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Abstract

MammaPrint® (MP) is a 70-gene signature that stratifies early-stage breast cancer

patients into low- and high risk of distant relapse. Further stratification of MP risk

results identifies four risk subgroups, ultra-low (UL), low, high 1, and high 2, with spe-

cific prognostic and predictive outcomes. BluePrint® (BP) is an 80-gene signature

that classifies breast tumors as basal, luminal, or HER2 molecular subtype. To gain

insight into their biological significance, we annotated the MP 70- and BP 80-genes

with respect to the 10 hallmarks of cancer (HoC). Furthermore, we related gene

expression profiles of the extreme ends of the MP low- and high-risk patients (here

called, ultra-low (UL) and ultra-high (UH) or High2, respectively), to the 10 HoC per

BP subtype by differential gene expression and pathway analysis. MP and BP gene

functions reflected all 10 HoCs. Most MP and BP genes were associated with sus-

taining proliferative signaling, followed by genome instability and mutation catego-

ries. Based on the gene expression profiles, UL and UH subgroup pathways were

down -or upregulated, respectively, reflecting proliferative and metastatic features,

such as G2M checkpoint, DNA repair, oxidative phosphorylation, immune invasion,

PI3K/AKT/mTOR signaling, and hypoxia pathways. Notably, the UH HER2-type was

enriched in several immune signaling pathways, such as IL2/STAT5 signaling and

TNFα signaling via NFκB. Our results show that MP and BP gene signatures repre-

sent and capture all 10 HoCs and highlight underlying biological processes of MP

extreme samples, which might guide treatment decisions as the signature captures

the full spectrum of early breast cancers.
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1 | INTRODUCTION

MammaPrint® (MP) is a 70-gene signature that assesses the 10-year

risk of distant metastasis in early-stage breast cancer patients

(EBC).1–4 This assay classifies tumors into low- and high-risk of distant

relapse and has been shown to identify patients who may safely avoid

chemotherapy. The MINDACT trial showed that patients with gen-

omically low-risk MP tumors who did not receive adjuvant chemo-

therapy, had a 95.1% 5-year rate of distant metastasis-free survival

(DMFS), despite all of these patients were clinically classified as high

risk.5 Such an excellent prognostic outcome indicates that MP low-

risk patients may safely forego chemotherapy.

The BluePrint® assay (BP) is an 80-gene signature that identifies

the intrinsic molecular subtypes of early-stage breast cancers by

assessing specific gene expression signatures of signaling pathways

driving these subtypes (basal-, luminal-, and HER2-type).6–9 Several

prospective studies have shown that BP subtyping more accurately

identifies tumors likely to respond to neoadjuvant therapy (NAT) in

comparison to conventional subtyping assays such as immunohisto-

chemistry (IHC) and fluorescence in situ hybridization (FISH). Based

on BP, basal, and HER2 subtypes are more sensitive to NAT than

luminal subtype tumors, although patients with luminal subtype

tumors have longer DMFS.7,8,10 Combining the MP and BP assays

allows further stratification of luminal BP subtypes into luminals A

and B, corresponding to luminal MP low- and MP high-risk tumors,

respectively.

Both the MP and BP gene signatures were developed through a

data-driven approach by the use of genome-wide expression data

without any preselection of genes that are more likely to be involved

in tumor metastasis or specific molecular subtypes. We previously

demonstrated the association of MP 70 genes with the initial six hall-

marks of cancer (HoCs),11,12 which represent characteristics acquired

during the multistep development of cancer cells to survive, prolifer-

ate, disseminate, and metastasize. These six hallmarks were extended

to include additional two enabling characteristics (“Genome instability

and mutation”, “Tumor-promoting Inflammation”) and two emerging

capabilities (“Deregulating cellular energetics”, “Avoiding immune

destruction”).13 In light of this, we aimed to update the annotation of

the 70 MP and 80 BP genes with respect to the extended version of

the 10 HoCs.

From its conception to its current diagnostic implementation, the

utility of the MP signature has expanded, reflecting the evolving

knowledge in the cancer biology field. Within the MP low- and high-

risk gene signatures, further stratification is possible into extreme MP

low and high-risk groups, respectively, which appear to be associated

with specific clinical outcomes.14–17 The MP ultra-low-risk group (UL),

consists of hormone-receptor positive, HER2-negative EBCs with an

excellent long-term survival prognosis. Patients with UL tumors have

a significantly lower risk of disease-specific mortality in comparison to

MP low risk, but not UL, patients.15 UL patients without any endo-

crine treatment (ET) had a 20-year disease-specific survival rate of

97%,14 which suggests that these patients may be able to safely

forego ET. However, the biology of these MP UL tumors, categorized

as malignant but yet indolent with respect to long-term clinical out-

comes, is not fully understood. The extremes of the MP high-risk

group, here called ultra high (UH) are classified by the most negative

index range, which falls on the opposite end of the MP index spec-

trum compared to the UL group. Preliminary studies from the I-SPY2

trials (https://www.ispytrials.org/i-spy-platform/i-spy2) show that the

MP high 2 group, comparable to the MP UH group in this manuscript,

is enriched for clinically triple-negative-like EBCs with higher patho-

logic response rates to specific treatment combinations such as PARP

inhibition with platinum-based chemotherapy16 as well as

pembrolizumab-based immunotherapy combined with paclitaxel.17

Therefore, here in addition to the updated association of the MP and

BP signature genes with the 10 HoCs, we performed differential gene

expression analysis (DGEA) on MP extreme groups to provide further

insight into their biological significance, which could support and

explain their clinical behavior.

2 | MATERIALS AND METHODS

2.1 | Annotation of MP and BP genes

The MP and BP corresponding microarray probes were aligned to the

human genome version hg38 using BLAT,18 and genes were anno-

tated according to GENCODE Human release 32.19,20 Next, the MP

and BP genes were associated with the 10 HoCs using the Cancer

Hallmarks Analytics Tool (CHAT),21 which evaluates cancer-related

PubMed (https://pubmed.ncbi.nlm.nih.gov/) literature up to 2017

based on the 10 hallmarks of cancer.13 Normalized pointwise mutual

information (NPMI) values higher than 0 were considered an associa-

tion. For the genes with no association found with CHAT, the LION

(Literature-Based Discovery tool)22 was used. Although similar to

CHAT, this tool relies on a more recently updated PubMed database

than CHAT, and it also takes the synonyms of genes into account.

Genes that were not related to any hallmark with CHAT or LION were

annotated manually using PubMed, GeneCards (https://www.

genecards.org/), and Gene Ontology (http://geneontology.org/)

databases.

2.2 | Differential gene expression and pathway
analysis

To investigate distinguishing biological characteristics between MP

extreme ends of the risk groups and non-extreme ends groups, we

performed the following comparisons using DGEA followed by gene

set enrichment analysis (GSEA) based on cancer hallmark specific gene

sets by Dhawan et al. 2018.23

1. Low risk (LR) was compared to the UL group. Only BP luminal

tumors were included; as expected, few nonluminal subtype

tumors classify as MP LR or UL. The majority of BluePrint HER2

and basal-type tumor are high risk by MammaPrint.24
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2. UH was compared to the high-risk (HR) group: This comparison

was performed per BP subtype.

I. Luminal UH versus luminal HR.

II. Basal UH versus basal HR.

III. HER2 UH versus HER2 HR.

To perform DGEA and GSEA, we selected a discovery set of full-

transcriptome microarray formaldehyde fixed-paraffin embedded

(FFPE) data generated at Agendia between January 2014 and June

2019 for which MP and BP results were available. These data were

generated according to the standard diagnostic workflow as previ-

ously described9,25,26 on tumors that met MP and BP eligibility

criteria. All patient clinical and pathology data were blinded in accor-

dance with national ethical guidelines. MP and BP-FFPE indices were

calculated as previously described.6,9,25,26 Negative including 0 and

positive MP indices correspond to high and low risk, respectively. Of

the 5022 available FFPE samples, basal subtype had the lowest mean

MP index, followed by HER2, luminal B, and luminal A subtypes

(Table S1). The distribution of the MP indices per BP subtype is

depicted in Figure S1A.

To be able to detect biological differences between the UL/LR

and UH/HR groups, we selected subsets of UL/LR and high 1/high

2 samples from the extreme ends of the MammaPrint low and high

indices, respectively. For the LR group, the 100 luminal A samples

with the least positive MP index were selected. For the UL risk group,

the 100 luminal A samples with the most positive MP index were

selected.

For the HR risk group, luminal B, HER2, and basal subtypes with

the least negative MP index were selected, resulting in 70, 60, and

70 samples, respectively. For the UH group, the most negative MP

indices were selected, resulting in 70 luminal B, 60 HER2, and 35 basal

subtypes. In addition, 35 basal samples were randomly selected from

samples between the minimum and maximum MP index of the MP

UH HER2 and luminal B samples. The distributions, mean, maximum,

and minimum of the MP indices of the LR, UL, HR, and UH risk groups

are depicted in Figure S1B and Table S1. All MP indices of the UL

samples (≥0.55) fell within the range of UL samples as reported in the

literature (UL MP index ≥0.355).14,15 The threshold for the high

2 group reported in Reference [16] was based on Fresh Frozen sam-

ples and it is translated to FFPE samples. Therefore, the UH group

analyzed in this manuscript refers to the high 2 group previously

described, based on the threshold for FFPE data (�0.57).

To test whether we could confirm the DGEA and GSEA results of

the discovery data set on an independent sample set, we selected a

test data set and repeated the DGEA and GSEA. These data were

selected from samples archived at Agendia from 2019 until 2020, for

which FFPE microarray full-transcriptome microarray data were avail-

able. For the LR and UL groups, 50 samples were randomly selected in

the same MP index range as the LR and UL risk groups of the discov-

ery dataset. For the UH and HR test dataset, 44 luminal B, 44 HER2,

and 44 basal type samples were randomly selected within the same

MP index ranges per BP type as the first dataset. These sample sizes

are sufficient since the majority of the differentially expressed genes

detected in the discovery dataset had a large effect size (Cohen's

d > 0.5) and power (>0.9) in the test dataset (Figure S2). The mean,

maximum, minimum, and distributions of the MP indices of the LR,

UL, HR, and UH groups in the test set are depicted in Figure S1C and

Table S1. Data are not shared.

DatawereanalyzedusingRsoftwareversionR3.6.3.Randomselec-

tion was performed by use of the function sample() in R. For differential

gene expression analysis, Limma version 3.42.227 was used. P-values

were adjusted for multiple testing according to Benjamini-Hochberg

(FDR).28 For hierarchical clustering, the rpackage pheatmap version

1.0.12 was used with settings: Euclidean distance and ward linkage

method. For Gene Set Enrichment, GSEA version 3.029 was used with a

pre-ranked file as input, based on the outcome of the Limma analysis.

The hallmark-related gene sets were described by Dhawan et al.23

Within the HER2 BP subtype abundance of immune cell populations

were determined using xCell30 in the rpackage immunedeconv.31 In this

rpackage enrichment, scores of 36 cell types were determined. These

cell types are listed in Figure S3. To compare UH to HR samples, a t-test

was performed and p-values were FDR corrected. As with the gene

expression analysis, the sample size of the test data set was sufficient to

validate the results since the majority of the celltype abundances

detected as significant in the discovery dataset had a large effect size

(Cohen'sd> 0.5) andpower (>0.8) in the test dataset (FigureS4).

3 | RESULTS

3.1 | MP and BP genes reflect all 10 Hallmarks of
cancer

In this study, we related the MP and BP genes to the 10 HoCs using

CHAT. All 10 hallmarks were reflected in the MP and BP genes. The

majority of MP and BP genes represent hallmarks including “sustain-
ing proliferative signaling”, “genome instability and mutation”, “induc-
ing angiogenesis”, and “evading growth suppressors” (Figure 1,

Table S2). Five MP genes did not correlate to any of the 10 HoCs

using CHAT or LION literature-based discovery tools, namely

MIR210HG, RUNDC1, SMIM5, MSANTD3, and TMEM74B. Therefore,

we manually annotated these genes using PubMed. The microRNA

MIR210HG was described in cancer-related publications in which its

function was related to cell proliferation and invasion in different solid

tumors, and its expression was associated with poor prognosis and

chemoresistance.32–42 RUNDC1 was identified as a p53 inhibitor by a

large-scale RNA interference-based screen, which implies oncogenic

activity such as resisting cell death and replicative immortility.43

SMIM5 has a possible antitumor role and associated to invasion and

metastasis.44,45 MSANTD3 was reported as part of the

HTN3-MSANTD3 gene fusion, a recurrent somatic rearrangement in

Acinic cell carcinoma with prominent serous differentiation and an

indolent clinical course.46 Deletion of the TMEM74B gene was associ-

ated with poor survival in breast cancer in the The Cancer Genome

Atlas (TCGA) database.47,48 Both MSANTD3 and TMEM74B were

associated to genome instability.
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F IGURE 1 MammaPrint (MP) and BluePrint (BP) genes and their relation to the 10 hallmarks of cancer. Each line demonstrates a relation. On
the left are the MP genes. Genes that are only in the MP signature are depicted in black, genes that are also in the BP signature are depicted in
red and blue for basal and luminal type, respectively. On the right are the remaining BP genes that are not in the MP signature. Basal, luminal, and
HER2 BP genes are depicted in red, blue, and yellow, respectively. Genes that occur in two BluePrint subtype gene sets are depicted in purple for
luminal and basal and orange for basal and HER2
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Three BP basal genes, SPEF1, FAM214A, and CAPN13, and 9 BP

luminal genes, SYBU, DBNDD2, ACBD4, TMEM101, TMC4, UBXN10,

RUNDC1, TPRG1, and CCDC74A, were not found to be associated

using CHAT or LION literature-based discovery tools. CAPN13 was

reported to play a role in tumor progression and treatment

response.49,50 Furthermore, CAPN13 is involved in apoptosis and deg-

radation of the extracellular matrix and therefore could be associated

to resisting cell death and invasion and metastasis. DBNDD2 has a

prognostic role in cervical cancer,51 whereas TPRG1 is related to vis-

ceral metastasis.52 For the remaining genes, no direct link to cancer

was found in the literature. Based on the GeneCards and Gene Ontol-

ogy databases, we found that three genes, SPEF1, SYBU, and

CCDC74A,53–57 code for proteins involved in the stabilization and

binding of microtubules, which might play a role in chromosome align-

ment and cell division and therefore were associated to evading

growth suppressors and resisting cell death. UBXN10 and CCDC74A

are involved in ciliogenesis, inhibition of which has been described as

an early event in breast cancer and promotes tumor progression and

metastasis.58 It is reported that ACBD4 promotes endoplasmic

reticulum-peroxisome associations and plays a possible role in lipid

metabolism.59 Moreover, a recent study showed that luminal A and

TNBC cell lines have different lipid phenotypes, suggesting that differ-

ent lipid metabolism might discriminate breast cancer subclasses.60

This might explain the discriminative feature of ACBD4 as a luminal

associated gene in the BP gene signature.

3.2 | DGEA and GSEA reveal specific genes and
pathways associated with the MP extreme subgroups

3.2.1 | MP LR versus UL comparison identified
48 differentially expressed genes

To gain insight into the UL subgroup biology, we compared 100 UL to

100 LR samples in the discovery data set and validated the results in

the test dataset containing 50 UL a 50 LR samples. From this analysis,

48 unique genes were identified as differentially expressed

(Figure 2A,F, Table S3). Five of these genes overlap with the MP

genes and five with the BP signature genes (of which four are luminal

specific and 1 basal specific) (Table 1). Supervised hierarchical cluster-

ing of these 48 genes revealed two main clusters, one containing the

majority of UL samples and the other cluster containing the LR sam-

ples (chi-square p-value <0.01) (Figure 3A). In the test dataset, 36 of

these 48 genes had a p-value <0.05 (Table S3).

3.2.2 | MP UH versus HR comparison identified
73 differentially expressed genes

To investigate the UH subgroup biology, we compared UH samples to

HR samples per BP type in the discovery data set (Figure S1B) and

validated these results in the test dataset (44 samples for each basal,

luminal and HER2 MP HR, and MP UH samples). The number of

significantly differentially expressed probes between UH and HR

luminal B, basal and HER2 types are depicted in Figure 2B–D, and F.

We detected 73 unique genes, that were differentially expressed

among all BP subtype comparisons. Supervised hierarchical clustering

of these 73 shared differentially expressed genes revealed two main

clusters, one containing the majority of HR samples and the other

containing the majority of UH samples (chi-square test p-value <0.01)

(Figure 3B). There was no significant difference for BP subtype by

comparing these two main clusters.

In the test dataset, 69 of these 73 genes were significant in at

least one BP subtype in the test data set (Table S4).

Six probes mapping to five genes, CCNB2, AURKB, MELK, SCUBE2,

and IQGAP3, were significantly differentially expressed in all the MP

extreme group comparisons (Figure 2F and 4). Boxplots of these dif-

ferentially expressed genes common among all comparisons are

depicted in Figure 4. CCNB2 is a cell cycle gene and has been related

to poor prognosis in breast cancer.61 AURKB regulates the alignment

and segregation of chromosomes during mitosis and meiosis by bind-

ing to microtubule and has been described to be related to poor over-

all survival.62 MELK and SCUBE2 are among the MP 70-gene list and

related to 6 and 7 HoCs, respectively (Figure 1A). MELK is over-

expressed in several cancer types, including lung, cervical, colorectal,

and breast cancer and is described as a possible therapeutic

target.63–65 Recently, it was shown that MELK protein is higher

expressed in p53-mutant breast cancer cells in comparison to p53

wild-type.66 Moreover, several studies described MELK to be essential

for cancer proliferation, but this role is controversial.67 A recent study

shows that inhibition of MELK delays but does not inhibit, mitotic

entry,68 which might explain this controversial role. The tumor sup-

pressor gene SCUBE2 has been described to suppress invasiveness by

promoting epithelial differentiation and playing a key role in

mesenchymal-epithelial transition (MET); hence SCUBE2 has

been shown to be inactivated by DNA hypermethylation during

TGF-β-induced epithelial-mesenchymal transition (EMT).69 Further-

more, SCUBE2 expression is significantly associated to prognosis in

TNBC.70 IQGAP3 is described as a key regulator of cell proliferation

and metastasis during breast cancer progression71 and promotes EMT

and metastasis by activating TGF-β signaling in hepatocellular

carcinoma.72

3.2.3 | GSEA reveals specific dysregulated
pathways in MP UH subgroups

To relate the UH and UL gene expression patterns to the 10 HoCs,

we performed GSEA on the discovery dataset. The Normalized

Enrichment Scores (NES) of the gene sets with FDR < 0.05 are

depicted in Figure 5A. To validate these results, we selected a test

dataset of 363 samples (44 samples for each basal, luminal and HER2

MP HR, and MP UH samples and 50 samples for each luminal A MP

LR and MP UL samples) and repeated the analysis (Figure S1C). The

NES scores of the gene sets with FDR < 0.05 for the test dataset are

depicted in Figure 5B. Seven gene sets, corresponding to nine HoCs,
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F IGURE 2 Differentially expressed genes in the MammaPrint and BluePrint extreme subgroups. Volcano plots of the LR versus UL group (A),
the UH luminal B versus HR luminal B (B), UH HER2 versus HR HER2 (C) and UH basal versus HR basal (D). Venndiagrams report the intersect of
the significantly upregulated (blue) and downregulated genes (red) (log2 fold change >2 and adjusted p-value <0.05) of the UH subgroups (E) and
UH/LR subgroups (F). HR, high risk; LR, low risk; UH, ultra high risk; UL, ultra low risk
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were upregulated in the UH luminal B, basal, and HER2 subgroups, of

which six HoCs could be confirmed in the test dataset, including

G2/M checkpoint, proliferation, oxidative phosphorylation, immune

invasion, hypoxia, and DNA repair. Upregulation of PI3K/AKT/mTOR

signaling pathway could be confirmed in the UH luminal B and HER2

group. Four of the UH upregulated gene sets were downregulated in

the UL group in the discovery dataset, and seven were downregulated

in the UL group of the test dataset (Figure 5A, B). This is in line with

the UH results, because gene sets upregulated in the more aggressive

UH group are expected to be downregulated in the indolent UL

group.

Four gene sets were downregulated in the UH basal and luminal

B subgroups, but not in the UH HER2 subgroup. Three of these four

gene sets could be confirmed in the test dataset, namely angiogenesis,

EMT, and xenobiotic metabolism. The angiogenesis gene set was also

found to be upregulated in the UL group in comparison to the LR

group in the discovery and test datasets, but the EMT gene set, which

enables invasion and metastasis, was upregulated in the UL group in

the discovery dataset and downregulated in the test dataset

(Figure 5A, B). After literature-based manual curation of the signifi-

cantly DEGs (adjusted p-value <0.01) in the EMT gene set in UL and

UH subgroups, a large proportion of these genes were tumor suppres-

sor genes and inhibitors of the EMT pathway, which may provide

rationale for the up- and downregulation of this pathway in the UL

and UH groups, respectively.

Notably, the UH HER2 subgroup was enriched in several

immune signaling pathways, including TNFα signaling via NFκB,

IL6/JAK/STAT3 signaling, IL2/STAT5 signaling, TGFβ signaling, and

inflammatory response. In addition, UH HER2 was enriched for apo-

ptosis and P53 pathways (Figure 5A). Of the immune-related signal-

ing pathways in UH HER2 IL2/STAT5 signaling, TNFα signaling via

NFκB and inflammatory response could be confirmed in the dataset.

To test whether these findings of immune related pathways in the

UH HER2 subgroup were related to specific immune cell

populations, we characterized immune cell enrichment scores of

36 cell types in this subgroup by use of the xCell tool in the discov-

ery and test dataset (Figure S3). In the discovery dataset 16 and

5 types had significantly higher and lower abundances, respectively,

in the HER2 UH subgroup compared to the HR HER2 subgroup

(adjusted p-value <0.05), 10 of which also had significantly higher

abundances in the UH subgroup in the test dataset (Myeloid den-

dritic cell activated, B cell, T cell CD4+ memory, T cell CD4+ [non-

regulatory], common lymphoid progenitor, macrophage, macrophage

M1, B-cell plasma, T-cell gamma delta and T-cell CD4+ Th2) and four

had also lower abundances in the HER2 UH subgroup in the test dataset

(T-cell CD4+ central memory, common myeloid progenitor, Eosinophil,

T-cell NK).

4 | DISCUSSION

The two main objectives of this study were (1) to update the func-

tional annotation of the 70 MP1,3 and 80 BP genes6 with respect toT
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the most recent 10 HoCs,13 and (2) to investigate the biology of the

MP extreme subgroups through global differential expression analysis.

We showed that the 70 MP gene signature corresponds to all

10 HoCs, indicating that the MP signature comprehensively captures

the 10 biological capabilities acquired during the multistep

development of human tumors, as defined by Hanahan and

Weinberg,13 which extends beyond tumor proliferation genes, as

already demonstrated.11 Previously, we reported that 16 genes were

not related to any of the six HoCs. However, based on the latest

10 HoC annotation, we found 14 of these 16 genes were associated

F IGURE 3 Heatmap of supervised hierarchical clustering of significantly expressed gene probes (log2 fold change >2 and adjusted p-value
<0.05) in the LR versus UL group (A) and the intersect probes of the UH versus HR BP subgroups (B). Samples are shown on the x-axis and
probes on the y-axis. MammaPrint (MP) and BluePrint (BP) subtypes are defined by color coding as follows, red = basal-type,
yellow = HER2-type, blue = luminal A-type, green = luminal B-type. MPi = MammaPrint index, UR = Ultra High risk (pink), HR = high risk
(orange), LR = low risk (green), UL = ultra Low risk (blue). In the heatmap, high expression is depicted in blue, low expression is depicted in red
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with at least one HoC, underscoring their biological relevance in, and

the comprehensive nature of, the MP signature. The majority of these

14 genes were related to sustaining proliferative signaling (N = 9) and

genome instability and mutation (N = 7) hallmarks, one of the two

enabling hallmarks in the updated 10 HoCs.13

Similar to the MP genes, we found that the basal and luminal BP

gene signature captured all the HoCs, whereas the HER2 signature

genes were associated with nine of 10 hallmarks, although the three

different BP subtypes capture different molecular pathways. The

HER2 signature may not cover all 10 hallmarks because of the limited

number of genes (n = 4) that make up this signature. Of the 12 genes

that did not correspond to any of the HoCs (N = 9 luminal, N = 3

basal), four were associated with tumor progression, and five were

either microtubule-associated genes or involved in metabolism and

ciliogenesis.53–57,59,73

As previously shown,14–17 MP can identify extreme low- and

high-risk subgroups with differential clinical outcomes. However,

previous studies have not elucidated the biological features that

may explain differences in the prognosis and therapy responses of

these tumors. Here, we assessed the global gene expression pro-

files of MP UL and UH samples by comparative DGEA between

UL and LR, and between UH and HR tumor samples. Overall,

these comparisons show that UL and UH tumors are biologically

different from the LR and HR tumors, respectively. Moreover, UH

F IGURE 4 Boxplots of six intersect gene probes (five unique genes) of all four UL/HR/UL/LR comparisons. HR, high risk; LR, low risk; UH,
ultra high risk; UL, ultra-low risk, . MammaPrint (MP) and BluePrint (BP) subtypes are defined by color coding as follows, blue = luminal A-type,
green = luminal B-type, red = basal-type, yellow = HER2-type
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tumors are more heterogeneous in contrast to UL, as shown by

the greater diversity within the UH cluster in comparison to the

UL cluster.

The UH tumors were characterized by the expression of genes

highly enriched in pathways related to tumor-promoting inflammation,

inducing angiogenesis, sustaining proliferative signaling, and genome

instability and mutation, all hallmarks that correspond to many genes

in the MP gene profile. The genes specifically expressed in the UH

group were also involved in pathways of replicative immortality, to

which only 8 MP genes were related. The MP UL tumors enriched to

the same pathways as the MP UH tumors but in opposite directions

of regulation, as expected.

Although none of the BP HER2 signature genes were directly

associated with immune-related pathways by CHAT, the UH BP HER2

group was the only UH group specifically enriched in several immune-

related signaling pathways such as TGFβ signaling, IL2/STAT5 signal-

ing, and TNFα signaling via NFκB through GSEA pathway analysis. Of

note, in the test dataset, we observed only IL2/STAT5 signaling and

TNFα signaling via NFκB to be upregulated in UH HER2. In the UL dis-

covery and test datasets, TNFα signaling via NFκB signaling pathway

was downregulated. Inflammatory responses play a pivotal role during

tumor development, invasion, and metastasis74,75 and consistent with

our results, it was reported that HER2 overexpression induces activa-

tion of the NFκB pathway and sequentially activates IL1α and IL6, acti-

vating the proinflammatory IL6/STAT3 pathway.76,77 In addition,

clinically ER-negative/HER2-negative and HER2-positive breast can-

cers show greater frequency of tumor-infiltrated lymphocytes (TILs)

than ER-positive/HER2-negative breast cancers.78 Moreover, TILs and

immune signatures are correlated with response and outcome for clini-

cally HER2-positive early breast cancer patients treated with (neo)adju-

vant chemotherapy and trastuzumab.79–81 Consequently, we could

hypothesize that the genomic UH HER2 group might be enriched for

TILs, and this group of patients might benefit from immunotherapy. By

determining immune cell infiltration for the UH/HR HER2 subgroups,

we could confirm that the UH HER2 subgroup has indeed higher abun-

dances of several immune cell types, however, we could not confirm

that these are related to more TILs, thus further research is needed.

Unexpectedly, the EMT pathway was downregulated in the UH BP

basal and luminal groups in the discovery and test sets and upregulated

in UL group in the discovery dataset. However, after manual functional

curation of the significantly differentially expressed genes enriching to

this pathway, we discovered that the large majority play a role in tumor

suppression and inhibition of the EMT pathway. In addition, many of

the downregulated EMT genes are also involved in the extracellular

matrix pathway (ECM). The EMT pathway was not enriched in UH

HER2 discovery or test sets. This finding, together with the fact that

the UH HER2 group showed significant upregulation of many immune

signaling pathways, may suggest different high-risk biology of UH

HER2 tumors compared to the UH luminal and basal groups.

Surprisingly, the angiogenesis gene set was downregulated in the

UH groups, although hypoxia and PI3K/AKT/MTOR signaling gene

sets, which reflect pathways that induce angiogenesis, were

upregulated. The angiogenesis gene set contains a core signature of

43 overexpressed genes that were consistently upregulated in several

cancer types compared to normal tissue.82 By visually inspecting the

expression of these genes (data not shown), the majority were

upregulated in the HR groups compared to the UH group, while down-

regulated in the LR group compared to the UL group. Further research

is needed and ongoing, to gain understanding of this observation.

High 2 tumors have been shown to have higher pCR rates than

High 1 tumors in response to the combination of carboplatin and

veliparib in the ISPY2 trial.16 In a preliminary pathway analysis, high

2 tumors displayed higher expression of cell cycle genes and DNA

damage response genes other than homologous recombination repair,

F IGURE 5 Up- and downregulated cancer hallmarks related pathways in MammaPrint UL and UH risk tumors. Normalized enrichment scores
of pathways FDR < 0.05 in the discovery set are depicted in (A) the discovery dataset, in (B) the test dataset. Enrichments scores for pathways
with FDR > 0.05 are not shown. Normalized enrichment scores are shown on the x-axis and pathways on the y-axis. UH, ultra high risk; UL, ultra-
low risk
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compared to high 1 tumors.16,83 In line with these findings, the cur-

rent analysis showed that the DNA repair gene set was upregulated in

all UH BP groups with respect to the HR BP groups. By annotating

the DEGs of the DNA repair gene set using KEGG pathways, we iden-

tified “Pyrimidine metabolism”, “Nucleotide excision”, “DNA

replication”, “RNA polymerase”, “Mismatch repair”, “Metabolic

pathways”, and “Base excision repair” as significantly enriched path-

ways in all BP UH groups. This supports data reported by the ISPY2

investigators that high 2 tumors have higher expression of DNA repair

genes, which do not belong to the homologous recombination DNA

damage response pathway and are likely to be upregulated because

the homologous repair pathways is deficient. This upregulation of

more error-prone pathways was observed in BRCA-mutated

tumors84,85 and might explain the higher pCR rates to the combina-

tion of carboplatin and veliparib in the UH group.

Taken together, this exploratory study shows that the MP and BP

signatures capture the expression of genes of which function is

involved in at least one of the 10 HoCs described by Hanahan and

Weinberg.13 In addition, we demonstrate that MP extreme risk tumor

samples have unique underlying biology, also captured by MP, when

compared with tumors classified at nonextreme ends, and which is

supported by reports elsewhere of differential clinical outcomes.

Although these findings will need to be validated in additional

datasets, this study sheds light on the precise tumor stratification by

MammaPrint, which will enable refined treatment decisions for

patients with early-stage breast cancer.
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