on Taxonomy of

Viruses (ICTV) named the emerging virus, Severe Acute

Respiratory Syndrome CoronaVirus-2 (SARS-CoV-2), underlin-

ing its close relationship with SARS-CoV (now known as SARS-

CoV-1) that was responsible for the SARS epidemic in 2003–

2004. Concurrently, the World Health Organization (WHO)

named the SARS-CoV-2-associated disease ‘‘COVID-19’’1.

2.2. The emergence

The challenging question of the origin of SARS-CoV-2 is the

subject of ongoing investigations. A One Health [9] approach to
1 www.who.int/emergencies/diseases/novel-coronavirus-2019/
technical-guidance/naming-the-coronavirus-disease-(covid-
2019)-and-the-virus-that-causes-it.
this question may help because it recognizes the interconnec-

tion and biological exchanges among people, animals, plants,

and their shared environment. Since the precise origins,

reservoirs, intermediate hosts, and routes to human trans-

mission of numerous viruses are commonly ignored, progress

in understanding the natural history of SARS-CoV-1 is

remarkable [10]. The horseshoe bat appears to be the SARS-

CoV-1 reservoir, and the palm civet an intermediate host [10].

As certain animal groups are susceptible to coronavirus

infection (e.g., bats, camels, cats, cattle, mink), the risk of

coronavirus spread from animals to humans is to be

considered whatever the mechanism, spillover or circulation

[11].

The question of a relationship between climate change and

the rise of infective coronaviruses involves the distribution of

bats which, as noted above, are considered reservoirs for these

viruses. Climate change has shifted the global distribution of

bat populations: ‘‘The southern Chinese Yunnan province and

neighboring regions in Myanmar and Laos form a global

hotspot of climate change-driven increase in bat richness.

This region coincides with the likely spatial origin of bat-borne

ancestors of SARS-CoV-1 and SARS-CoV-2’’ [12].

The human role in the emergence and spread of zoonotic

infections is huge. Humans are responsible for habitat

fragmentation, deforestation, biodiversity loss, intensive

agriculture, livestock farming, uncontrolled urbanization,

pollution, climate change, and bushmeat hunting and trading,

all of which are relevant to the emergence of pathogens that

can impact human health [13]. Vast numbers of germs

circulate undetected in fauna and flora, many and perhaps

most of which remain to be discovered. In addition, we know

that viral infection (e.g., Epstein–Barr virus or Herpes viruses)

does not necessarily trigger overt disease, which is the usual

warning sign leading to a medical or veterinary response [11].

Additionally, certain infectious agents, such as the Measles

virus, may mutate in the human body, develop a clinically

silent latent infection in the brain, only to be expressed later in

the form of a devastating brain disease (Sub-Acute Sclerosing

Panencephalitis). Fortunately, there is no evidence that SARS-

CoV-2 establishes a persistent infection. Whatever the

debated origin of the virus [14] and its more contagious recent

mutants, this is the second time in less than 20 years that an

atypical coronavirus pneumonia with human-to-human

transmission has appeared in China. The human disease

named COVID-19 officially began in late November 2019 and,

thereafter, spread across the world.

2.3. A neurological concern

The neurologists interest in SARS-CoV-2 lies in the characte-

ristics of virus-cell interaction that allows the virus to entery

CNS tissue. The primary binding targets of the virus are the

angiotensin-converting enzyme-2 cell membrane receptor

(ACE2) and the transmembrane serine protease 2 (TMPRSS2),

both of which are less expressed by brain cells compared to

those of the heart, lung and nose [15,16]. Therefore, SARS-CoV-

2 must interact with other receptors e.g., Neuropilin 1 (NRP1),

Cathepsin L (CTSL) and furin which are expressed at much

higher levels in the brain [16,17]. Qiao and colleagues [15] have

shown, with cell lines and mouse tissue, that the CD147

http://www.who.int/emergencies/diseases/novel-coronavirus-2019/%20technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it
http://www.who.int/emergencies/diseases/novel-coronavirus-2019/%20technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it
http://www.who.int/emergencies/diseases/novel-coronavirus-2019/%20technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it
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receptor (which belongs to the Ig superfamily) is more

expressed than ACE-2 in brain cells compared to lung and

intestine cells. Although debated, the role of the CD147

receptor in the entry of SARS-CoV-2 is recognized [17].

A second concern is related to the ongoing evolution of the

virus responsible for COVID-19, evolving from the Wuhan

wild-type SARS-CoV-2, since the first infections, to numerous

lineages or variants due to mutations that routinely occur

during replication of its genome [18–20]. For example, 5,775

distinct genome variants, including 2,969 missense mutations,

1,965 synonymous mutations, 484 mutations in the non-

coding regions, 142 non-coding deletions, 100 in-frame

deletions, 66 non-coding insertions, 36 stop-gained variants,

11 frameshift deletions and two in-frame insertions were

identified through May 1, 2020 [20]. Most mutations have little

to no impact on the virus’s properties, e.g., transmissibility,

interaction with host immunity, and infection severity [18].

Newly detected variants are clinically documented allowing a

classification based on additional information as country first

detected ; virus spike mutations of interest, year and month of

virus first detection,performance of vaccines and medicines,

and diagnostic tools [18,19,21]. In May 2021, WHO defined

three main categories of SARS-CoV-2, namely variants of

concern (VOC), variants of interest (VIC), and variants under

monitoring (VUM). A VOC has one or more mutations that may

impact its epidemiologic, immunologic and pathogenic pro-

perties [20]. WHO recommended using the Greek alphabet a to

name several variants, e.g., Alpha, Beta, Gamma, Delta,

Omicron. The emergence of these variants, especially the

latter, poses a major health threat and challenge for the

control of the pandemic [22], at least in the short term. The

pathogen’s diversity and dynamics also illustrate the adapta-

tion-driven evolution of the virus [23]. The various clades

(lineages), have different geographical distributions and may

perhaps trigger different clinical presentations, for example

clades G and GV showed a significantly higher prevalence

among asymptomatic patients or those with mild symptoms

[23]. Comparison among recent lineages shows that some

variants are more transmissible and fatal than their ancestor

[24]. For example, Delta is more transmissible and increases

the hospitalization and mortality rate when compared to

Alpha [25], whereas Omicron is highly transmissible but, at

this writing, is thought primarily to infect the upper

respiratory tract, and less the lungs, thus resulting in a milder

disease in most patients [26].

A third question concerns the capacity of the new variants

to impact the nervous system. The 2020 Wuhan wild-type

virus triggered the quasi-pathognomonic symptoms of anos-

mia and dysgeusia in most countries; however, in China, these

symptoms were uncommonly reported (around 5%). One

hypothesis is that the Chinese people were infected by another

clade [27]. Symptoms have changed with the new variants. For

example, anosmia is uncommon when infected by Omicron;

in the ZOE COVID study, anosmia affected around 19% of study

participants compared to 60% related to infection by wild type

or Alpha variants [28]. The cell-entry of Omicron differs from

that of the other SARS-CoV-2 variants; its binding capacity-

capacit y to ACE2 is lower and Omicron also uses an endocytic

pathway [29]. Unknown is w hether and how these characte-

ristics affect the ability of this variant to infect brain cells . .
3. The infected human host

3.1. Impact on the human brain, the neurological
manifestations of COVID-19

While involvement of the CNS in coronavirus-associated

Severe Acute Respiratory Syndrome (SARS) and the Middle

East Respiratory Syndrome (MERS) were well-known [30], the

pathophysiologic mechanisms are still unclear [31]. SARS-

CoV-2 appears to be a neurotropic virus able to infect neurons

and glia [32], although viral particles have been rarely found in

human brain and its presence in the cerebrospinal fluid is

inconstant [16,32]. Additionally, evidence is largely lacking for

direct CNS invasion of SARS-CoV-2 as a primary cause of

neurologic sequelae [31]. Nevertheless, whether infection

occurs directly or indirectly via the hematogenous route, or

whether the resulting immunological response (cytokine

storm) [16] plays the major role, there is a large spectrum of

neural targets, including the brain, medulla oblongata, spinal

cord, peripheral nerves and muscles. Thirty percent of

symptomatic COVID-19 patients present with CNS involve-

ment during the acute phase of the disease. Anosmia and

dysgeusia are considered quasi pathognomonic symptoms of

COVID-19, with smell and taste disorders occurring in up to

80% of patients [33]. Neurological symptoms affect 73% of

hospitalized patients [30].

3.2. Impact on the human brain and mind: neuro-
psychological manifestations of COVID-19

After the acute phase of the illness, 10 to 30% of COVID-19

patients continue to experience pulmonary, cardiovascular

and/or neurological symptoms, sometimes for several months.

The so-called ‘‘long-haulers’’ with this post-acute syndrome

(‘‘Long-COVID’’) often have multiple symptoms referable to the

nervous system, including chronic fatigue (30–78%), headache

(18–50%) cognitive symptoms (e.g., attention disorder, memory

loss, anxiety), sleep disorder (11–65%) and smell/taste dysfunc-

tion (10–43%) [34]. Among the vast published literature on Long-

COVID are papers describing findings with positron-emission

tomography/computed tomography (PET/CT) that have docu-

mented changes in the regional uptake of 2-desoxy-2-fluoro-D-

glucose (FDG). At the onset of COVID-19, four patients with

predominant frontal lobe cognitive impairment, whose cere-

brospinal fluid was RT-PCR negative for SARS-CoV-2, showed

hypometabolism and cerebellar hypermetabolism [35]. Per-

sistent functional complaints of 35 patients with Long-COVID

correlated with evidence of brain hypometabolism involving

the olfactory gyrus and connected limbic/paralimbic regions,

extending to the brainstem and the cerebellum [36]. A serial

study of seven patients with heterogenous encephalopathy at

onset of COVID-19 showed a consistent pattern of hypometa-

bolism in the frontal cortex, anterior cingulate, insula and

caudate nucleus. Six months later, the majority of these

patients had improved clinically but cognitive and emotional

disorders of varying severity remained in association with

prefrontal, insular and subcortical 18F-FDG-PET/CT abnorma-

lities [37]. Other studies have used this type of brain imaging to

document such biological markers of Long-COVID [38,39].
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Sleep disorders may occur during the disease course and/or

after recovery [1,40,41]. Most studies of this phenomenon have

relied on questionnaires administered to the general population

and/or specific human groups (e.g., students, medical staff, etc.).

A number of studies conducted around the world found that

sleep quality deteriorated during lockdown episodes, especially

among women. This was the case in France [42], where people

over 18 years of age were asked whether they encountered sleep

problem at the beginning (1,005 persons), the end (2,003

participants) and following (1,736 people) the Spring 2020

lockdown. Sleep problems diminished towards the end of the

quarantine period and vanished progressively afterwards. In

addition to insomnia, alterations in circadian sleep schedules

were revealed through a bedtime phase delay of two hours (from

22:00 to midnight) and a similar trend for rise time [43]. In 368

Saudi Arabia university students in quarantine, nightmares (a

REM sleep parasomnia) were experienced in 31.8% of the

participants, of whom 44.4% suffered new-onset nightmares

[44]. These figures were increased when academic exams were

conducted during quarantine, indicating that nightmares were

dependent on stressor intensity. Using natural language pro-

cessing tools, dream reports were analyzed [45] and revealed

higher proportions of words related to anger and sadness, in

support of mental suffering. We may thus conclude that the

measures adopted by authorities in every country have led to

changes in sleep behavior and/or quality. Nevertheless, the sleep

of COVID-19 patients has been widely overlooked. An early

meta-analysis [46] included 31 publications on 5,153 patients

with confirmed COVID-19. The authors found that 47% of

patients experienced anxiety, 45% depression and 34% sleep

disturbances (defined as poor sleep quality, sleep initiation or

maintenance, excessive somnolence, sleep-schedule disorders

or insomnia). However, objective findings on sleep illness are

rare. One patient with PCR-confirmed COVID-19 presenting

fever, asthenia and insomnia declared restless leg syndrome

that was in favor of iron dysmetabolism [47]. In turn, sleep-

related disorders may also influence COVID-19 morbidity and

mortality. Obstructive sleep apnea (OSA) syndrome was identi-

fied early as a risk factor [48], although obesity is commonly

observed in OSA patients and represents in itself a major risk

factor of morbidity and mortality in COVID-19 patients.

Circadian rhythm alterations, associated with the psychological

problems imposed by the COVID-19 pandemic, compromise the

quality of sleep and the immune system, as sleep influences

immunity maintenance and immune responses [49].

Our group and others also alerted the scientific community

on disorders potentially appearing after recovery. The possible

occurrence of narcolepsies was argued [50], as such a

syndrome had occurred in Chinese children after the 2009

H1N1 influenza outbreak, as well as in children in Europe and

Brazil after pediatric vaccination. Such disorders of sleep and

circadian clock are also observed in other infectious diseases,

such as African sleeping sickness [51].

3.3. Human vulnerabilities and susceptibilities

3.3.1. The human susceptibility to SARS-CoV-2: the severity
of COVID-19
The COVID-19 pandemic has revealed and highlighted specific

vulnerabilities of several human populations to virus infec-
tion. Biological vulnerability in humans is linked with age,

gender, genetic and ethnic background, and preexisting co-

morbid illness.

3.3.1.1. Genetic factors. Genetic factors may modulate sus-

ceptibility/resistance to SARS-CoV-2 infection and the severity

of the resulting illness [52,53]. They include gene polymor-

phisms and comorbidities, such as the association of ACE1

with cardiovascular disease, hypertension, diabetes, chronic

kidney disease, and obesity, and of alpha-1 anti-trypsin

deficiency with lack of control over inflammatory mediators

[52]. The polymorphism of genes encoding ACE2 and the

transmembrane protease serine 2 (TMPPSS2) influence indi-

vidual susceptibility to COVID-19 [54]. With regard to blood

group phenotype, there is weak evidence that subjects with

group-O are less susceptible than non-O individuals to SARS-

CoV-2 infection, while the O type has no detectable effect on

COVID-19 severity [55]. A recent review examined the

susceptibility to SARS-CoV-2 and the polymorphism of a large

number of genes involved in the different stages of virus-cell

interactions [56]. ‘‘Classical twin studies indicated 31%

heritability for predicted COVID-19’’ [53]. Substantially higher

death rates from COVID-19 among Africans and African-

Americans may be related to several gene polymorphism, e.g.,

androgen receptor gene (AR), ACE gene, ACE2 expression,

apolipoprotein E gene (APOE), in African-American males. A

lower frequency of a gene variant encoding for the IFIH1

protein, which is involved in innate immunity, has also been

shown [53].

3.3.1.2. Evolutionary history. The evolutionary history of

Homo sapiens provides some interesting clues as to the

differential susceptibility among people with disparate

ethnic backgrounds and geographical origins [57]. Some

Neanderthal ancestry genes located on chromosome 12

(OAS locus) may be protective (20% reduction of relative risk)

[58] while other Neanderthal-inherited genes located on

chromosome 3 may increase the risk of severe COVID-19

[59]. An ACE2 haplotype present among 20% and 60% of

European and South Asian populations respectively, has

been linked to a lower fatality rate among South Asians [57].

Evolutionary genetics has shown that genomes of East Asian

populations bear the signature of a circa 25,000-year-old

coronavirus epidemic; this interaction between ancient

coronaviruses and human hosts, shown by the presence

of selected gene variants encoding virus-interacting pro-

teins, suggests adaptive mechanisms in East Asian popula-

tions [60].

3.3.1.3. Neutralizing immunoglobulin G autoantibodies. In

addition to genetic abnormalities involving the innate

immune system, neutralizing immunoglobulin G (IgG) auto-

antibodies (ABs) against various interferons (omega, alpha,

both and I INF) have been observed. These ABs account for

life-threatening COVID-19 in at least 2.6% of women and

12.5% of men [61]. In addition to the biased sex ratio, the ABs

against I IFN offer an explanation for the higher risk of critical

COVID-19 in patients over 65. Rare before age 65, the ABs are

more often detected from 4% (range 70 to 79 years) to 7%

thereafter [62]. Therefore, 25% of severe cases of COVID-19
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might be explained by genetic and immunologic abnorma-

lities of the host2.

3.3.1.4. Gender-associated risks for severe and fatal forms. E-

pidemiological studies have pointed to gender-associated

risks for severe and fatal forms of COVID-19, such that the

risk is double for adult males vs. females. Biological factors

include sex hormones that differentially regulate the innate

and adaptative immunological system, its interaction with

adiposity, the entry of SARS-CoV-2 into cells (ACE2, TMPPSS),

and probably the susceptibility to tissue injury [63]. Several

studies point to an inherited X-linked recessive TLR7 gene

deficiency in a small percentage of younger-adult COVID-19

cases with severe forms of COVID-19 [62,64]. The TLR7 gene is

involved in the innate immunity response; its loss-of-function

impairs the types I and II interferon pathway [64]. Other

important components of innate immunity are the mucin

proteins that offer first-line protection to all epithelial cells, in

combination with mucosal antibodies, the secretory IgA. In

the case of SARS, epidemiological data suggested sex-

differences, as human females may be more resistant than

human males. However, until now, no data on this topic are

available for SARS-CoV-2 [65].

3.3.1.5. Senior patients. Early victims of COVID-19 were senior

patients (death occurred mostly in >80-year-old persons) and

those with multiple risk factors, such as hypertension, obesity,

diabetes and cardiovascular disease. Surprisingly, children

appeared less prone to illness, such that the death rate in this

group has been relatively very low, although rare fatal

complications such as Multisystem Inflammatory Syndrome

(MIS) and Kawasaki syndrome have occurred. Several hypo-

theses have been proposed to explain the age-related

differential biological vulnerability to SARS-CoV-2, with

particular focus on the density of the ACE-1 virus receptor

and variability in the body’s immune response to the virus [66].

3.3.2. Is there a specific neurological vulnerability?
3.3.2.1. The brain’s susceptibility to SARS-CoV-2: olfactory
epithelium and vascular endothelia. COVID-19 related loss of

smell and taste is significantly less likely affected in East Asian

and African American individuals than among Europeans, a

phenomenon linked to the UGT2A1/UGT2A2 locus [67]. These

genes code for enzymes expressed in the olfactory epithelium

involved in the clearance of odorants. Loss of smell is related

to damage of the cilia and olfactory epithelium but not to an

infection of olfactory neurons. Recent evidence suggests that

SARS-CoV-2 enters and accumulates in olfactory support cells,

specifically, sustentacular cells, which unlike olfactory neu-

rons, abundantly express the viral cell-entry proteins, ACE2

and TMPPSS2 [67].

The seven-fold increased risk of stroke in COVID-19

appears to be associated with a specific vulnerability of the

brain’s endothelial cells [68] resulting in dysfunction of the

endothelium [67].The direct infection, which may trigger

localized phenomena including thrombosis and cellular
2 https://presse.inserm.fr/un-quart-des-formes-severes-de-
covid-19-sexpliquent-par-une-anomalie-genetique-ou-
immunologique/43635/.
permeability, occurs through a flow-dependent expression

of ACE2, as ACE2 is physiologically poorly expressed in these

cells. ‘‘Viral S protein binding triggers a unique gene expres-

sion profile in brain endothelia that may explain the

association of SARS-CoV-2 infection with cerebrovascular

events’’ [68]. ACE2 expression is also increased in case of

arterial hypertension [68].

3.3.2.2. Neurological diseases as risk factor for COVID-19
severity and complications. There is no evidence at this time

that preexisting neurologic diseases increase the risk of the

occurrence of neurologic complications in COVID-19 [31].

However, underlying neurological diseases constitute a risk

factor for developing a severe form of COVID-19, particularly

those with significant bulbar and respiratory weakness (e.g.,

neuromuscular disorders) or other neurologic disability [31].

Obviously, such factors increase COVID-19 severity, worsen-

ing the underlying disease and provoking a higher mortality

rate [31]. Disabilities related to cognitive impairment [31],

Alzheimer’s disease [69] and Multiple Sclerosis (MS), assessed

by the EDSS score [70], are independent risk factors for severe

COVID-19. However, no association has been found between

MS Disease Modifying Treatments and COVID-19 severity [71].

A preexisting mental illness worsens clinical outcomes in

COVID-19, with a doubled rate of more severe course and

mortality compared to patients with no mental disorder [72].

Another hypothetical concern is related to the risk of

neurodegenerative disease, triggered or induced by the

SARS-CoV-2 infection, leading to a delayed disorder, such as

Parkinson’s disease or dementia [1,69,73].

3.3.3. The human way-of-life: the risk of exposure and
infection by SARS-CoV-2
Vulnerability also takes into account the probability of

exposure/infection by SARS-CoV-2 as a function of personal

occupation, housing conditions, education, and other factors.

Thus, this pandemic has shown that COVID-19 has a very

unequal occurrence in populations across the world; risk

factors are linked to socio-economic status, including those in

poverty and low-class jobs, and to minorities, migrants and

refugees [74]. The built environment and high urban popula-

tion density in megacities also favor infectious disease

transmission [75]. Health policy has had to address cultural

behaviors as well as religious beliefs and practices. Several

communities have ignored or rejected common health-

protection advice and mandates issued by medical and state

authorities [76]. To the contrary, most religious leaders have

encouraged those in their charge to accept public health rules

issued by authorities [77].

As pointed out before, pandemics reveal societal vulne-

rabilities linked with lifestyle and values. Most societies and

communities have adopted a lifestyle based on individua-

lism, ‘‘liberty’’ and freedom of movement. Today life is

characterized by an extraordinary increase of rapid and

widespread transportation means, temporary or permanent

national and international migration, and progressive urba-

nization resulting in crowded megacities; all of these

behaviors can promote the spread of infectious agents and

associated human and animal diseases. Socioeconomic and

demographic drivers relevant to viral transmission from

https://presse.inserm.fr/un-quart-des-formes-severes-de-covid-19-sexpliquent-par-une-anomalie-genetique-ou-immunologique/43635/
https://presse.inserm.fr/un-quart-des-formes-severes-de-covid-19-sexpliquent-par-une-anomalie-genetique-ou-immunologique/43635/
https://presse.inserm.fr/un-quart-des-formes-severes-de-covid-19-sexpliquent-par-une-anomalie-genetique-ou-immunologique/43635/


r e v u e n e u r o l o g i q u e 1 7 8 ( 2 0 2 2 ) 4 9 9 – 5 1 1504
wildlife to humans and among humans include ecosystem

conversion, meat consumption that requires deep changes in

land-use and agricultural practices, urbanization, and

connectivity among cities [78]. Mass gathering, which is

known to favor the spread of epidemic diseases, is another

societal trend [79]. There is little doubt that Superspreading

social or cultural Events (SSE) have been a major cause for the

rapid spread of SARS-CoV-2 in the human population [80].

Several SSE-associated cases have been scrutinized, for

example those in Boston USA [81] and in Austria [82]; these

share common characteristics [80]: ‘‘Closed environments,

environments with poor ventilation, crowded places, and

long durations of potential exposure’’. Recognized since the

SARS epidemic, the rapid worldwide spread of SARS-CoV-2

was related to international air traffic patterns and the

intermingling of people in airport hubs. As in the case of SARS,

the diffusion of SARS-CoV-2 may be modelled as ‘‘a function

of airline network accessibility’’ [83]. On the other hand, while

in-flight transmission of SARS-CoV-2 among airline passen-

gers has occurred, this has not become a major problem

apparently because face masking is enforced and the flow of

air and its filtration reduce ambient contamination .

4. Virus transmission from human-to-human
and the role of environmental factors

4.1. Airborne transmission

Although SARS-CoV-2 is an airborne transmissible virus, the

routes of human contamination have been debated, especially

by the WHO World Health Organization. Acceptance that

COVID-19 results from human contact with an aerosol-

transmissible virus, rather than from contact with surfaces

contaminated by droplets and fomites, took a surprisingly

long time, despite several publications [84,85].

4.2. The human-to-human contamination

A remarkable aspect of the COVID-19 pandemic is the

variation in human-to-human virus transmission, favored

at the individual level by virus superspreaders and at the

community level, by SSEs, phenomena that were well-known

before the COVID-19 pandemic [86,87]. These facts have major

public health consequences as SARS-CoV-2 transmission is

stochastic [80]. Secondary viral transmission is described by

the mathematical overdispersion k parameter. Thus, with

k = 0.1, around 10% of contaminated people are responsible for

70–80% of all secondary transmissions [88]; in other words, a

single superspreader can infect a disproportionate number of

contacts [87]. If correct, this means that most individuals (40–

70%) did not infect anybody else [89]. These data were obtained

from study of subjects infected with the Wuhan SARS-CoV-2

wild type.

Early in the pandemic, attention was drawn to the k

parameter [90]; unfortunately, identification of supersprea-

ders has been retrospective [87]. Their biological capacities

remain unknown [87] even though several hypotheses have

been proposed, including an ability to propagate the virus

better because of higher viral particle emission [80], i.e., loud
speaking resulting in the exhalation of more virus-loaded air

[89] and, of course, the number, proximity and duration of

interpersonal contacts [80] in indoor vs. outdoor settings with/

without masking. When tracing is possible, identification of

critical factors promoting viral transmission may lead to

public health protective measures [80].

The transmissibility of the different variants (Alpha, Delta

and Omicron) versus wild-type SARS-CoV-2 must be taken

into account, as these variants have a higher transmissibility

and higher secondary infection rate. A Thai retrospective

study found that the secondary infection rate in households

increased from 16.6% (known rate for the wild-type) to 48%

(for certain contemporaneous variants) [91]. At a Finnish

hospital, an index case triggered an outbreak due to the Delta

variant, infecting 58 patients and 45 health care workers

(HCW). ‘‘Transmission occurred despite the use of personal

protective equipment by the HCW, and a high two-dose

COVID-19 vaccination coverage’’ [92]. So-called breakthrough

cases, in which SARS-CoV-2 provoked COVID-19 in fully

vaccinated people, seem to be increasingly common with the

Omicron variant, although individual susceptibility will vary

with the vaccine type, the number of doses, and the time since

vaccination.

4.3. COVID-19, air pollution and weather-climate

Among the huge number of publications related to COVID-19,

a search in ‘‘PubMed’’ (30 December, 2021) using the search

terms ‘‘COVID-19 and air pollution’’ and ‘‘COVID-19 and

climate’’ retrieved 1,364 and 2,067 references, respectively.

Here, we shall briefly examine the impact of air pollution and/

or meteorological conditions on the survival, spread and

infectivity of the SARS-CoV-2, and their impact on the

evolution and clinical presentation of COVID-19.

At the beginning of the pandemic in 2020, Italian and

Chinese scientists, joined by other Western countries teams,

concluded that air pollution seemed to favor the aerosolized

spread of SARS-CoV-2 [93–95]. High rates of air pollution,

notably due to particulate matters (PM), may also lower the

host’s immune system and thereby favor viral infection. Air

pollution is a major risk factor for several non-communicable

diseases, creating a preexisting poorer health condition that is

linked with an increased susceptibility to SARS-CoV-2, COVID-

19 severity, hospitalization and risk of death [93–95]. Among

air pollutants, PM10 (particles 10 mm in diameter) may serve as

carriers attaching viruses that spread in ambient air. As

inhaled PM carries microorganisms inside the body, PM act as

a cofactor and may contribute to the accentuated cardiovas-

cular effects of COVID-19. PM reportedly may promote clinical

severity and increase the risk of death. In the USA, an

ecological regression analysis showed that an increase of 1 mg/

m3 of PM2.5 was associated with an 11% increase in the COVID-

19 death rate [96]. Another gaseous pollutant, NO2, a marker

for traffic-related air pollution, is also involved in the

pandemic. In Los Angeles County neighborhoods, the annual

NO2 level is associated with COVID-19 incidence and mortality

[97].

These findings were discussed by the European Union’s

Joint Research Centre (JRC) team [98]. In October 2020, the JRC

issued a 36-page report that analyzed the literature published
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between March and July 2020. The report found that ‘‘a

significant impact of outdoor air pollution on the spreading or

severity of the disease has not been demonstrated yet’’

because of methodological shortcomings in many articles.

However, the report attributed 7% of COVID-19 deaths to air

pollution. Reviewing several articles issued in the first

semester of 2020, Bourdrel and colleagues [99] concluded that

the relationship (association and/or causality) between air

pollution and the pandemic remained unclear, although the

health effects of air pollution are supported by experimental

and epidemiological data [100].

Presently, interest in the contribution of environmental

factors to COVID-19 is extended to all meteorological and air

pollution conditions [101–103]. Thus, it is established that the

virus favors cold, dry and polluted air. Another aspect is the

inequity in human exposure to polluted air, which is higher in

industrial regions (e.g., the Po Valley in Italy) versus rural areas

[93] and also in some American counties inhabited by ethnic

communities (Blacks and Latinos) and lower socioeconomic

groups [95,96]. This factor also contributes to the differential

COVID-19 mortality rate among different populations world-

wide.

Along with air pollution, meteorological characteristics

(temperature, humidity, wind speed, UV radiation) have often

been investigated ‘‘based on unreliable data and questionable

modelling techniques that did not account for numerous

factors that were co-occurring at the beginning of the

pandemic’’ [104] leading to incomplete and even false policy

conclusions [105]. Therefore, the World Meteorological

Organization (WMO) established a COVID-19 Task Team

[103] to review available data. Elaborated since September

2020 and published in January 2021, the WMO report stated

notably: ‘‘Epidemiological studies of COVID-19 have, to date,

offered mixed results regarding the meteorological sensiti-

vity of the virus. Laboratory studies of SARS-CoV-2 have

yielded some evidence that the virus survives longer under

cold, dry and low ultraviolet radiation conditions’’ [103]. The

role of meteorological factors is now accepted; for example,

their role in the USA is higher in northern than southern

counties. They act on SARS-CoV-2 transmissibility, which is

moderately associated with cold and dry weather and low

levels of ultraviolet radiation, with humidity playing the

largest role [106].

Mathematical modelling using a logarithmic regression to

analyze the worldwide distribution of COVID-19 cases (less

prevalent in countries closer to the equator, where heat and

humidity are higher) predicted in January 2021 that the ‘‘threat

of epidemic resurgence may increase during winter’’ and

conversely decrease in summer, although not vanishing [107].

The resurgence of Delta and the exponential spread of

Omicron are consistent with this prediction. ‘‘An increase in

absolute latitude by 1 8C is associated with a 4.3% increase in

COVID-19 per 106 inhabitants’’ [107], confirming that SARS-

CoV-2 is sensitive to temperature and longer sunlight

exposure.

4.4. The possible effects of global chemical contamination

During the first pandemic wave, the high rate of COVID-19

deaths in some parts of Europe (Northern Italy, France, Spain,
and UK) compared to other regions (Germany, Switzerland,

Austria, and Denmark) was reported to correlate with relative

levels of environmental contamination (air pollution, pestici-

des, dioxins, chlorinated water), which may affect immune

function [108]. The efficacy and persistence of post-vaccina-

tion immunity to SARS-CoV-2 should consider the impact of

exposure to environmental pollutants that may modify

immune responses [100].

5. Environmental and health consequences of
non-pharmaceutical interventions

5.1. Lockdown, air pollution and stroke

The first prolonged lockdown of populations designed to slow

and stop the spread of COVID-19 drastically decreased air

pollution worldwide [109]. However, the decrease was diffe-

rential, with a drop of nitrite oxides (NOx) related to car traffic,

but the persistence of the pollution by PM produced by

building heating as well as agricultural practice. In France, an

unexpected and marked reduction in mortality rate, mostly in

low COVID-19-incidence departments, occurred during the

first quarantine period [110,111], being associated with a drop

in the stroke-hospitalization rate [110,112]. However, the

interaction between reduced air pollution in March 2020

and the increase in the risk of stroke induced by SARS-CoV-2

infection, has not been properly addressed [112].

Substantial human health benefits related to cardiovascu-

lar disease morbidity and mortality were linked with the

COVID-19-related lockdown in China, where levels of vehi-

cular air pollution (NOx, PM 2.5) were also substantially

reduced [113]. Additionally, China’s strict lockdown and

quarantine policies, border and travel controls, prompt virus

tracing and widespread immunization of its population,

greatly reduced the number of COVID-19 cases, hospitaliza-

tions and deaths relative to the experience of Europe and the

USA. By the end of 2021, the U.S. population had

experienced > 150-fold the number of reported COVID-19-

related deaths than the official number in China, a country

with a population > 4 times that of the U.S. [114].

5.2. Psychologic stress and crisis management

Neurologists cannot ignore the major impact of the COVID-19

pandemic on mental health and sleep quality (vide supra).

Already recognized (in 2019) as leading causes of the global

health-related burden, depressive and anxiety disorders

increased worldwide in 2020 in prevalence and burden

[115]. In their review, Brooks and colleagues anticipated

the psychological impact of COVID-1, based on previous

knowledge (specifically the societal disruption that lock-

down, infection, and quarantine would cause). ‘‘Most of the

adverse effects come from the imposition of a restriction of

liberty’’ [116]. They pointed also to populations at-risk,

namely health workers and people with preexisting psychia-

tric illness. They recommended several measures to reduce

the expected psychological consequences of lockdowns.

Clearly, crisis management can be a direct cause of

psychosocial distress.
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6. Crisis management and responsibilities:
should we enlarge the scope?

Decision-making during the COVID-19 pandemic was influen-

ced by gender, determining differences in public health

measures taken by female versus male leaders [117,118]. In

the Spring 2020, lower death rates were observed in countries

with governments led by women as in Denmark, Finland,

Germany, Norway, Iceland, New Zealand and Taiwan, as well

as in several U.S. and Brazil states. By contrast , several male

leaders lacked (and still lack) anticipation or denied the

magnitude of the health crisis. Women politicians showed

greater empathy [117] and use of less aggressive words and

war metaphors [119] than their male counterparts.

Widely broadcasted, communication from political leaders

led to the false belief that the pandemic was caused by an

unknown virus. For Frankel [120] at the Harvard Kennedy

School and knowledgeable analyst; however, the viral pande-

mic represented a ‘‘known-unknown’’ phenomenon not an

‘‘unknown-unknown’’ entity, and was likely to occur. Some

governments and so-called experts released false opinions to

the media to hide ignorance and lack of preparation [121], not

considering the fake news peddled by some social networks.

The critical importance of aerosol transmission of respiratory

viruses was originally overlooked [84], although Flügge

droplets were described in the 1890s, and SARS-CoV-1 was

known to diffuse indoor via airborne aerosols [122], reaching

distances > 60 m [123].

The medico-scientific community also failed to anticipate

the debilitating post-infectious syndrome, Long-COVID,

although the comparable Myalgic Encephalomyelitis/Chro-

nic-Fatigue Syndrome (ME/CFS) had been described six

decades ago [124] and also acknowledged in SARS [125]. A

long and indefensible debate about treatments, notably for

outpatients with benign/mild COVID-19, took place in the

early phase of the pandemic [126]. Unethical practices, such as

therapeutic abstention, were not exempt of health conse-

quences regarding lack of treatment, postponed hospitaliza-

tion and increased morbidity and mortality [127].

Public health policies were blurred by inertia, ideology and

ignorance (the devastating three Is, recognized in the fight

against global poverty [128]). On January 15, 2020, six days after

WHO announced a coronavirus-related outbreak in Wuhan

(China), the World Economic Forum published their 2020

Global Risk Report [129] and deplored the unpreparedness

against outbreaks of new emerging infectious diseases. The

unpreparedness was such that the health threat was

minimized by ‘‘experts’’, journalists and prominent politicians

[130,131], except for some countries [132]. As a consequence,

successes and failures should be scrutinized carefully by

experts [133].

Teaching environmental health, risk-management and

decision-making under uncertainty [134] should be considered

as an absolute necessity for political leaders and decision-

makers, and a large panel of disciplines (neuroscience,

anthropology, virology, immunology, veterinary medicine,

biology, but also political sciences). This represents a unique

opportunity to reach a better level of awareness, anticipation

and preparedness for future environmental health shocks.
Anticipation, mitigation, and avoidance of foreseeable dis-

asters will require increased surveillance, detection and

identification of a new disease surfacing in humans and/or

animals. Therefore, as proposed by the Lancet COVID-19

Commission [135], the teaching procedure should promote, via

an independent international council, the evaluation of public

health policies and that of the benefit/risk ratio of the different

treatments and vaccines.

7. Conclusions

The COVID-19 pandemic may be seen as a global human

health catastrophe triggered by an environmental agent and

amplified by human behavior. Analysis of the acute, chronic

and potential long-term neurological impact of COVID-19 is

susceptible to the methods employed in environmental

neurology. This holistic approach is praised by Horton in his

editorial ‘‘COVID-19 is not a pandemic’’ but ‘‘a syndemic

characterized by biological and social interactions, as well as a

broad array of human beliefs and behaviors that increase

individual susceptibility to adverse health outcomes’’ [136].

The link between the COVID-19 pandemic, environmental

factors, climate and health has also been highlighted by the

HERA-COVID-19 working group [137].

Changing humanity and its foolish behaviors is a utopian

dream. However, two possible approaches exist: top-down

regulation and bottom-up pressures. Societal awareness and

activist protestation can both offer creative solutions and

influence decision-makers’ policies. Anticipation is manda-

tory if we acknowledge Walt’s statement that another

pandemic ‘‘is not a matter of if but when; we as individuals,

our nation, and the entire global community need to be

prepared’’ [138]. Are our societies prepared to meet this

challenge? With the laudable and necessary goal of preserving

the brain health of individuals and populations worldwide,

how can our community best prepare and mitigate the next

predictable pandemic or ecological disaster? In any case, the

neurology community should enhance its preparedness by

improving surveillance and research in prevention, diagnos-

tic, treatment and communication tools and procedures to

improve the ways to face a future crisis such as the COVID-19

pandemic.

Since the acceptation of this article, important articles

were published, related to Schizophrenia as risk factor for

severe COVID-19 patients [139] and to the delay of the WHO

agreement about the role of bioaerosols in the propagation of

SARS-CoV-2 [140].
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