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Abstract

Background: The memory impairments in mild cognitive impairment (MCI) can be classified into encoding (EF)
and retrieval (RF) failure, which can be affected by underlying pathomechanism. We explored the differences
structurally and functionally.

Methods: We compared quantitative electroencephalography (qEEG) power spectra and connectivity between 87
MCI patients with EF and 78 MCI with RF using iSyncBrain® (iMediSync Inc., Republic of Korea) (https://isyncbrain.
com/). Voxel-based morphometric analysis of the gray matter (GM) in the MCI groups and 71 cognitive normal
controls was also done using the Computational Anatomy Toolbox 12 (http://www.neuro.uni-jena.de/cat/).

Results: qEEG showed higher frontal theta and lower beta2 band power, and higher theta connectivity in the EF.
There was no statistically significant difference in GM volume between the EF and RF. However, when compared to
normal control, GM volume reductions due to EF in the left thalamus and bilateral hippocampi and reductions due
to RF in the left thalamus, right superior frontal lobe, right superior temporal lobe, and right middle cingulum were
observed (p < 0.05, family-wise error correction).

Conclusions: MCI differs functionally and structurally according to their specific memory impairments. The EF
findings are structurally and functionally more consistent with the prodromal Alzheimer’s disease stage than the RF
findings. Since this study is a cross-sectional study, prospective follow-up studies are needed to investigate whether
different types of memory impairments can predict the underlying pathology of amnestic MCI. Additionally,
insufficient sample size may lead to ambiguous statistical findings in direct comparisons, and a larger patient cohort
could more robustly identify differences in GM volume reductions between the EF and the RF group.
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Background
Mild cognitive impairment (MCI) is considered an inter-
mediate stage in the trajectory from normal cognition to
dementia [1]. MCI is a heterogeneous disorder with dif-
ferent prognosis from progression to Alzheimer’s disease
(AD) or non-AD dementias to the maintenance or even
improvement of cognitive decline [2]. The early recogni-
tion of disease progression to AD in patients with MCI
is an important topic of interest for clinicians in terms
of early intervention and patient education [3, 4]. Be-
cause the preclinical or prodromal stage of AD has be-
come a major focus in research regarding disease-
modifying therapy, identifying individuals at the risk of
developing AD would be needed for researchers [3, 4].
The evidence of Alzheimer pathology in cerebrospinal
fluid (CSF) or positron emission tomography (PET) and
neurodegeneration in multimodal neuroimaging may
provide information about disease progression [5]. How-
ever, these biomarkers are not easily accessible due to
high cost, invasiveness, and restricted availability. It is
impossible to perform these studies on all patients with
MCI, and simpler methods may be more valuable in
practice.
MCI is subdivided into non-amnestic and amnestic

types and single and multiple domains [6]. Many studies
have suggested that the subtypes have different etiologies
and future outcomes and risk of progress to AD may be
influenced by the subtype of MCI [7]. There are different
rates of progression among subtypes of MCI [2], and ap-
proximately 80% of patients with amnestic MCI convert
to AD dementia within 6 years [8]. This subtype classifi-
cation of MCI may have utility as an easily accessible
tool, and additional classifications based on AD path-
ology to amnestic MCI may be more successful. Memory
impairment patterns can be divided into two subtypes
that show either encoding (EF) or retrieval failure (RF)
[9]. Since it has been suggested that EF originates from
hippocampal dysfunctions such as those observed in AD
and that RF is rather caused by frontal or subcortical
dysfunctions [10, 11], we hypothesized that patients with
EF among amnestic MCI are more likely to convert to
AD than patients with RF. However, the subtyping of
amnestic MCI into EF and RF has drawn little attention
so far. Although several studies have investigated clinical
characteristics or prognostic values of EF and RF in
amnestic MCI [12–14], there is no comprehensive ap-
proach to understanding the clinical significance.
Currently, electroencephalography (EEG) and mag-

netic resonance imaging (MRI) volumetry are extensively
studied as a predictive factor of clinical progression to
AD [5, 15]. EEG power density, functional coupling,
spectral coherence, synchronization, and connectivity
provided their clinical efficacy in disease progression to
AD [16]. EEG coherence has been studied as a measure

of brain connectivity [17], and the imaginary part of co-
herency (iCoh) has been introduced as a robust method
to avoid volume conduction artifacts [18]. Additionally,
atrophic patterns including the volume of the hippocam-
pus may be a good biomarker of AD [19–22]. Therefore,
we aimed to explore functional and structural differ-
ences between EF and RF by these potential neuropatho-
logic biomarkers of AD, and to identify that EF patients
may exhibit a more similar pattern to AD compared to
RF patients. We used the power spectral, iCoh in EEG,
and MRI volumetry analyses as neuropathologic bio-
markers of AD. Our findings may suggest the clinical
implication of subdivision of amnestic MCI into EF and
RF, and may be the basis for future prospective research
which investigates biomarker of developing AD.

Subjects and methods
Subjects
This retrospective study used the qEEG and three-
dimensional T1-weighted MRI (3D T1 MRI) data of pa-
tients who visited the Chung-Ang University Hospital
Department of Neurology from January 2012 to May
2019 and were diagnosed with single-domain amnestic
MCI. This study was approved by the institutional re-
view board of our center (IRB number 1802-004-16143).
Written informed consent was obtained from all
participants.
Participants were aged 55 years or older, underwent

3D T1 MRI and qEEG within 2 weeks, and met the
single-domain amnestic MCI criteria. The criteria were
as follows: (1) presence of memory complaints, (2) intact
performance of activities of daily living, (3) objective ver-
bal memory impairments on the Seoul Neuropsycho-
logical Screening Battery (at least 1.0 SD below age- and
education-adjusted norms), (4) Clinical Dementia Rating
of 0.5 (1), and (5) not demented according to the Diag-
nostic and Statistical Manual of Mental Disorders
(DSM)-IV criteria. Subjects were divided into an EF
MCI and an RF MCI group. EF was defined as both de-
layed recall and recognition scores on a verbal learning
test below 1.0 SD; RF was defined as only a delayed re-
call score below 1.0 SD. Resting-state EEG data were ob-
tained from all 165 patients with amnestic MCI
comprising 87 with EF and 78 with RF. 3D T1 MRI data
were available for brain volume analysis for 147 of all
subjects with amnestic MCI (for 78 with EF and 69 with
RF) because of problems in the preprocessing of images
(Fig. 1).
The 3D T1 MRI imaging data of 71 age-matched

cognitive normal control (NC) subjects were selected
from the repository. The inclusion criteria for NCs
were as follows: (1) from a community-based popula-
tion; (2) no abnormalities based on a health screening
questionnaire [11]; (3) absence of memory complaints;

Han et al. Alzheimer's Research & Therapy            (2021) 13:3 Page 2 of 11



(4) a Korean Dementia Screening Questionnaire
score ≤ 6 [12]; (5) a Mini-Mental State Examination
(MMSE) score > 26; (6) intact activities of daily living
(K-IADL ≤ 0.42); (7) no history of thyroid dysfunction,
vitamin B12 deficiency, or folate deficiency; and (8) at
least 6 years of education.
No participant presented any structural abnormalities

on MRI, such as territorial infarctions, intracranial
hemorrhage, brain tumors, or hydrocephalus; lacunar in-
farcts or mild to moderate subcortical or periventricular
white matter hyperintensities did not lead to exclusion.
Patients with major psychiatric disease, such as schizo-
phrenia, major mood disorder, and chronic alcoholics,
were also excluded.

qEEG analysis
Resting-state EEG was conducted using the standard
10–20 system (21 electrodes) and a digital electro-
encephalograph (Comet AS40 amplifier EEG GRASS;
Telefactor, USA) (Jaspers, 1958), and all electrodes
were referred to linked ear references. Electrode skin
impedance was always below 5 kΩ. The EEG signal
was analog-filtered with a band pass of 0.5–70 Hz and
digitized and stored on magnetic disks for further
analysis. EEG sampling was conducted with eyes open
for 30 s and with eyes closed for 30 s, 10 times, at a
rate of 200 Hz. Of these, about 3 min of eyes-closed
data was used. One epoch is 4 s long, and an average
of 45 epochs were analyzed. The measured eyes-open

and eyes-closed data were converted according to the
linked ear reference and stored in text format without
filtering. While resting-state EEG data were recorded,
patients were lying down in a resting position in a
sound-attenuated room. EEG noise preprocessing and
group analyses were conducted using iSyncBrain®
(iMediSync Inc., Republic of Korea) (https://isync-
brain.com/), a cloud-based, artificial intelligence EEG
analysis platform. The eyes-closed EEG segments were
uploaded to iSyncBrain®. Prior to data analysis, arti-
facts in the raw data were removed by visual inspec-
tion and an adaptive mixture independent component
analysis (amICA) [13]. qEEG features were obtained
at the sensor and at the source level. At the sensor
level, relative power at eight frequency bands (delta
[1–4 Hz], theta [4–8 Hz], alpha1 [8–10 Hz], alpha2
[10–12 Hz], beta1 [12–15 Hz], beta2 [15–20 Hz], beta3
[20–30 Hz], and gamma [30–45 Hz]) was calculated
using a power spectrum analysis. In the source-level
analysis, the current distribution across the brain was
assessed using the standardized low-resolution brain
electromagnetic tomography technique [23], to com-
pare relative power values in 8 regions of interests
(ROIs) [24] and connectivity (the imaginary part of
coherency) [18] between ROIs. Eight ROIs included
bilateral temporal lobe, frontal lobe, parietal lobe, and
occipital lobe. EEG coherence has been studied as a
measure of brain connectivity [17], and the imaginary
part of coherency (iCoh) has been introduced to

Fig. 1 Enrollment of subjects with amnestic mild cognitive impairment
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avoid volume conduction artifacts [18]. The iCoh is
defined as follows [18]:

iCoh ¼ im

 
Cohð f Þ

!
¼ imð Sxyð f Þ

ðSxxð f Þ � Syyð f ÞÞ
1
2

Þ ð1Þ

where Sxy(f) is the cross-power spectral density and Sxx(f)
and Syy(f) are the autopower spectral densities for each
channel X and Y, respectively. We calculated the con-
nectivity of each of the regional pairwise of 8 ROIs with
remaining all other 7 ROIs. We have estimated the func-
tional connectivity at eight frequency bands (delta [1–4
Hz], theta [4–8 Hz], alpha1 [8–10 Hz], alpha2 [10–12
Hz], beta1 [12–15 Hz], beta2 [15–20 Hz], beta3 [20–30
Hz], and gamma [30–45 Hz]).

MRI volumetry
To determine gray matter (GM) volume changes
underlying EF and RF in amnestic MCI, we con-
ducted voxel-based morphometry (VBM) on MRI
scans acquired on 3-T scanners manufactured by
Philips (Achieva, Amsterdam, the Netherlands). The
data were analyzed using the Computational Anat-
omy Toolbox (CAT12) running on Statistical Para-
metric Mapping software (SPM12). CAT12 is a VBM
toolbox designed by the Structural Brain Mapping
Group at the University of Jena (Jena, Germany).
First, the DICOM files were converted into nifti for-
mat, using MRICRON software (http://people.cas.sc.
edu/rorden/mricron/index.html). VBM preprocessing
was performed using the default settings of the
CAT12 toolbox and the “East Asian Brains” ICBM
template. Imaging files were normalized using an af-
fine model, followed by non-linear registration, cor-
rected for bias field inhomogeneities, and then
segmented into GM, white matter (WM), and cere-
brospinal fluid (CSF) components. The segmented
scans were normalized into standard Montreal
Neurological Institute space using the Diffeomorphic
Anatomic Registration Through Exponentiated Lie
(DARTEL) algebra algorithm. The modulation
process on the normalized, segmented images con-
sisted of a non-linear deformation, which corrects
individual differences in brain size. We reviewed
morphological abnormalities and applied smoothing
processes to all segmented, modulated, and normal-
ized GM images using an 8-mm full-width-half-max-
imum Gaussian filter.

Statistical analysis
To compare demographic and cognitive assessment re-
sults between groups, Student’s t tests for continuous
variables were performed with IBM SPSS version 25
(IBM, Armonk, NY, USA). Statistical significance was set

at p < 0.05. Student’s t test was performed for the fre-
quency band power of each channel and 8 ROIs, and
iCoh between 8 ROIs to compare the EF and RF groups.
All statistical processes for qEEG features were im-
planted in iSyncBrain® (iMediSync Inc., Seoul, Republic
of Korea).
To demonstrate GM volume changes underlying EF

and RF in amnestic MCI, we conducted a comparison
with processed MR images of cognitively normal sub-
jects using voxel-wise, two-sample t tests of the VBM on
SPM package. Age and total intracranial volume (TIV),
that is, the sum of the GM, WM, and CSF volumes, were
classified as nuisance covariates in the GM volume com-
parisons between the groups. We used a VBM analysis
to demonstrate significant atrophic GM areas in the two
types of patients with amnestic MCI. To detect GM vol-
ume differences between patients with EF and those with
RF, voxel-wise, two-sample t tests of the VBM on SPM
package were also conducted on the processed images.
Age and TIV were again classified as nuisance covariates
in the GM volume comparisons between groups. Abso-
lute threshold masking was used at a threshold of 0.1.
Results were corrected for family-wise errors (FWE) to
avoid multiple-comparison problems of voxel-wise ana-
lysis. At cluster level, significant results were displayed
at a voxel-wise threshold of p < 0.05 with a minimum
cluster size (k) of 50 voxels. At a peak level, p < 0.05 was
set as a threshold for significance.

Results
Study subjects
The mean age of all subjects with amnestic MCI was
73.5 years, and their mean MMSE score was 22.4.
There was no significant difference between the EF
and RF groups in baseline demographics or clinical
status (p > 0.05, Table 1) except for gender (p =
0.010). The mean age of all patients with EF was
73.8 ± 8.3 years, that of the patients with RF was
73.4 ± 6.2 years, and that of the NCs (n = 71) was
70.4 ± 3.9 years. There was also no significant differ-
ence between the EF and RF groups in the score of
Clinical Dementia Rating (CDR).

Table 1 Characteristics of subjects with encoding (EF) and
retrieval failure (RF) due to mild cognitive impairment

EF (n = 87) RF (n = 78)

Age (years ± std) 73.8 ± 8.3 73.4 ± 6.2

Male/female 39/48 20/58

Education (years ± std) 9.4 ± 5.7 8.0 ± 4.9

MMSE 21.3 ± 6.3 23.4 ± 5.7

CDR 0.5 ± 0.1 0.5 ± 0.1

CDR Clinical Dementia Rating, MMSE Mini-Mental State Examination
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qEEG sensor-level analysis
In the sensor-level analysis, the EF group showed signifi-
cantly higher frontal theta power than the RF group
(Fig. 2a). A higher average of theta power values across
all channels was also observed in the EF group, as well
as lower beta2 power in the frontal, central, temporal,
and parietal regions (Fig. 2b). There were no significant
power differences in the delta, alpha1, alpha2, beta1,
beta3, and gamma bands between the groups.

qEEG source-level analysis
Figure 3 shows the statistically significant difference be-
tween the EF and RF groups for the source power of 8
ROIs and the connectivity between the ROIs in the theta
and beta2 bands. The theta band power in the left
frontal lobe was significantly higher in the EF group.
The EF group also showed a higher connectivity in the
theta band than the RF group. In contrast, beta2 band
power was significantly lower in several ROIs (left
frontal, bilateral temporal, bilateral parietal, and right oc-
cipital lobe) in the EF group (p < 0.05).

GM volume changes in amnestic MCI
In the VBM analysis, statistically significant atrophic
areas in patients with amnestic MCI were overlaid onto
an average structural image of the NC group. In amnes-
tic MCI, significant GM atrophy was observed in the left
thalamus and precuneus; the bilateral, dorsolateral, and
medial temporal areas; the bilateral frontal; and several
other areas (Fig. 4a and Table 2). The GM volume re-
ductions underlying EF were located in the left thalamus

and the bilateral hippocampi, while those underlying RF
were located in the left thalamus, right superior frontal
lobe, right superior temporal lobe, and right middle cin-
gulum (Fig. 4b and Table 2). However, the brain volume
differences between the RF and EF groups were not sig-
nificant (uncorrected p > 0.005).

Discussion
In this study, we explored functional and structural dif-
ferences between patients with EF and RF using qEEG
and GM volume. The qEEG analysis showed an increase
in the theta power spectrum and a decrease in beta2
power in the EF group compared to the RF group. In
EEG connectivity analyses, significant differences in iCoh
between EF and RF were found in the theta band. Pa-
tients with amnestic MCI with EF showed higher theta
band connectivity in the frontal-occipital and parietal-
occipital connections, compared to those with RF. There
was no statistically significant difference in GM volume
reductions between the EF and the RF group. However,
when compared to the NCs, the VBM analysis demon-
strated decreased volumes in the left thalamus and the
bilateral hippocampus in the EF but in the right frontal
and temporal lobe in the RF group.
The qEEG pattern observed in the EF group in our

study was similar to the pattern observed for AD in nu-
merous previous qEEG studies, which showed increased
power in low frequency bands (delta and theta) and de-
creased power in high frequency bands (alpha and beta)
[25–31]. A recent study suggested an increase in relative
theta power as a first change in patients with AD [25].

Fig. 2 Band power for the encoding failure (G1) and retrieval failure (G2) groups. a The EF group showed significantly higher frontal relative theta
power than the RF group. A higher average of relative theta power values across all channels was also observed in the EF group. b A lower
average of relative beta2 power in the frontal, central, temporal, and parietal regions
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During the disease progression of AD, an early increase in
theta and decrease in beta is followed by a decrease in
alpha and an increase in delta power [32, 33]. Patients
with MCI have also shown increases in theta power and
decreases in alpha power when compared with normal
elderly subjects [28, 33, 34]. Additionally, increased theta
power and decreased parietal beta power may predict dis-
ease progression to AD in patients with MCI [35, 36]. An-
other study in non-demented and amyloid-positive
subjects showed that higher delta and theta power were
associated with clinical progression over time [37]. The
patients with amnestic MCI with EF in the present study
showed increased theta and decreased beta power when
compared with the RF group in our power spectrum and
ROI source power analyses. Regarding differences between
brain regions at the sensor and source level, we observed
an increase in the theta band in the EF group in the
frontal area. Previous studies have demonstrated the in-
creased theta power at posterior brain region in predicting
AD progression [37, 38]. But, the increased theta in frontal
region has also been reported as a predictive factor of clin-
ical progression to AD in several studies [34, 37], and our

results are consistent with that. These findings may be as-
sociated with an anterior shift in band frequency source
[34]. Accordingly, qEEG patterns in patients with amnes-
tic MCI with EF were more similar to the pattern predict-
ing disease progression to AD than in those with RF.
The hallmark of EEG connectivity abnormalities in

AD patients is a decrease in coherence of fast rhythms.
EEG coherence analyses in patients with AD showed a
decrease in connectivity in the alpha frequency band [16,
28, 30, 31, 39, 40]. It has been shown that EEG coher-
ence contributes to the discrimination of AD from nor-
mal aging [40] and progression to AD in patients with
MCI [38]. Recently, one study reported significant differ-
ences in iCoh in the theta and delta bands between
groups with progressive and stable MCI, while higher
theta coherence was associated with cognitive decline
[41]. The significant differences for iCoh were found in
the lower frequency bands involving parietal-frontal con-
nections [41]. There is increasing evidence for patho-
logically increased neuronal activities [42] and
connectivity in early AD and MCI [43, 44]. Phase-based
measures have also reported increases in the theta band

Fig. 3 Source ROI power and connectivity between the encoding failure (G1) and retrieval failure (G2) groups. The left panel shows the theta
band, and the right panel the beta2 band. The blue color indicates greater significance in the G1 than in the G2 group. Red indicates
the opposite
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Fig. 4 Statistical parametric maps of gray matter volume reductions in aMCI (a) and the two subtypes (b). FWE, family-wise error; NC, normal
control group; aMCI, amnestic mild cognitive impairment
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connectivity [43]. Patients with progressive MCI showed
higher synchronization than patients with stable MCI
[44]. Similar to previous studies, significant differences
in iCoh between EF and RF were found in the theta
band in our study. Patients with amnestic MCI with EF
showed higher theta band connectivity in the frontal-
occipital and parietal-occipital connections, compared to
those with RF.

In our present study, significant differences in qEEG
pattern between EF and RF were found, but there
were no significant differences in structural MRI ac-
cording to cognitive performance. When compared to
the NC group, the patients with EF seemed to be
more similar to the brain atrophy observed in AD
than that observed in patients with RF, but comparing
EF and RF separately with controls did not suggest

Table 2 Gray matter volume reductions in amnestic mild cognitive impairment, compared to age-matched normal controls

x, y, z coordinate Label Cluster level Peak level

p (FWE-corr) equivk p (FWE-corr) T equivZ

Amnestic MCI 21 − 21 12 Thalamus Lt < 0.001 2324 < 0.001 7.84 7.34

− 12 − 41 6 Precuneus Lt < 0.001 5.75 5.54

− 30 − 21 − 23 Parahippocampus Lt 0.001 5.62 5.42

53 0 − 11 Temporal Sup Rt < 0.001 1573 < 0.001 5.70 5.49

60 − 21 − 14 Temporal Mid Rt 0.001 5.48 5.30

51 − 9 − 23 Temporal Mid Rt 0.002 5.37 5.19

12 20 32 Cingulum Mid Rt < 0.001 567 < 0.001 5.68 5.47

12 30 33 Cingulum Mid Rt 0.003 5.23 5.07

14 33 24 Cingulum Mid Rt 0.006 5.09 4.94

− 29 21 42 Frontal Mid Lt 371 < 0.001 5.66 5.46

− 29 33 33 Frontal Sup Lt 0.001 5.45 5.26

− 36 21 33 Frontal Mid Lt 0.009 4.99 4.85

36 33 24 Frontal Mid Rt 241 0.001 5.63 5.4

29 27 38 Frontal Mid Rt 0.003 5.23 5.06

− 45 9 − 24 Temporal Pole Sup Lt 433 0.001 5.53 5.34

− 27 − 3 48 Precentral Lt 166 0.001 5.47 5.28

12 51 32 Frontal Sup Medial Rt 328 0.001 5.41 5.23

18 41 35 Frontal Sup Rt 0.002 5.38 5.20

23 51 23 Frontal Sup Rt 0.003 5.24 5.07

33 − 23 − 20 Parahippocampus Rt 621 0.002 5.32 5.15

30 − 5 − 30 Parahippocampus Rt 0.004 5.19 5.03

27 − 32 − 3 Hippocampus Rt 225 0.004 5.15 5.00

Encoding failure − 20 − 20 14 Thalamus Lt < 0.001 2926 < 0.001 6.7 6.25

− 12 − 38 6 Hippocampus Lt < 0.001 6.59 6.15

− 26 − 23 − 9 Hippocampus Lt < 0.001 6.34 5.95

26 − 33 − 3 Hippocampus Rt < 0.001 879 < 0.001 6.32 5.93

29 − 26 − 8 Hippocampus Rt < 0.001 6.12 5.76

32 − 23 − 17 Hippocampus Rt < 0.001 5.79 5.49

30 − 5 − 30 Parahippocampus Rt 0.002 160 < 0.001 6.02 5.68

Retrieval failure − 21 − 23 9 Thalamus Lt 0.001 201 0 6.61 6.14

17 11 59 Frontal Sup Rt 0.002 174 0 5.86 5.53

51 0 − 11 Temporal Sup Rt < 0.001 390 0.002 5.53 5.24

44 − 17 − 9 Temporal Sup Rt 0.003 5.41 5.14

44 − 3 − 18 Temporal Sup Rt 0.018 4.92 4.71

11 26 36 Cingulum Mid Rt 0.004 111 0.005 5.25 5

FWE, p < 0.05. Local maximum more than 8.0 mm apart. MCI mild cognitive impairment, FWE family-wise error, Rt right, Lt left, Sup superior, Mid middle
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that there are differences between EF and RF. AD is
considered a cortical dementia, and structural MRI
and qEEG are considered as a marker of neuronal
loss and cortical dysfunction [5]. Therefore, we ini-
tially expected that the differences between the two
groups would be reflected in structural MRI as well
as qEEG, and cortical atrophic changes are expected
to occur almost simultaneously with EEG abnormal-
ities during AD progression. However, our negative
results might suggest that structural MRI may become
abnormal a bit later rather than other pathologic bio-
markers. Compared with either CSF Aβ1–42 or tau,
structural MRI is considered as a bit later biomarker
[45, 46], and sometimes, abnormal EEG pattern may
be observed earlier than structural MRI [47]. It may
be difficult to compare directly what is the earlier
biomarker between qEEG and structural MRI, but
further research is needed regarding this. And, it will
be needed to investigate if there is a difference
between the two groups through a pathologic
biomarker, an earlier biomarker (either CSF Aβ1–42
or tau).

Limitations
The current study was subject to several limitations.
Since this study is a cross-sectional study, it cannot
be confirmed that patients with amnesiac MCI with
EF actually progress to AD. It is just assumed that
amnestic MCI patient with EF is more likely to pro-
gress to AD than patient with RF, as the patterns of
qEEG, EEG connectivity, and cortical atrophy in the
EF group were more similar to the patterns observed
for AD in numerous previous studies. Therefore, lon-
gitudinal follow-up studies may be needed to investi-
gate whether patients with amnestic MCI with EF can
progress to AD. Second, gender is not considered as
covariate in analyses, although there was significant
difference between the EF and RF groups in gender
ratio (p = 0.010). Lastly, it may be difficult to accur-
ately estimate ROIs by calculating using 21 channels.
However, EEG in our study was generally performed
in clinical practice rather than for research. Similar
methods were used in some previous studies using
clinical data [48].

Conclusions
Our findings indicate that patients with amnestic
MCI with EF and those with RF differ functionally,
and that both show different brain atrophy sites in
comparison to NCs. By integrating power spectral,
EEG coherence, and MRI volumetric analyses, we
found that patients with EF due to amnestic MCI
show a pattern that is more consistent with the pro-
dromal stage of AD than the pattern observed in

patients with RF. Prospective follow-up studies are
needed to investigate whether different types of mem-
ory impairments can predict the underlying pathology
of amnestic MCI.
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