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aberrant endocardial cushion (EC) formation are

observed at increased rates in infants of diabetic
mothers. EC formation occurs via an epithelial-mesenchymal
transformation (EMT), involving transformation of endocardial
cells into mesenchymal cells, migration, and invasion into
extracellular matrix. Here, we report that elevated glucose
inhibits EMT by reducing myocardial vascular endothelial
growth factor A (VEGF-A). This effect is reversed with exo-
genous recombinant mouse VEGF-Ay45, whereas addition
of soluble VEGF receptor-1 blocks EMT. We show that
disruption of EMT is associated with persistence of platelet
endothelial cell adhesion molecule-1 (PECAM-1) and
decreased matrix metalloproteinase-2 (MMP-2) expression.

ﬁ trioventricular (AV) septal defects resulting from

These findings correlate with retention of a nontransformed
endocardial sheet and lack of invasion. The MMP inhibitor
GM6001 blocks invasion, whereas explants from PECAM-1
deficient mice exhibit MMP-2 induction and normal EMT
in high glucose. PECAM-1-negative endothelial cells are
highly motile and express more MMP-2 than do PECAM-1-
positive endothelial cells. During EMT, loss of PECAM-1
similarly promotes single cell motility and MMP-2 expression.
Our findings suggest that high glucose-induced inhibition
of AV cushion morphogenesis results from decreased
myocardial VEGF-A expression and is, in part, mediated by
persistent endocardial cell PECAM-1 expression and failure
to up-regulate MMP-2 expression.

Introduction

Infants born to mothers with gestational diabetes have a
threefold increased risk of cardiovascular malformations
(Boughman et al., 1993). Defects resulting from aberrant
endocardial cushion (EC)* formation, such as atrioventricu-
lar (AV) septal defects, are strongly associated with maternal
diabetes (Loffredo et al., 2001). The nature of these defects
indicates that poor glycemic control during early stages of
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cardiac morphogenesis has significant teratogenic effects via
molecular mechanisms that remain undefined.

The ECs are precursors of the AV valves and a portion of
the AV septum. EC formation occurs via an epithelial-
mesenchymal transformation (EMT) in which a subpopula-
tion of endothelial cells within the endocardial layer adjacent
to the atrioventricular canal (AVC) down-regulate cell
adhesion molecules (Mjaatvedt and Markwald, 1989), separate
from the endocardium, and transform into migratory mes-
enchymal cells that invade into the underlying cardiac jelly
(Runyan and Markwald, 1983). The development of
in vitro chick and mouse models of EC development
has greatly advanced our understanding of the cellular
events and molecular regulation of EMT. AVC explants
cultured on three-dimensional collagen gels according to
the method of Bernanke and Markwald (1979) recapitulate
the in vivo process of EMT. This assay has been used to
demonstrate that EMT involves multiple steps initiated by in-
ductive signals from the myocardium in a permissive ECM en-
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Figure 1. PECAM-1 expression is lost as endocardial cells undergo EMT. Peroxidase (A-C) and phase/fluorescence (D and E) microscopic

images of the cardiac region at 9.5 dpc demonstrating localization of PECAM-1 (red) and a-SMA (green). A illustrates the atrioventricular
canal (AVQ), ventricle (V), and a cross section of the outflow tract (OFT). OFT (B) and AVC (C) are high power images of the boxed areas in A,
showing the outflow tract (OFT) and atrioventricular canal (AVC) comprised of intensely staining PECAM-1-positive endocardial cells (E) lining
the lumen, an investing myocardial layer (M), and the intervening cardiac jelly containing transformed endocardial cells (TC) that have lost

PECAM-1 staining and have undergone EMT. D is a high power phase-contrast image of an area of EMT. L is the lumen; E denotes the

endocardial layer; M denotes the myocardial layer; asterisk denotes the cardiac jelly; TC denotes transformed mesenchymal cells that have
dissociated from the endocardial layer and have migrated into the cardiac jelly. The small arrows denote transformed mesenchymal cells that
have lost PECAM-1 expression and are expressing a-SMA (panel E). E is a high power immunofluorescence image of the same area of EMT.

The endocardial lining is PECAM-T1—positive (red). The cardiac jelly (asterisk) has been infiltrated by transformed mesenchymal cells (TC)
that have lost most of their PECAM-1 expression and others that have acquired a-SMA expression (green; indicated by small white arrows).

L, lumen. Bars, 100 pm.

vironment (Krug et al., 1985, 1987; Ramsdell and Markwald,
1997). EMT is further regulated by multple transcription
factors, growth factors, adhesion molecules, and proteases
(Lee et al., 1995; Erickson et al., 1997; Boyer et al., 1999a,b;
Camenisch et al., 2000, 2002b; Nakajima et al., 2000; Song
et al., 2000; Boyer and Runyan, 2001; Dor et al., 2001).
Inhibition of EC formation has been shown to occur in
embryos from streptozotocin-induced diabetic mice and
in murine embryos cultured in hyperglycemic conditions
(Pinter et al., 1999). In the embryonic yolk sac, hyperglyce-
mia elicits an arrest in yolk sac vasculogenesis that correlates
with a reduction in VEGF-A mRNA and protein levels
(Pinter et al., 2001). VEGF-A is an indispensable modulator

of cardiovascular development, and both modest increases
and decreases in VEGF-A levels in the yolk sac and heart
lead to embryonic lethality (Carmeliet et al., 1996; Miquerol
et al., 2000; Damert et al., 2002). There is evidence to sug-
gest that maintenance of appropriate VEGF- A levels is im-
portant during AVC morphogenesis (Dor et al., 2001). It
was demonstrated that hypoxia-driven elevations in VEGEF-
A and exogenous VEGF-A blocked EMT. Hyperglycemia,
like hypoxia, can lead to increased VEGF-A production in
adult vascular cells (Natarajan et al., 1997); however, in the
developing conceptus, reductions in VEGF-A occur in re-
sponse to hyperglycemia and correlate with significant vas-
cular abnormalities (Pinter et al., 2001).
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Previously, we demonstrated that high glucose results in
changes in platelet endothelial call adhesion molecule-1
(PECAM-1) phosphorylation during aberrant vasculogene-
sis in the yolk sac (Pinter et al., 1999; Ilan et al., 2000).
PECAM-1 is a 130-kD member of the immunoglobulin
superfamily that modulates cell adhesion, endothelial cell
migration, and in vitro and in vivo angiogenesis (Schim-
menti et al., 1992; Lu et al., 1996, 1997; DeLisser et al.,
1997; Newman, 1997; Ilan et al., 1999, 2000, 2001). Oth-
ers have demonstrated that oxidant stressors such as hyper-
glycemia and hypoxia can affect PECAM-1 localization
and phosphorylation (Kalra et al., 1996; Rattan et al.,
1996, 1997; Pinter et al., 1999). Furthermore, VEGEF-
mediated dynamic tyrosine phosphorylation of PECAM-1
has been shown to modulate endothelial cell adhesion and
migration (Esser et al., 1998). In development, PECAM-1
is expressed early in the presomite embryo in angioblasts
and yolk sac blood islands and persists throughout embry-
onic cardiovascular development (Baldwin et al., 1994;
Pinter et al., 1997). During initial stages of EMT in the
heart, down-regulation of PECAM-1 occurs (Baldwin et
al., 1994) followed by de-adhesion of individual mesen-
chymal cells from the endocardium. Matrix metallopro-
teinases (MMPs) such as MMP-2 are then expressed and
play a role in cell migration and invasion (Alexander et al.,
1997; Song et al., 2000).

In this paper, we demonstrate that high glucose has devel-
opmental stage-specific inhibitory effects on AV endocardial
cushion EMT. In addition, our findings suggest that this hy-
perglycemic-induced disruption of EMT results from de-
creased VEGF-A expression, and is partially mediated by ab-
normal persistence of PECAM-1 and decreased MMP-2

expression.

Results

High glucose inhibits EMT of endocardial cells

We studied EMT in the developing heart using the endo-
thelial cell marker PECAM-1 and the cushion mesenchy-
mal cell marker a-smooth muscle actin (a-SMA, Fig. 1;
DeRuiter et al., 1997; Nakajima et al., 1997). In a 9.5-days
post coitus (dpc) murine heart, PECAM-1 is localized to the
endocardium lining the AVC (boxed area) and outflow tract
(boxed area; Fig. 1 A). Higher magnification (Fig. 1, B and
C) illustrates EMT as seen by the presence of PECAM-1—
positive endocardial cells lining the outflow tract (Fig. 1 B)
and AVC (Fig. 1 C) and mesenchymal cells that have lost
PECAM-1 expression and are migrating into the cardiac
jelly. Fig. 1 (D and E) demonstrates the concomitant loss of
endothelial and gain of mesenchymal markers in the inva-
sive cells; the endocardial cells are PECAM-1—positive and
a-SMA-negative, whereas endocardial cells undergoing
EMT exhibit minimal to no PECAM-1 expression and are
a-SMA—positive.

To assess the effects of high glucose at the onset of EMT
(9.5 dpc), we used an in vitro model that recapitulates the
cellular and molecular events of EC formation (Bernanke
and Markwald, 1979, 1982; Runyan and Markwald, 1983).
As illustrated in Fig. 2 (A and B), AV explants cultured in
normal o-D-glucose exhibit robust EMT with cell separa-
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Figure 2.  Elevated o-p-glucose inhibits normal EC cell transformation
in AVC explant cultures. Light microscopic images of AVC explants
from 9.5-dpc embryos are shown. Explants were cultured in normal
(5.6 mM/L; A and B) and high (20 mM/L) a-p-glucose (C and D).
A shows the outgrowth of transformed mesenchymal cells onto the
collagen gel during EMT. B is a high power micrograph of the boxed
area in A, illustrating the spindle-like morphology of migrating and
invading mesenchymal cells. In contrast, C demonstrates the
epithelioid-like sheet of nontransformed endocardial cells seen in
elevated glucose conditions. D is a high power micrograph of the
boxed area in C, illustrating the cobblestone-shaped cohesive
endocardial cells. Bars, 100 wm. E shows the percentage + SEM of
normal and high glucose-exposed AVC explants with an epithelioid-
like phenotype, indicating lack of EMT specifically at the 20-25
somite stages. 5.6 mM/L p-glucose, n = 84; 20 mM/L p-glucose,

n = 97; P < 0.04. (F) The extent of EMT in AVC explants cultured in
normal versus high glucose conditions is represented as the ratio
of mesenchymal to endothelial cells. This graph represents the
mean + SEM of the cell counts from three independent litters. n = 6
for each condition, P < 0.0001.

tion, lateral migration of spindle-shaped cells, and cell inva-
sion into the collagen gel (Fig. 3, A and B). In contrast, AV
explants cultured in elevated a-D-glucose exhibit reduced
EMT. Endocardial-derived cells migrate away from the ex-
plant as a confluent epithelioid sheet and fail to invade into
the collagen gel (Fig. 2, C and D; Fig. 3, C and D).

The inhibitory effects of hyperglycemia on EMT

are somite stage-specific

Somite number has been used as a staging method to deter-
mine temporal specificity of AVC EMT (Camenisch et al.,
2002a). In our studies, the inhibitory effects of high glucose
on EMT were significant (P < 0.04) at the 20-25 somite
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Figure 3. Endocardial cell PECAM-1
protein expression is retained and cell
invasion is blocked in high glucose
conditions. Confocal fluorescence
microscopic images of AVCs explanted
at 9.5 dpc and cultured in normal (5.6
mM/L) and high (20 mM/L) a-p-glucose
(C and D), then stained for PECAM-1
(red) and a-SMA (green). The top panel
in A shows spindle-shaped a-SMA-
positive cells dispersed on and invading
(arrows, Z-plane; A, bottom) into the
collagen gel (Z-plane; dashed lines
demarcate the top of the collagen gel).
B is a higher power micrograph illustrating
the robust a-SMA and minimal PECAM-1
expression during EMT in normal glucose
conditions. C shows a-SMA and
PECAM-1-positive epithelioid-like cells
that fail to invade into the collagen gel
(Z-plane; dashed lines demarcate the
top of the collagen gel). D is a higher
power micrograph illustrating persistent
PECAM-1 expression during failed EMT
in high glucose conditions. Bars, 50 um.

20 mM

Z Plane ¥

stage of development (Fig. 2 E), but not at carlier (<20
somites) or later (26-30 somites) developmental stages (un-
published data). Thus, disruption of EMT by a hyperglyce-
mic insult occurs during a critical developmental window at
the 20-25-somite stages, which is within the recently re-
ported developmental time period for the onset of EMT in
the mouse (Camenisch et al., 2002a). The effects of high glu-
cose on EMT were further quantified by determining the ra-
tio of mesenchymal to endothelial cell numbers as illustrated
in Fig. 2 F. This inhibition of EMT by high glucose is illus-
trated as a marked drop in the mesenchymal to endothelial
cell ratio (from 13.4 = 5 t0 0.75 = 0.5; P < 0.0001).

Endocardial cells exhibit incomplete EMT in high
glucose with persistence of PECAM-1 expression

To further assess EMT in normal and high glucose condi-
tions, AVC explant cultures were immunolabeled using anti-
bodies to PECAM-1 and a-SMA. In normoglycemic condi-
tions, normal EMT occurs (Fig. 3, A and B) as scen by the
presence of mesenchymal cells that migrate laterally away
from the AVC explant and invade into the three-dimensional
collagen gel (Z-plane; Fig. 3 A, bottom). These cells have lost
PECAM-1 expression, express a-SMA, and exhibit cell sepa-
ration typical of EMT. In high glucose conditions (Fig. 3, C
and D), a confluent monolayer of cells is observed on the col-
lagen gel surface (Z-plane; Fig. 3 C, bottom). These EC cells
express a-SMA, and clusters of cells also maintain PECAM-1
expression (Fig. 3 D). Despite a-SMA expression, these cells
are epithelioid in morphology, lack cell extensions characteris-
tic of a migratory phenotype, and fail to invade the three-
dimensional collagen gel. This suggests that down-regulation of
endocardial PECAM-1 is a prerequisite step for normal EMT.

Hyperglycemic conditions elicit decreased myocardial
VEGF expression in the AVC

To evaluate the level of VEGF-A expression associated with
EC formation in murine conceptuses cultured in normal and
high glucose conditions, we used transgenic mice containing
a VEGF/LacZ bicistronic transcript (Miquerol et al., 1999;
Pinter et al., 2001). Use of these mice allowed visualization
of VEGF-A expression with the blue 3-galactosidase reaction
product LacZ (Fig. 4). In normal glucose conditions, VEGF-
A was strongly expressed in the myocardium adjacent to the
forming ECs. This correlated with robust EMT, as seen by
the presence of mesenchymal cells throughout the underly-
ing cardiac jelly (Fig. 4 A). In contrast, in high glucose con-
ditions, the myocardium underlying the putative EC stains
only faintly blue, indicating low VEGF-A expression. This
correlated with a lack of EMT and complete absence of mes-
enchymal cells in the cardiac jelly (Fig. 4 B).

Exogenous recombinant mouse VEGF-A,¢; abrogates
and sequestration of endogenous VEGF mimics the
effect of high glucose on AV cushion EMT

After the observation that high glucose elicits a reduction
in myocardial VEGF expression in the area where EMT
occurs, we hypothesized that the defect in AVC EMT
could be rescued by supplementing high glucose cultures
with recombinant mouse VEGF-A isoform 165 (rVEGF-
Ajgs). As illustrated in Fig. 5 (A and C), AVC explants
from 7.5-dpc conceptuses cultured in elevated a-D-glucose
levels for 48 h exhibit an arrest of EMT, evidenced by out-
growths of confluent areas of cobblestone-like endocardial
cells without appreciable migration into the gel (Fig. 5 C).
Addition of 10 pg/ml of rVEGF-A ;s to the hyperglycemic
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Figure 4. Myocardial VEGF-A expression is
reduced in high glucose conditions and is required
for EMT. Light microscopic images demonstrating
LacZ/VEGF staining in the AVC region from a 9.5-dpc
embryo initially harvested at 7.5 dpc and placed in
a whole conceptus culture for 48 h in either 5.6
mM/L (A) or 20 mM/L a-p-glucose (B). A is a
representative section of an AVC cultured in 5.6
mM/L a-p-glucose. Note the intense blue staining
of the myocardial layer (M) representing VEGF-A
gene induction in contrast to the lack of myocardial
staining in B. In A, note this area of EMT consisting
of the endocardial layer (E) and transformed
mesenchymal cells (TC) that have migrated into
the underlying cardiac jelly (C)). In contrast, B is

a representative section of an AVC cultured in 20.0
mM/L a-b-glucose illustrating the AVC lined by
endocardium (E) with complete lack of EMT; an
acellular area of cardiac jelly (C)) is present that
lacks cushion mesenchyme (No TC). Bars, 50 pm.

conceptus cultures overcomes the glucose-induced arrest
in EMT. Similar to control explants (Fig. 2 and Fig. 3),
AVC explants from conceptus cultures supplemented with
tVEGF-A 45 exhibit restored EMT with multiple spindle-
shaped mesenchymal cells dispersed onto the collagen gel
surface (Fig. 5 B) and invading into the three-dimensional
gel (Fig. 5 D).

To determine whether the effect of high glucose on cardiac
cushion morphogenesis is mediated by decreased VEGF sig-
naling, a soluble high-affinity VEGF receptor (sFlt-1) was
added to 9.5-dpc AVC explant cultures to sequester bioavail-
able VEGF (Davis-Smyth et al., 1996; Gerber et al., 1999;
Chow et al., 2001). sFlt-1 has previously been used to dem-
onstrate that VEGF is a central mediator of hypoxia-induced
defects in EC formation (Dor et al., 2001). As shown in Fig.
6 (D-F), explants treated with 25 pg/ml sFle-1 retain an epi-
thelioid phenotype and fail to invade into the collagen gel.
As in high glucose conditions, endocardial cells are transi-
tional, as evidenced by their a-SMA positivity. Thus, VEGF
deficiency, whether primary or secondary to high glucose,
produces a defect in EMT in the developing AV cushion.

MMP activity is required for mesenchymal cell invasion
and MMP-2 is down-regulated in high glucose conditions
We examined the expression of MMP-2 in EC cells undergo-
ing EMT in murine AVC explants cultured in the presence of
normal and elevated glucose. Expression of MMP-2 (Fig. 7 B)
is observed in the spindle-shaped a-SMA—positive mesenchy-
mal cells (Fig. 7 A) invading the collagen gel. In contrast, the
a-SMA-—positive noninvading EC cells from high glucose-
exposed explants exhibit a cohesive sheet-like morphology
(Fig. 7 C) and are essentially devoid of MMP-2 expression (Fig.
7 D). Furthermore, 9.5-dpc AVC explant cultures treated with
the MMP inhibitor GM6001 fail to exhibit invasion into three-
dimensional collagen (Fig. 6, G-I). Induction of a-SMA was
not affected in the presence of GM6001. This result suggests a
specific role for MMPs in the invasion aspects of EMT.

PECAM-1 expression modulates EMT

Given the persistence of PECAM-1 expression in AVC en-
dothelial cells exposed to elevated a-p-glucose (Fig. 3, C and
D), we hypothesized that glucose-mediated changes in PE-
CAM-1 signaling may play a role in disruption of EMT dur-

Figure 5. rVEGF-A;; rescues in vitro
AVC morphogenesis in high glucose-
treated embryos. Light microscopic

(A and B) and confocal immunofluores-
cence (C and D) images of 9.5-dpc AVC
explants from whole conceptuses cultured
in 20 mM/L a-p-glucose for 48 h starting
from 7.5 dpc with (B and D) or without
(A and C) 10 pg/ml r'VEGF-A4s. A and C
show an arrested EMT with extensive
epithelioid endocardial cells on the
surface of the gel devoid of any
appreciable migration by the a-SMA-
positive endocardial cells into the
collagen gel (C). B and D illustrate the
rescue of EMT in AVC explants from
conceptuses cultured in high glucose

and treated with 10 pg/ml of rVEGF-A;4s. Note the outgrowth of spindle-shaped, transformed mesenchymal cells (B) and the migration
of transformed a-SMA-positive cells into the gel. Bars: 50 um for A and B; 25 um for C and D.
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Figure 6. Sequestration of VEGF by sFlt-1 and inhibition of MMPs by GM6001 blocks EMT. Light and confocal fluorescence microscopic

images of AVCs explanted at 9.5 dpc and cultured in 5.6 mM/L p-glucose alone (A-C), 5.6 mM/L p-glucose and 25 wg/ml sFlt (D-F), or 5.6

mM/L p-glucose and 10 um GM6001 (G-I). B, E, and H are higher power micrographs of the areas boxed in A, D, and G. C, F, and | are
representative en face (top) and Z-plane images (bottom) of endocardial cell outgrowths immunostained for a-SMA. Transformed mesenchymal
cells exhibit cell-cell separation and invasion (A-C), in contrast to the sFLT-1-treated endocardial cells (D-F) that express a-SMA but are
epithelioid in morphology, maintain their cell contacts, and fail to invade into the 3-D collagen gel (F, bottom). In G and H, GM6001-treated
endocardial cells transform and migrate on the collagen gel; however, these a-SMA—positive mesenchymal cells fail to invade into the 3-D collagen
gel (I, bottom). Dashed lines in C, F, and | represent the top of the collagen gels. Bars: 200 pm for A, D, and G; 50 pum for B, C, E, F, H, and I.

ing AVC morphogenesis. Therefore, we investigated the ef-
fects of elevated a-D-glucose on EC formation in PECAM-
1—deficient mice. We find that explant cultures from PE-
CAM-1—deficient mice exhibit normal EMT (compare Fig.
8 A with Fig. 2 B) even in the presence of elevated a-D-glu-
cose levels (Fig. 8 B). In contrast to the high glucose-exposed
wild-type explant cultures that exhibit inhibition of EMT
(Fig. 2 C; Fig. 7, C and D), high glucose-exposed EC cells
from PECAM-1-deficient mice undergo full transforma-
tion, including cell separation, invasion, and expression of
MMP-2 (Fig. 8, C and D). Thus, retention of PECAM-1
expression appears to mediate the abnormal cohesive pheno-

type seen in high glucose-exposed EC cells.

PECAM-1 modulates endothelial cell morphology,
individual cell motility, and MMP-2 expression

in cell culture

The failure of high glucose to inhibit spindle-shaped cell
morphology, cell separation and motility, and MMP-2 ex-
pression in PECAM-1—deficient EC cells led us to evaluate
these parameters in cultured immortalized PECAM-1-defi-

cient endothelial cells. As illustrated in Fig. 9 A, the PE-
CAM-1/CD31-knock-out (KO) cells display a spindle-
shaped morphology similar to that of cushion mesenchymal
cells (Fig. 9 A, upper left panel), whereas the CD31-RC
(PECAM-1 reconstituted, or RC) cells display a rounded,
epithelioid morphology similar to that seen with EMT inhi-
bition (Fig. 9 A, lower left panel). When sparsely plated cells
were stained for F-actin, the differences in morphology are
more apparent, highlighting the spindle shape and extension
formation of CD31-KO cells (Fig. 9 A, upper right panel) as
compared with the rounded CD31-RC cells (Fig. 9 A, lower
right panel).

In addition to a change in cell morphology, EC cells that
have undergone EMT normally display extensive single cell
motility away from the explant on the type I collagen gel in
contrast to the sheet-like migration observed in glucose-
induced inhibition of EMT. To further assess the role of
PECAM-1 in cell motility, studies were performed using
CD31-KO and CD31-RC endothelial cells to assess nondi-
rected single cell motility through 8-pum pores in type I col-
lagen—coated transwell membranes. As illustrated in Fig. 9
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Figure 7. MMP-2 expression is down-
regulated in high glucose conditions
and is required for invasion. Confocal
images of endocardial cell outgrowths
from 9.5-dpc AVC explants cultured in
5.6 mM/L (A and B) or 20 mM/L a-b-
glucose (C and D) and immunostained
for a-SMA (A and C, green) and MMP-2
(B and D, red). A and B are representative
of the spindle-shaped, transformed
mesenchymal cells that exhibit a-SMA
(A) and MMP-2 (B) expression. 1 B is a
higher power image of transformed cells
with MMP-2 staining. 2 B is a Z-plane
illustrating invading transformed cells.
C and D demonstrate cohesive, epithe-
lioid-like, incompletely transformed EC
cells expressing a-SMA (C) but minimal
MMP-2 (D). 1 C Is a higher power en
face image of a-SMA—positive endocardial
cells, and 2 C is a Z-plane illustrating
restriction of these cells to the collagen
gel surface. Bars, 50 pm. Dashed lines
in 2 B and 2 C represent the top of the
collagen gels.

B, the CD31-KO endothelial cells transmigrate at a rate that
is fivefold greater than the CD31-RC cells. Similar to our
observations in the AVC explant cultures, PECAM-1-KO
endothelial cells were resistant to high glucose-mediated in-
hibition of single cell motility (unpublished data).

Given the inverse correlation between PECAM-1 and
MMP-2 expression in EC cells undergoing EMT (compare
Fig. 3 and Fig. 7) and the importance of MMP activity for
mesenchymal cell invasion (Fig. 6 and Fig. 7), we assessed
the expression of MMP-2 in CD31-KO and CD31-RC en-
dothelial cells. As seen in the representative Western blot in
Fig. 9 C, CD31-KO cells express significantly more MMP-2
than do CD31-RC cells. Increased MMP-2 activity in
CD31-KO cells compared with CD31-RC cells was con-
firmed by gelatin zymography (Fig. 9 D). Thus, our findings
suggest that loss of PECAM-1 expression promotes acquisi-
tion of a mesenchymal cell phenotype with spindle-shaped
morphology, enhanced single cell motility, and the robust
induction of MMP-2 required for cell invasion.

Discussion

We have investigated the effects of hyperglycemia on AVC
EMT. The use of whole conceptus and AVC explant assays
have allowed us to investigate the teratogenic effects of ele-
vated a-D-glucose on the forming ECs, which represent a
small, defined area in the embryonic heart with two specific
tissue layers (endocardium and myocardium) and a limited
subpopulation of cells. These systems permit evaluation of
the effects of a single factor at a specific stage of embryonic
development while maintaining normal anatomic relation-
ships between tissue layers, and allowing for physiologically
relevant signaling between these different layers. Our results
reveal that the teratogenic effects of glucose on EMT are de-
velopmental stage specific. An insult in mice had no effect
unless timed at the 20-25-somite stages, which corresponds
to the developmental window coincident with the onset of
EMT (Fig. 2 E; Camenisch et al., 2002a). High glucose at
this stage resulted in partial transformation of EC cells and

Figure 8. PECAM-1-deficient mice
undergo normal EMT in high glucose
conditions. Light and confocal fluo-
rescence microscopic images of AVC
explants from 9.5-dpc embryos from
PECAM-1—deficient (CD31 KO) mice
cultured in 5.6 mM/L (A) or 20 mM/L
a-p-glucose (B and C). A illustrates CD31
KO—derived AVC explants in 5.6 mM/L
a-D-glucose exhibiting normal EMT,
evidenced by the outgrowth of spindle-
shaped, transformed endocardial cells.
B illustrates normal EMT in CD31 KO-

derived AVC explants in the presence of 20 mM/L a-p-glucose. C is a representative en face confocal fluorescence image of a CD31 KO-derived
AVC explant cultured in 20 mM/L a-b-glucose exhibiting normal EMT, evidenced by the outgrowth of MMP-2—positive spindle-shaped,
transformed endocardial cells. The insets are higher power en face (1 C) and Z-plane (2 C) confocal sections illustrating robust MMP-2—positive
cells that are migrating into the collagen gel (dashed line in 2 D denoted the surface of the gel). Bars: 100 um for A and B; 50 um for C; and

50 wm for 1 C and 2 C.
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Figure 9. PECAM-1 modulates endo-
thelial cell morphology, single cell
motility, and MMP-2 expression.

(A) Representative light (left panels) and
actin fluorescence microscopic images
(right panels) illustrating distinct mor-
phologies of CD31-KO and CD31-RC
cells plated on type I collagen. Note
the spindle shape and extension forma-
tion of the CD31-KO cells (A, top panels)
in contrast to the epithelioid appear-
ance of the CD31-RC cells (A, bottom
panels). Bars: 50 pm for left panels;

25 wm for right panels. (B) CD31-KO
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inhibited cell separation and single cell migration and inva-
sion (Fig. 2, C and D; Fig. 3 C).

Consistent with previous studies demonstrating the ne-
cessity of maintaining appropriate levels of VEGF-A for
proper yolk sac vasculogenesis and cardiac morphogenesis
(Miquerol et al., 2000; Dor et al., 2001; Pinter et al., 2001;
Damert et al., 2002), we find that glucose-induced reduc-
tion in myocardial VEGF-A expression in the AVC results
in inhibition of EMT. The effect of glucose on VEGF-A
expression mirrors our previous findings in the yolk sac,
where high glucose-induced reduction of endodermal
VEGF-A was correlated with an arrest in yolk sac vasculo-
genesis at the primary plexus stage (Pinter et al., 2001). In
both studies, exogenous rVEGF-A;4s in a tight concentra-
tion range rescued yolk sac vasculogenesis (2-10 pg/ml)
and EC cell outgrowth (10 pg/ml; Fig. 5, C and D). Fur-
thermore, sequestration of endogenous VEGF with the re-
combinant receptor sFlt-1 at the onset of EMT was suffi-
cient to block EMT at this stage of cushion development
under normal glucose conditions (Fig. 6, D-F). Other in-
vestigators have demonstrated that decreased VEGF-A lev-
els result in embryonic lethality at 9 dpc, secondary to ab-
normal yolk sac blood island formation and vascularization
(Ferrara et al., 1996; Damert et al., 2002). There is evi-
dence to suggest that VEGF-mediated dynamic tyrosine
phosphorylation of cell junction proteins such as VE-cad-
herin and PECAM-1 may be an important modulatory
step of endothelial cell adhesion and migration (Esser et

al., 1998). Our results demonstrate that hyperglycemia-
induced reductions in VEGF-A expression during early
precardiac mesodermal differentiation, and later during EC
formation, can result in endocardial cell migration defects.
These findings suggest that reduced VEGF-A levels may
also result in transient changes in tyrosine phosphorylation
of cell adhesion molecules such as PECAM-1, leading to
persistent adhesion between endothelial cells, preventing
disassociation of these cells from the endocardium, and
consequently reducing the number of migrating EC cells.
In addition, reduction in VEGF-A signaling may result in
incomplete transformation of endocardial cells that have
de-adhered from the endocardium, thereby affecting their
ability to migrate as single cells and invade into the ECM.
In this paper, we show that PECAM-1 and MMP-2 have
a modulatory role in the process of EMT (Fig. 10). The en-
docardium is an epithelium composed of endothelial cells,
and as seen in Fig. 1 D, transformed endocardial cells lose
expression of endothelial PECAM-1 coincident with the
gain of expression of the mesenchymal marker a-SMA.
High glucose-treated AVC explants (Fig. 2, C and D; Fig.
3, C and D) exhibit a transitional phenotype expressing
a-SMA and retaining PECAM-1 expression. Unlike the in-
vasive mesenchymal cells in untreated explants, these transi-
tional epithelioid cells fail to express MMP-2 (Fig. 7 D).
Furthermore, the MMP inhibitor GM6001 specifically
blocks cell invasion (Fig. 6 F, bottom), underscoring the
functional significance of lack of MMP-2 expression in
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Figure 10. Flow chart depicting the putative cascade of effects
initiated by high glucose on AVC morphogenesis. Inhibitory effects
of hyperglycemia on EMT can be mimicked by sequestration of
VEGF by addition of sFlt or by addition of GM6001. These effects
are abrogated by exogenous rVEGF-A;; (in a specific dose range)
or by eliminating endocardial PECAM-1 expression through the use
of the PECAM-1—-deficient mouse (CD31 KO).

PECAM-1-positive, noninvading high glucose-treated en-
docardial cells (Fig. 7 D).

As seen in Fig. 8, AVC explants from PECAM-1—defi-
cient mice cultured in high glucose undergo complete EMT
with dispersal of MMP-2—expressing mesenchymal cells that
invade the ECM. This result indicates that loss of PECAM-1
is sufficient to rescue complete EMT in the presence of high
glucose. Furthermore, immortalized endothelial cells derived
from PECAM-1-deficient mice (CD31-KO) morphologi-
cally resemble transformed endocardial cells with their spin-
dle-like shape and extension formation (Fig. 9 A). Com-
pared with cells reconstituted with physiologic levels of
full-length murine PECAM-1 (CD31-RC) and reminiscent
of their mesenchymal counterparts, CD31-KO cells have
significantly increased nondirected single cell motility and
are resistant to glucose inhibition (Fig. 9 B) in transwell
transmigrations through type I collagen—coated membranes.
Furthermore, CD31-KO endothelial cells have higher ex-
pression levels and activity of MMP-2 than do CD31-RC
endothelial cells (Fig. 9, C and D). These observations sug-
gest that PECAM-1 may function in a similar fashion to
members of the cadherin family, whose engagement causes
down-regulation of MMP expression and activity. Con-
versely, loss of cadherin expression (specifically, E-cadherin)
has been shown to elicit increases in MMP expression and
invasiveness in several cell systems (Anzai et al., 1996;
Llorens et al., 1998).

This work provides supportive evidence that diabetic em-
bryopathy is a phenomenon of poor glycemic control during
catly gestation that can perturb normal cardiovascular devel-
opment. We have shown that the teratogenic effects of ele-
vated a-D-glucose on the developing AV ECs involve
VEGF-A-mediated defects in endocardial cell transforma-
tion, migration, and invasion. Future studies are needed to
understand how VEGF-A modulates PECAM-1 expression
and phosphorylation state in EC cells, how PECAM-1 in
turn regulates MMP expression, and how loss of PECAM-1
overrides the inhibitory effect of hyperglycemia on EMT.
Defects of the AV valves and septa are the most commonly
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observed congenital heart malformations, and further dissec-
tion of the complex molecular mechanisms of AVC morpho-
genesis from both normal and pathological standpoints can
lead to insights into preventing congenital cardiac anomalies.

Materials and methods

Mice

Conceptuses were harvested from timed pregnant CD1 (Charles River Lab-
oratories), C57/BL6) (Jackson ImmunoResearch Laboratories), PECAM-1—
deficient (Mahooti et al., 2000; Graesser et al., 2002), and VEGF-LacZ-
knock-in CD1 heterozygous mice (Miquerol et al., 1999; Pinter et al.,
2001). All procedures were performed in accordance with established, ap-
proved Yale University Animal Care Committee protocols.

Antibodies

Antibodies for immunocytochemistry and Western blotting are as follows:
mouse monoclonal anti-a-SMA (Sigma-Aldrich); rabbit polyclonal anti-PE-
CAM-1 (Pinter et al., 1997, 1999); rabbit polyclonal anti-MMP-2 Ab809
(CHEMICON International); Alexa Fluor® 488 goat anti-mouse 1gG and Al-
exa Fluor® 595 goat anti-rabbit IgG (Molecular Probes, Inc.); rhodamine-
phalloidin (Sigma-Aldrich); secondary donkey anti-rabbit HRP-conjugated
Ab (Amersham Biosciences), affinity-purified polyclonal anti-vimentin
(Haas et al., 1998).

AVC EC explant assay
As described in Camenisch et al. (2000 and 2002a), AVC explants (atrio-
ventricular canal and ventricle) were dissected out from 9.5-dpc embryos
and placed on rat tail-type I collagen gels (BD Biosciences), and were pre-
hydrated for a minimum of 1 h with 100 ml of Medium 199 supplemented
with 1% FBS, 100 U/ml penicillin, 100 wg/ml streptomycin, and 0.1%
each of insulin, transferrin, and selenium (GIBCO BRL). AV explants were
incubated at 37°C in 5% CO,. 100 ul of Medium 199 was added. Embryos
treated with either a-p-glucose (Sigma-Aldrich) at 20 mM/L, 25 pg/ml of
the soluble murine recombinant VEGF receptor 1/IgG-Fc chimeric protein
sFIt-1 (mFlt(1-3)-1gG, a truncated Flt 1-3 Fc fusion protein; a gift from Dr.
N. Ferrara, Genentech, San Francisco, CA; van Bruggen et al., 1999), or 10
wM of the MMP inhibitor GM6001 (llomastat; AMS Scientific Inc.) were
exposed to the indicated reagent for 30 min before AVC explantation and
were then cultured in Medium 199 containing the specific reagent. At 48 h,
cultures were stopped and the ventricular myocardium was removed.
Quantification of EMT was accomplished using two morphologically
based methods. In the first method, AVC explants from 9.5-dpc embryos
were cultured in normal and high glucose conditions and assessed for the
presence of a confluent epithelioid sheet. 9.5-dpc embryos varied in somite
number, and therefore, were divided into groups according to somite num-
ber (<20, 20-25, and 26-30 somites). Normal and high glucose-exposed
explants from somite stages 20-25 versus somite stages 26-30 exhibited ar-
eas of confluent epithelioid-like cells (Pinter et al., 2001). The percentage of
AVC explants exhibiting a confluent epithelioid in both normal and high
glucose conditions was determined and compared using a Z-test analysis.
In the second method, using the quantification methods previously de-
scribed by Camenisch et al. (2002b), the extent of EMT was assessed by de-
termining the ratio of number of mesenchymal versus epithelioid-like cells
in a subset of normal and high glucose-exposed explants randomly selected
from three separate independent experiments. Statistics were performed us-
ing a one-way ANOVA.

Whole conceptus culture

7.5-dpc murine conceptuses were harvested from timed pregnant WT CD1
female mice mated with male VEGF-LacZ-heterozygous mice and cultured
as described previously (Pinter et al., 1999, 2001). 20 mM/L a-b-glucose
with or without 10 pg/ml recombinant mouse VEGF-A;¢5 (CHEMICON In-
ternational) was added to normoglycemic cultures.

Staining of embryos

B-Galactosidase staining: After a 48-h culture period in normal and hy-
perglycemic conditions, embryos were fixed in 2% PFA and 0.2% glu-
taraldehyde at RT for 30 min and washed three times in PBS. Staining was
performed overnight at 37°C in 0.02% glutaraldehyde, 5 mM K;Fe(CN)g,
5 mM K;Fe(CN)s, and 2 mM MgCl, in PBS as described previously
(Miquerol et al., 1999; Pinter et al., 2001). Embryos were rinsed three
times with PBS, embedded in M-1 embedding matrix (Shandon, Inc.),
snap frozen in isopentane cooled in liquid nitrogen, and sectioned at 5
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um onto UltraStick® glass slides (Fisher Scientific). Sections were counter-
stained red with 0.13% safranin.

Immunoperoxidase staining: Embryos were fixed in 4% PFA, snap fro-
zen in isopentane cooled in liquid nitrogen, sectioned, and mounted on
glass slides as described previously (Pinter et al., 1997). Immunostaining
was performed using the avidin-biotin complex technique (ABC kit; Vec-
tor Laboratories). Sections were incubated with anti-PECAM-1 followed by
incubation with secondary biotinylated goat anti-rabbit antibody. After in-
cubation in avidin-peroxidase, staining was visualized using a DAB reac-
tion as described previously (Pinter et al., 1997).

Fluorescence and confocal microscopy
AV EC cells embedded in the collagen gel were fixed with 4% PFA, rinsed
with PBS, permeabilized with 0.5% Triton X-100, 10 mM Pipes, pH 6.8, 50
mM NacCl, 300 mM sucrose, and 3 mM MgCl,, and blocked overnight at
4°C in 3% BSA and 0.5% Tween 20 in PBS. For double immunostaining,
cells were incubated with a 1:400 dilution of anti-aSMA Ab and a 1:250 di-
lution of anti-PECAM-1 Ab or a 1:200 dilution of anti-MMP-2 Ab overnight
at 4°C, washed with 0.2% BSA and 0.5% Tween 20 in PBS, then incubated
in a 1:200 dilution of Alexa Fluor® 488 goat anti-mouse 1gG and Alexa
Fluor® 595 goat anti-rabbit IgG. Fluorescence microscopy images were ob-
tained with a Research Fluorescence Microscope (Carl Zeiss Microlmaging,
Inc.) equipped with a SPOT™ camera. Images were collected and stored
using Adobe Photoshop® 5.0 on an Apple Macintosh G3 computer.
Confocal images were obtained using an inverted microscope (IX70;
Olympus) equipped with an Argon/Krypton scanning laser system (Fluo-
View™; Olympus). En face and Z-plane sections were obtained using Flu-
oView™ software (Olympus).

Cell culture

PECAM-KO (CD31-KO) endothelioma cell line [IuEND.PECAM-1.1 was es-
tablished by retroviral transduction of primary endothelial cell culture with
the polyoma virus middle T-oncogene. CD31-KO cells were then retrovi-
rally transduced with full-length murine PECAM-1 cDNA as described pre-
viously, generating a PECAM-1 RC (CD31-RC) cell line (Wong et al., 2000;
Graesser et al., 2002). The endothelioma cell lines retained surface expres-
sion of VE-cadherin by FACS® and showed contact inhibition on conflu-
ence. Cells were cultured in DME with 10% FBS, 10 mM Hepes, pH 7.4,
1% L-glutamine, 1% nonessential amino acids, 1% pyruvate, 10,000 U/ml
penicillin/streptomycin, and 10° M 2-mercaptoethanol (GIBCO BRL) and
were incubated at 37°C in 8% CO,. Selection of PECAM-1 expression on
CD31-RC cells was maintained with 1 pg/ml puromycin.

Motility assay

8.0-pm pore size 6.5-mm diam transwell (Corning Incorporated) were
coated overnight with 12.5 pg/ml type | collagen and blocked with 5%
BSA as described previously (Haas et al., 1998). 100 pl of media was
added to the top well and 500 pl to the bottom well. Endothelial cells
were trypsinized, washed twice in endothelial media, and 100 pl of a 10°-
cells/ml single cell suspension was added to the top well. After 2.5 h of in-
cubation at 37°C in 8% CO,, the cells were washed once with TBS, fixed
in Streck’s Tissue Fixative (STF; Streck Laboratories), and stained with crys-
tal violet. Cells on the top surface of the filter were removed with a cotton
swab and cells on the bottom surface were quantitated.

For immunofluorescence staining, cells were incubated overnight on
8-chamber glass culture slides (Falcon; BD Biosciences) coated with type |
collagen as above. Cells were washed once with TBS, fixed in STF, permeabi-
lized with 0.5% Triton X-100 in TBS, and stained with rhodamine-phalloidin.

Western blotting and zymography

Cells were lysed in 120 mM Tris-HCI buffer, pH 8.7, 0.1% Triton X-100,
0.01% sodium azide, and 5% glycerol. For Western blotting, 25 pg pro-
tein was electrophoresed on an 8% SDS-PAGE gel and then blotted onto
a PVDF membrane. Membranes were blocked for 30 min in TBS contain-
ing 0.05% Tween 20 and 5% milk, hybridized overnight at 4°C with anti-
MMP-2 Ab, then incubated with a secondary donkey anti—rabbit HRP-
conjugated Ab and chemiluminescent detection (SuperSignal®; Pierce
Chemical Co.). Blots were normalized by stripping and reblotting with
anti-vimentin Ab to ensure equal loading of all samples. For zymography,
20 pg protein per sample was prepared in nondenaturing loading buffer
and size fractionated in a 10% SDS-polyacrylamide gel impregnated with
0.4% gelatin (Haas et al., 1998). The gels were washed in 2.5% Triton
X-100, washed two times with water, then incubated for 24 h at 37°C in a
50-mM Tris-HCI buffer, pH 8.0, containing either 5 mM calcium chloride
or 10 mM EDTA (negative control for MMP activity). Gels were fixed in
50% methanol and 10% acetic acid containing 0.1% Coomassie Blue

R250, dried, and then scanned (300 d.p.i.) using an Arcus Il scanner
(AgFa-Gevaert N.V.).
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