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Addiction is considered to be a neurobiological disorder of learning and memory because addiction is capable of producing
lasting changes in the brain. Recovering addicts chronically struggle with making poor decisions that ultimately lead to
relapse, suggesting a view of addiction also as a neurobiological disorder of decision-making information processing.
How the brain makes decisions depends on how decision-making processes access information stored as memories in the
brain. Advancements in circuit-dissection tools and recent theories in neuroeconomics suggest that neurally dissociable val-
uation processes access distinct memories differently, and thus are uniquely susceptible as the brain changes during addic-
tion. If addiction is to be considered a neurobiological disorder of memory, and thus decision-making, the heterogeneity
with which information is both stored and processed must be taken into account in addiction studies. Addiction etiology
can vary widely from person to person. We propose that addiction is not a single disease, nor simply a disorder of learning
and memory, but rather a collection of symptoms of heterogeneous neurobiological diseases of distinct circuit-computa-
tion-specific decision-making processes.

Addiction has largely been considered to be a disorder of learning
andmemory. However, the information stored as memories in the
brain are diverse, especially when considering the various circuits
or systems within which they are stored. Furthermore, each mem-
ory system can play unique roles in various computations that are
used during distinct aspects of decision-making information pro-
cessing. Thus, by considering not only how heterogeneous memo-
ry processes might go awry in addiction but also how they might
give rise to separable computation-specific decision-making vul-
nerabilities, we can refine our understanding of and therapies for
distinct addiction etiologies.

In this article, wewill review literature discussing the intimate
link between multiple memory systems and multiple decision-
making systems within the brain and how recent advancements
in circuit-dissection toolsmake interrogating these related process-
esmore tractable. Specifically, we discuss the benefit of experimen-
tal approaches that measure and intentionally manipulate the
cellular mechanisms of plasticity directly—approaches that have
made strides in defining addiction as a neurobiological disorder
of learning and memory. However, we emphasize that such ap-
proaches toward understanding the functional consequences of
cellular and synaptic remodeling on behavior depend on tasks
that discriminate distinct aspects of the on-going processing of
that stored information. We argue that this framework can reveal
more about the decision-making processes that may go awry in ad-
diction. To this end, we highlight the utility of moving beyond
simple tests of value and adoptingneuroeconomic theories to drive
the design of complex behavioral paradigms. By doing so, we aim
to expand the perspective of addiction as not only a storage disor-
der of learning andmemory, but also an access disorder of decision-
making information processing.

With these two experimental approaches in mind—circuit-
specific interrogation of plasticity directly and the use of complex

neuroeconomic decision-making tasks that can dissociate distinct
on-going valuation processes—we revisit the possible origins of ad-
diction pathology and the heterogeneity with which addiction-
related circuit remodeling could take place. We argue that combin-
ing these two approaches can reveal a much deeper understanding
of fundamentally distinct addiction etiologies and can aid in tailor-
ing effective treatment toward a given etiology’s circuit-specific
computational dysfunction. To illustrate this, we highlight recent
discoveries that demonstrate the utility of this combined ap-
proach. Lastly, we provide suggestions as well as cautions moving
forward for future experimental work of interest to those studying
addiction.

From memory to decision-making
Any physical change in the brain that results from an experience
can be considered to be a memory because such changes provide
information about the historical past. Thus, addiction has been
proposed to be a neurobiological disorder of learning andmemory
because drugs of abuse can leave lasting changes on the structure
and function of the brain (Hyman 2005; Le Moal and Koob
2007; Volkow and Morales 2015). These changes are thought to
underlie why individuals with addiction struggle with making
poor decisions.

There is an intimate link betweenmemory and decisionmak-
ing. It can be argued that the only reason we learn and remember
things is to make better decisions (Redish and Mizumori 2015).
Information stored as memories within and between neural struc-
tures guide decision processes (Euston et al. 2012). Therefore, if ad-
diction is considered to be a neurobiological disorder of learning
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and memory, it should also be considered a neurobiological disor-
der of decision-making information processing.

It is thought that humans have evolved in such a way that the
brain is capable of storing information in multiple, separate mem-
ory systems each of which afford unique evolutionary advantages
(Sherry and Schacter 1987). Theoretically, the existence ofmultiple
memory systems can only afford evolutionary advantages when
each system is specialized in such a way that the functional prob-
lems and environmental demands overcomeby one system cannot
be handled by the properties of another system, which could have
been shaped by natural selection and adapted to serve other pur-
poses (Rozin and Schull 1988). The definition of a memory system
refers to interactions between separable mechanisms of informa-
tion acquisition, retention, and retrieval that operate under certain
rules, which may be fundamentally distinct from a separate mem-
ory system (Sherry and Schacter 1987). Taken together, multiple
separate mechanisms of memory acquisition, storage retention,
and retrieval are thought to take place in neurally dissociable
systems.

These principals of neurally distinct memory systems are not
just limited to stages of memory formation (i.e., acquisition, stor-
age, retrieval) but also extend to different types of information
that can be acquired, stored, and retrieved. Multiple memory
systems vary in terms of other properties, including the rate of
learning or level of generalizability versus specificity of stored in-
formation (O’Keefe and Nadel 1978; Squire et al. 1993; Schacter
and Tulving 1994). For instance, gradual, incremental learning in-
volved in the acquisition of specific skills is thought to occur in a
separate memory system distinct from rapid one-trial learning
tied to relationships among specific episodes (Morris et al. 1982;
Yin et al. 2004; Tse et al. 2007) or events with salient affective prop-
erties (Berridge and Robinson 1998; Dayan and Balleine 2002;
Corbit and Balleine 2005). In the former example, practicing and
updating repetitive motor programs over numerous trials are
thought to depend on a form of reinforcement learning critically
dependent on structures within the basal ganglia, including the
caudate and putamen regions of the dorsal striatum (Packard and
Knowlton 2002; Balleine et al. 2007; Graybiel and Grafton 2015).
This memory system, typically referred to as procedural memory,
is often spared in individuals with temporal lobe lesions that
precipitate impairments in either episodic memories thought to
be part of a distinct, hippocampal-dependent learning system
(O’Keefe and Nadel 1978; Cohen and Squire 1980; Squire et al.
1993; Cohen and Eichenbaum 1993; Redish 1999, 2013) or emo-
tional memories associated with specific stimuli thought to be
part of an amygdala-dependent learning system (LeDoux 1998;
Corbit and Balleine 2005; LeDoux and Daw 2018).

Double- and triple-dissociations between separable brain
structures and multiple representational forms of memory have
been demonstrated in rodents using cleverly designed behavioral
paradigms where the rules or contingencies of the task require
the use of different types of information stored in separable brain
regions. For instance, by using rats trained on variants of a standard
radial arm maze memory task that differed only in the contingen-
cies required to successfully obtain rewards, brain region-specific
lesions were capable of disrupting performance on select variants
of the task but not others (McDonald andWhite 1993). Dorsal stri-
atum lesions produced deficits in win-stay contingencies, sparing
performance on win-shift or cued contingencies, which were
sensitive to hippocampus and amygdala lesions, respectively
(McDonald and White 1993). Similarly, in rats trained on a stan-
dard T-maze memory task, hippocampal versus dorsal striatum le-
sions could differentially affect performance depending on the
degree to which animals were trained. Prolonged training under
regular contingencies renderedbehavior no-longer sensitive tohip-
pocampal lesions but instead sensitive to dorsal striatum lesions

(Tolman 1948, Hull 1952; Packard and McGaugh 1992; Gardner
et al. 2013; Schmidt et al. 2013). Taken together, the acquisition
and expression of certain types of memories appear to take place
in neurally separable learning and memory systems that differ de-
pending on a number of properties of that stored information
(O’Keefe and Nadel 1978; Squire et al. 1993; Schacter and Tulving
1994; Redish 1999, 2013; van der Meer et al. 2010, 2012).

Multiple decision-making systems
Just as separable memory systems are capable of storing different
types of information, neurally dissociable decision-making sys-
tems exist to access those separate aspects of stored information.
How data is stored can change how it is processed during decision-
making. There is a tight relationship between the multiple repre-
sentational forms that underlie memory and the multiple action-
selection systems that are in play when accessing that stored
information. Properties that govern differences in the cellular
mechanism of storage, rate of learning acquisition, degree of infor-
mation distribution across cells, and the different circuit networks
within which these processes take place can confer differences in
how that stored information is accessed.

Multiple decision-making systems can operate in parallel with
one another and provide trade-offs between decision properties,
such as speed of processing, depth of planning, degree of flexibili-
ty, and a diversity of other factors that can influence choice (van
der Meer et al. 2012). Multiple decision-making systems, which
can be updated through unique forms of learning and are thought
to reside in separable neural circuits, are thought to have evolved
over time because each can be better suited for different situations
(O’Keefe and Nadel 1978; Doya 1999; Hikosaka et al. 1999; Daw
et al. 2005; Rangel et al. 2008; Redish 2013).

Recent theories in neuroeconomics suggest that complex de-
cisions aremultifaceted and reward valuations can arise fromdisso-
ciable computations in distinct neural circuits (Loewenstein et al.
2008; Rangel et al. 2008; van derMeer et al. 2012). For instance, de-
cisions driven by emotion, decisions planned out after extended
deliberation, and decisions made from practiced habit, each arise
from dissociable neural processes dependent on different neural
circuits. This concept is similar to the fact that multiple memory
systems uniquely related to each of these three previous examples
can exist in the brain, but importantly differs in that such separable
decision processes can gain access to these different types of mem-
ories simultaneously and in parallel with one another during on-
going behaviors. Thus, carefully designed behavioral tasks are re-
quired to elucidate howmultiple, parallel decision-making systems
work together or compete with one another in order to access sep-
arable memories and drive behavior in the moment.

Pavlovian action-selection systems entail genetically hard-
wired motivational state-response action pairs that are capable of
being associated with predictive stimuli through conditioning
(Clark et al. 2012; Dayan and Berridge 2014). Physiological states
are capable of driving motivation (e.g., hunger) and are linked to
unconditioned responses (e.g., salivating). Importantly, these pro-
cesses can be directly transferred to informative cues in the world.
For example, images that are associated with a certain reward, rath-
er than simply predicting upcoming reward availability or oppor-
tunities, can themselves adopt intrinsic value. This concept,
termed incentive salience, can trigger feelings of wanting or crav-
ing in response to cue presentation and promote reward-seeking
behaviors (Robinson and Berridge 1993; Bernheim and Rangel
2004; Berridge and Robinson 2016). The role of amygdala-related
circuitry has been heavily implicated in these mechanisms (Clark
et al. 2012; Wassum and Izquierdo 2015). Such circuits carry
learned representations of sensory stimuli and integrate that
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informationwithmotivational processes (LeDoux and Daw 2018).
Through failure modes in these mechanisms, addiction-related
cues are capable of triggering decision-vulnerable states that lead
to maladaptive motivated behaviors, ultimately precipitating re-
lapse (Bernheim and Rangel 2004; Robinson and Flagel 2009;
Walters and Redish 2018).

Deliberative action-selection systems entail declarative, epi-
sodic evaluation processes rooted in simulations of possible future
response-outcome scenarios (Redish 2016). Deliberative valuation
algorithms operate relatively slowly yet remain flexible. Hippo-
campus and regions of the prefrontal cortex have been heavily im-
plicated in these mechanisms (Johnson et al. 2007; van der Meer
et al. 2012; Wang et al. 2015). Failure to engage deliberative algo-
rithms when making decisions without planning (Everitt and
Robbins 2005), a reduction in capacity to accurately simulate imag-
inations of possible future scenarios (Kurth-Nelson et al. 2012), or
errors in the future scenarios themselves (Goldman et al. 1987;
Redish and Johnson 2007; Kurth-Nelson and Redish 2012), as
well as errors in the value estimates of those future scenarios (Tiffa-
ny 1995; Naqvi and Bechara 2010) each describe fundamentally
distinct and dissociable vulnerabilities in decision-making infor-
mation processing within the deliberative system.

Procedural action-selection systems entail well-practiced
behavioral sequences that are released ballistically following the
recognition of appropriate situations (Graybiel 1998; Redish
2013; Graybiel and Grafton 2015). These decision processes oper-
ate quickly yet are relatively inflexible and rely on motivational
components accessed via cached value representations (Daw
et al. 2005). The dorsal striatum has been heavily implicated in
these mechanisms (Saint-Cyr 1988; Berke et al. 2009; Gremel and
Costa 2013; Smith and Graybiel 2013). Such circuits are recruited
over many trials and information stored in these circuits are
thought to be acquired through a form of reinforcement-like learn-
ing. Possible failure modes in the procedural system include in-
creased valuation due to drug-modifications of dopaminergic
signals (Redish 2004; Dezfouli et al. 2009), inabilities to extinguish
perseverativemotor programs (Peters et al. 2009), and strong habit-
like processes that override other valuation algorithms leading to
enhanced rates of information stored as procedural memories re-
quiring less-than-usual number of training trials (Piray et al. 2010).

These multiple action-selection systems, with their separate
vulnerabilities, also interact, for example in the process of Pavlov-
ian-Instrumental Transfer, in which amygdala-driven Pavlovian
valuations can change the valuation stage of deliberative decisions
occurring in accumbens (Talmi et al. 2008; Corbit and Balleine
2011; LeDoux and Daw 2018).

If addiction is to be considered a neurobiological disorder of
memory, and thus decision-making, the heterogeneity withwhich
information is both stored and processed must be taken into ac-
count. Thus, addiction-related dysfunctions in memory could be
diverse and could lead to lasting heterogeneous circuit-specific
changes in dissociable decision-making computational processes.
These multiple vulnerabilities could generate subtly different
behavioral phenotypes; however, it is also possible for distinct fail-
ure modes in separate systems to produce identical behavioral dys-
functions. Fortunately, current theories of decision-making are
capable ofmaking explicit predictions that can reveal critical differ-
ences in the neural computations that underlie those behaviors
(Redish et al. 2008; Walters and Redish 2018).

Beyond simple tests of value
Over the last four decades, behavioral neuroscience has developed
a variety of tasks that can separate these decision-systems, by put-
ting them into conflict with each other. For example, classic stud-

ies of devaluation that find differences between different training
contingencies (Balleine and Dickinson 1998; Coutureau and
Killcross 2003), or studies of water maze behavior that depend on
training (Morris et al. 1982; Eichenbaum et al. 1990; Day et al.
1999; Redish 1999), or the classic T-maze and other contingency-
dependent tasks (Barnes et al. 1980; Packard and McGaugh 1992;
Gardner et al. 2013; Schmidt et al. 2013). Inmore recentwork, neu-
roeconomics has refined these tasks and developed additional tasks
that can measure the valuation of these components directly
(Coricelli et al. 2005; McCoy and Platt 2005; Hayden et al. 2008,
2009; Abe and Lee 2011; Kalenscher and van Wingerden 2011;
Steiner and Redish 2014; Sweis et al. 2018a,b).

In contrast, many of the tasks used in rodent models of com-
pulsive drug-seeking behaviors have relied on paradigms that, by
design, are better suited to probe the changes in information stored
(i.e., mechanisms of memory), rather than the changes in behav-
ioral processing (i.e., decision-making) (Fig. 1). Such tests include
drug conditioned place preference or drug self-administration par-
adigms (Stafford et al. 1998; Tzschentke 2007). In these paradigms,
time voluntarily spent in a drug-paired chamber, or, number of
drug infusions self-administered on a progressive ratio schedule
serve as the primary behavioralmetrics of reward valuation in these
tasks. However, additional valuation information can be extracted
from these tasks, examining rate of learning acquisition, individual
differences in high-responders versus low-responders, or measur-
ing how such behaviors can be extinguished and reinstated follow-
ing a number of various triggers (Piazza et al. 1990; Carroll and Lac
1993; Gosnell 2000; Lu et al. 2003; Shaham et al. 2003; Perry et al.
2005). These latter examples have been used to model “relapse” in
nonhuman animals and have provided a foundational under-
standing about the neurobiological mechanisms of reward-related
learning and memory associated with addiction.

When addiction models have been tested with tasks derived
from behavioral neuroscience, conflicting results have often been
found. For example, rats that were willing to expend more lever
presses in a progressive ratio schedule for cocaine or heroin than
for saccharine, still chose the saccharine when given an option
between the two (Ahmed 2005, 2010; Ahmed et al. 2013; Perry
et al. 2013; Vandaele et al. 2016), consistent with experiments in
monkeys that found differences between separated, bundled, and
contrasted options (Nadar and Woolverton 1991, 1992; Nader
et al. 1993; Czoty et al. 2005; John et al. 2015). While most
rats would take cocaine if it was the only option available, only
a subset showed a willingness to cross a shock for it (Shalev
et al. 2000; Deroche-Gamonet et al. 2004; Belin et al. 2009;
Deroche-Gamonet and Piaza 2014; Martin-Garcia et al. 2014).
While many studies have shown that drugs (cocaine, alcohol, her-
oin) do not respond to devaluation (Dickinson et al. 2002; Everitt
and Robbins 2005; Zapata et al. 2011; Everitt 2014), suggesting
they are due to procedural and habit processes, other studies
have shown that subjects can plan complex novel sequences to
drug rewards (Olmstead et al. 2001) and that rats will use knowl-
edge of historical valuations to plan options (Marks et al. 2010).

Recent theories in neuroeconomics suggest that decisions
made in different situations derive from different valuation func-
tions residing in separable neural circuits. It can be difficult to seg-
regate these parallel information processing algorithms using
traditional experimental addiction paradigms that rely on simple
tests of value and compulsive drug-seeking behavior. Even within
the same trial, decision algorithms can change and thus the com-
putations ultimately driving behavior can be multifaceted (Sweis
et al. 2018a,b). For instance, the value assigned to choosing one
option over another can be calculated through distinct discount-
ing functions depending on what information is being incorporat-
ed in a given decision (e.g., intertemporal deliberative choices
deciding between “this option or that option” versus foraging
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choices deciding “to give up on and abandon the current endeav-
or,” Carter and Redish 2016; Sweis et al. 2018a,b). In this light, dis-
tinct neural dysfunctions in either of these processes could
ultimately lead to maladaptive behavioral consequences that
might be indistinguishable in simple experimental paradigms.

Reinforcement learning protocols, in the form of drug condi-
tioned place preference and self-administration, provide useful in-
formation about mechanisms of drug memory consolidation and
retrieval by measuring acquisition, extinction, and reinstatement
parameters. These processes are revealed across sessions on the
timescale of days to weeks. Furthermore, these tasks can character-
ize how existing memories change slowly over time when contin-
gencies are updated. This is clearly demonstrated when reward-
seeking behaviors are extinguished over time (across days). This
is also seen in reinstatement sessions when learning is updated
and drug-seeking behaviors reemerge in models of relapse.

For example, numerous studies of extinction-reinstatement
processes have determined how extinction learning processes ac-
quire new valuations (in this example, “not to seek drug rewards”)

that override existing, originally learned
drug-seeking valuations. Importantly, it
is widely accepted that this form of learn-
ing is acquired in addition to existing val-
uations rather than a process inwhich old
valuation learning is removed or forgot-
ten (Bouton 2004). These separable learn-
ing and memory systems indeed occur
in distinct neural circuits (Berman and
Dudai 2001; Suzuki et al. 2004; Peters
et al. 2009). Thus, multiple memory sys-
tems that exist in parallel can separately
contribute to behavior in these tasks on
a moment by moment basis. However,
because these forms of learning develop
over long timescales and because the pri-
mary behavioral output on these simple
tasks is binary (e.g., press a lever or not),
these tasks areunable tocapture thediffer-
ent decision-making computations that
might lead up to and produce behaviors,
particularly the conflict between systems.

For instance, following the extinc-
tion of conditioned place preference, it
is accepted that originally learned valua-
tions are not simply removed or forgotten
but rather new overriding valuations are
secondarily learned and that both forms
of memory remain intact (Rescorla 2001;
Bouton 2004). However, it remains un-
clear how both types of stored informa-
tion compete with one another since
they are thought to coexist. That is, how
is competition between multiple deci-
sion-making systems resolved before an
action is ultimately selected or not?
Regardless if extinction is maintained or
if reinstatement is precipitated, how are
these separately stored reward-related
memories accessed and integrated to pro-
duce a single behavioral output? The deci-
sion to leave the reward-paired chamber
versus not to leave could reflect funda-
mentally distinct neural computations
from a decision to remain in the unpaired
chamber versus actively seeking out the
reward-paired chamber (German and

Fields 2007a,b). These separate computations could be differentially
disrupted in distinct forms of addiction. A similar argument could
be made among various subtle action-selection processes in drug
self-administration tasks (e.g., differences in trained lever presses
versus naturalistic nose pokes) (Gerhardt and Liebman 1981).

Cross-task comparisons imply that hypotheses of singular,
objective definitions of reward value are problematic and lead to
economic paradoxes. For instance, reward value measured by cal-
culating the breakpoint of lever pressing in a progressive ratio self-
administration paradigm for drug in one session versus saccharin
in a separate session is inconsistent with reward value measured
in the same animals by calculating the probability of choosing
drug over saccharin in a two-alternative forced-choice paradigm
(Deroche-Gamonet et al. 2004; Kasanetz et al. 2010; Perry et al.
2013; Vandaele et al. 2016). Choosing between options is thought
to access fundamentally distinct processes from choosing to re-
main committed to versus abandoning current endeavors (Carter
and Redish 2016; Redish et al. 2016). The former is thought to re-
cruit deliberative processes (Redish 2016) while the latter is likely

CBA D

Figure 1. Tasks design matters when probing memory versus decision-making processes. (A) Memory
and decision-making are thought to exist as duals of each other. How information is stored changes how
it is processed. Different decision-making mechanisms access stored information traded off in different
ways, and thus, select actions by fundamentally distinct computational algorithms. (B) Tasks that inter-
rogate processes on varying time scales are better suited to probe memory versus decision-making com-
putations. (C) Tasks designedmeasuring behaviors on those longer time scales (days) versus shorter time
scales (within trial) are better suited to probe memory mechanisms (information storage, consolidation,
updating) versus decision-making mechanisms (information processing and action-selection valua-
tions). (D) Two task examples better suited to probe either memory processes (traditional paradigm: self-
administration task) and decision-making processes (neuroeconomic paradigm: restaurant row task),
both of which are capable of investigating aspects of reward-related self-control. (Top) In traditional
operant chamber paradigms, principal or initial reward valuations (for food or drug) are measured
during an acquisition learning period (usually across trials or days, estimated via break point on a pro-
gressive ratio lever-press sequence). Extinction periods can probe rates with which new valuation pro-
cesses are learned that suppress principal valuations (across days). Active maintenance of extinction
learning, or susceptibility to lose suppression following reinstatement, implies principal valuation mem-
ories coexist with extinctionmemories yet such competing computations are not accessible in traditional
operant paradigms. (Bottom) In neuroeconomic paradigms, reward value can be calculated a number of
ways within a single trial. In this version of the restaurant row task, hungry mice are trained to forage for
food rewards of varying costs (delay, cued tone pitch) and subjective value (flavor, spatial contexts or
restaurants) while on a limited time budget. Decisions are deconstructed into discrete stages in separate
offer zones and wait zones on each trial in each restaurant. Each action-selection process reflects a val-
uation computation, each of which reflect different economic algorithms (choose between entering
versus skipping in the offer zone, deciding to opt out and quit versus remain patient until earning in
the wait zone, taking time to consume a pellet and linger in a conditioned place versus leave and
advance to the next trial). In each of these action-selection processes, decision conflict and self-control
can be separately captured between highly desired although expensive reward opportunities.
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driven by Pavlovian associations embedded in foraging processes
(Dayan et al. 2006). Thus, reward value is not singular within the
brain, but rather depends on the separate neural algorithms used
to compute value in distinct decision systems. By moving beyond
simple tests of value, complex tasks may be better able to opera-
tionalize reward value in a number of various ways, sometimes
within the same task, and even within the same trial (Fig. 1).
This allows neural computations to bemore readily dissociable dur-
ing on-going decisions.

Tasks rooted in theories of fundamentally distinct valuation
algorithms are capable of dissociating neural computations under-
lying specific aspects of decision-making information processing,
including multiple dimensions of reward value (e.g., effort, price,
opportunity cost, reward magnitude, budget constraints [Wiken-
heiser et al. 2013; van Wingerden et al. 2015; Salamone et al.
2018; Sweis et al. 2018a,b]) separate from other behavioral process-
es (e.g., locomotor capabilities, spatial and semantic knowledge of
task rules and contingencies), accessing revealed subjective valua-
tions rather than assuming reward magnitude objectively (e.g., us-
ing reward quality and individual preferences, not reward quantity
[Levy and Glimcher 2011; Steiner and Redish 2014, Sweis et al.
2018a,b]), introducing changes in external demands (e.g., leaner
versus richer environments [Wikenheiser et al. 2013; Sweis et al.
2018a]), and deconstructing stages of decision-making discretely
within trial (e.g., stepwise information presentation and action-
selection processes leading up to reward earning separated across
space and time [Sweis et al. 2018a,b]). These novel task designs
can access economic principles in human decision-making (both
those well-studied and those still perplexing; e.g., theories of
demand elasticity and compensation, counterfactual processing,
regret, sunk costs, post-purchase rationalization, and other cogni-
tive heuristics [Camille et al. 2004; Coricelli et al. 2005; Hayden
et al. 2009; Abe and Lee 2011; Steiner and Redish 2014; Sweis et
al. 2018a,b]). Importantly, neurally dissociable decision-systems,
including Pavlovian, deliberative, and procedural processes can
be more closely tracked through behavior separated across space
and time within trial, as well as revealing what motivating forces
drive those decision processes to update across trials.

In particular, much can be learned during circumstances of
decision conflict. This can be operationalized in a number of
ways. Especially if adopted within a neuroeconomic framework,
multiple types of conflict scenarios that have not been easily mea-
surable in the past using nonhuman animals can be constructed
along a continuumof competing costs and rewards, including con-
flicts between reward and threat, between reward and self-inflicted
pain, or between wanting highly desired although expensive re-
wards and knowing better to forgo such opportunities for econom-
ically smarter alternatives (Friedman et al. 2015; Guo et al. 2015;
Resendez et al. 2016; Kim et al. 2017a, Sweis et al. 2018a,b).

Such neuroeconomic paradigms can pit multiple decision-
making systems against one another and can reveal hidden infor-
mation about the computational processes underlying specific as-
pects of behavior and within what neural constraints they might
operate. Furthermore, such paradigms are naturalistic, do not rely
on introspection to reveal dissociable cognitive processes, and are
easily translatable across species (Sweis et al. 2018b). Through
this approach, computational processes of specific neural mecha-
nisms can be revealed to be conserved across evolution and can
bemore thoroughly studied using the variety of tools, diseasemod-
els, and patient populations available across species.

On circuit heterogeneity
In order to probe the multiple memory systems and multiple
decision-making systems in the brain, circuit-specific and tempo-

rally precise tools that can gain access to endogenous mechanism
of both information storage and information processing are re-
quired. Recent advances in circuit-dissection tools have made
studying specific populations of cells possible (Yizhar and
Adamantidis 2018). Conditional genetics have allowed experi-
menters to define interrogation parameters based on cell-expres-
sion profiles, activity-dependence, and projection specificity,
leveraging voltage- and calcium-sensing reporters withnovel imag-
ing or opto-tagging techniques and utilizing chemogenetic or
optogenetic manipulations (Guo et al. 2015; Resendez et al.
2016; Kim et al. 2017b). As a result, newer studies have been able
to increase the functional resolution of diverse circuit-specific
specialization.

Recent delineation of circuit heterogeneity of the mesocorti-
colimbic dopaminergic system illustrates this point. Novel circuit-
dissection tools have revealed the wide diversity of unique inputs
into the VTA on dopaminergic and nondopaminergic neurons as
well as the wide diversity of unique VTA output structures that in-
clude the cell-type identity of their targets (e.g., medial VTA dopa-
minergic neurons that receive glutamatergic input from the lateral
habenula and project to D1-receptor-containing GABAergic medi-
um spiny neurons in the shell of the nucleus accumbens) (Morales
and Margolis 2017). Pathways thought to be critically affected by
addiction are being subdivided at a rate faster than the functional
roles of those different subcircuits are being realized (Britt et al.
2012; Tye 2012; Morales and Margolis 2017).

With these tools available, we suggest that a critical factor to
aid in our understanding of the neurobiology of addiction as the
fieldmoves forward requires taking into consideration themultiple
memory and multiple decision-making systems. Importantly, this
means not only moving beyond simple tests of value, which are
commonplace in many addiction studies, but also designing the
circuit-manipulation approach so as to carefully probe the link be-
tween memory and decision-making processes. To accomplish
this, we argue that direct “off-line” manipulations of circuit-
specific plasticity can help realize the functional consequences of
synaptic remodeling on endogenous circuit-computation-specific
information processing. Because lasting heterogeneous aspects of
memory can be altered due to a variety of addiction-related pathol-
ogies, such changes can give rise to unique susceptibilities to addic-
tion via vulnerabilities in circuit-specific computational processes
that might otherwise be masked either by using simple tests of val-
ue or by using circuit interrogation techniques that disrupt endog-
enous information processing. We discuss these concepts further
below.

Off-line induction of circuit-specific plasticity
Many of the interrogation approaches used in the majority of re-
cent optogenetic circuit-specific dissection studies in nonhuman
animals rely on direct activity manipulations during on-going be-
haviors (Fig. 2A,B; Morales and Margolis 2017). That is, these ma-
nipulations are delivered “on-line” in real time affecting neural
computations that drive behaviors. In fact, the vast majority of
optogenetic behavioral studies generally fall under Figure 2A
(Morales and Margolis 2017), while only a handful fall under
Figure 2B (Schelp et al. 2017). In either case, two critical limitations
exist in this approach in relation to studies of addiction and deci-
sion making. The first, previously discussed, is that the majority
of behavioral tasks used in circuit-dissection studies comprise sim-
ple tests of value. The second is that on-linemanipulations impose
disruptions of endogenous neural signaling and provide little in-
sight into the functional consequences of synaptic remodeling
on information encoding.
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An alternative approach is to alter directly the synaptic effica-
cy of signal transmission in specific circuits through alterations in
synaptic plasticity (Fig. 2C,D). The goal of this approach is to
change the weight of the information endogenously transmitted
through a specific circuit, but not disrupt the information that is
coded in this specific circuit during behavior. Importantly, these
types of manipulations thus are delivered “off-line” outside of
behavioral testing. To date, only a handful of studies fall under
Figure 2C which we will discuss below while only a single recent
study has adopted the approach in Figure 2D, which wewill return
to at the end of this review.

Only recently have tools been developed to directly manipu-
late the strength of circuit-specific synapses. Plasticity-altering in-
terventions can now be delivered to specific synapses via
optogenetics by enabling opsins in a circuit of interest and deliver-

ing a brief stimulation protocol in order
to elicit lasting changes in synaptic effica-
cy. Using this approach, for example, ex-
citatory opsins expressed in input-
specific glutamatergic pathways can acti-
vated in a temporally precise manner to
intentionally elicit long-term potentia-
tion or depression. These tools have
been used to good effect in several recent
studies of the neurobiology of addiction
(Pascoli et al. 2011, 2014; Ma et al. 2014;
Creed et al. 2015; Hearing et al. 2016;
Benneyworth et al. 2018). However,
because such studies were performed
using standard animal models of addic-
tion (psychomotor sensitization, drug
self-administration, or conditioned place
preference), the functional consequences
of synaptic remodeling on memory pro-
cesses (e.g., consolidation, maintenance,
extinction, or retrieval) and not decision-
making processes were probed.

Studies of behavioral extinction in
self-administration paradigms support a
model of how plasticity in specific corti-
costriatal circuits are necessary for learned
self-control (Peters et al. 2008; LaLumiere
et al. 2010; Barker et al. 2012; Bossert et al.
2012; Gass and Chandler 2013; Keistler
et al. 2015; Augur et al. 2016). For in-
stance, long-term depression induced by
optogenetically manipulating glutama-
tergic-specific excitatory pyramidal neu-
rons that project from the infralimbic
subregion of the prefrontal cortex to the
shell of the nucleus accumbens is capable
of triggering reinstatement behaviors
(Benneyworth et al. 2018). This idea is
consistent with the “hypofrontality”
model of addiction that characterizes
the inability of individuals with weaker
corticostriatal connects to regulate mal-
adaptive motivated behaviors (Kalivas
and Volkow 2005; Bickel et al. 2007;
Chen et al. 2013; Camchong et al. 2014).

However, neuromodulation studies
applying the same plasticity-inducing
procedure in cocaine-abstinent mice ver-
sus morphine-abstinent mice produce
opposing findings using simple drug con-
ditioned place preference tests (Hearing

et al. 2016; Benneyworth et al. 2018). Similar optogenetically in-
duced plasticity interventions (here, long-term depression) pre-
vent drug-prime induced reinstatement of drug-seeking behavior
in morphine-abstinent mice (Hearing et al. 2016), but provoke
spontaneous reinstatement of drug-seeking behavior in cocaine-
abstinent mice (Benneyworth et al. 2018). This distinction is criti-
cally important if we want to design treatments as it suggests the
same treatment can be dysfunction-preventing in some situations,
but dysfunction-provoking in others. This is especially concerning
when addictions to different substances of abuse are often lumped
together, both neuroscientifically and clinically. It is possible that
cocaine-abstinent and morphine-abstinent mice may have under-
gone changes in fundamentally distinct computational processes
despite appearing grossly similar by the end of extinction training
(Badiani et al. 2011). Thus, altering plasticity at a single connection

A B

C D

Figure 2. Neuromodulation intervention strategy in combination with task design matters. (A,B)
Online neuromodulation manipulations (e.g., circuit-specific optogenetic stimulation) describe those
where stimulation (either activation of excitatory opsins like channelrhodopsin-2 [ChR2] or inhibitory
opsins like halorhodopsin [HaloR]) is delivered during on-going behaviors of interest. This could be time-
locked to cue or lever-presentation in traditional paradigms (A) where extinction maintenance or rein-
statement susceptibility can be assessed. This could also be time-locked to distinct decision-making
action-selection processes in neuroeconomic paradigms (B) during reevaluative change of mind deci-
sions, for instance, only in high-conflict economic scenarios. However, in either (A) or (B), endogenous
neural activity is disrupted. While this can reveal important information regarding on-going neural dy-
namics necessary or sufficient for certain behaviors, on-line neuromodulation actually reveals little re-
garding the functional consequences of synaptic plasticity in relation to addiction-related changes in
neural circuitry. (C,D) Off-line neuromodulation interventions are capable of directly manipulating
circuit-specific plasticity. For instance, well-characterized plasticity-inducing stimulation protocols (in-
duction of long-term-depression in glutamatergic cortical pyramidal projections into the nucleus accum-
bens following 10 min of 10 Hz stimulation via ChR2) can be delivered acutely outside of behavioral
testing. By observing lasting changes in behavior at later time points, the functional consequences of
synaptic remodeling can be realized (e.g., mimicking disease states or reversing them). (C) By applying
this approach in traditional paradigms, the functional consequences of circuit-specific synaptic remod-
eling on memory-related processes can be realized. (D) By applying this approach in neuroeconomic
paradigms, the functional consequences of circuit-synaptic synaptic remodeling on separable decision-
making computational processes can be realized.
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can lead to drastically different behavioral outputs. By not carefully
measuring the decision-making computational processes that may
have separately gone awry in cocaine-abstinent mice versus
morphine-abstinent mice, knowing how to treat potentially dis-
tinct decision-making vulnerabilities becomes guess-work at best.
Put simply, the functional consequences of synaptic remodeling
on the discrete neural computations that drive on-going behavior
remain ambiguous when tested in simple behavioral paradigms
optimized for probingmechanisms ofmemory and not necessarily
decision making.

Direct interrogation of the synaptic efficacy of specific circuits
is an important tool for determining how information is processed
as decisions are made. However, manipulating plasticity to under-
stand the functional consequences of circuit-specific synaptic re-
modeling on distinct aspects of decision-making information
processing is only as useful as the task utilized is sensitive to
circuit-computation-specific behaviors. Combining circuit-specific
off-line neuromodulation with complex testing that reveal separa-
ble behavioral computations is crucial. This combined approach
will be critical for the development of disease-mitigating neuromo-
dulation therapies, particularly those in which the benefit is
intended to outlast the duration of neural stimulation and especial-
ly not unintentionally worsen disease prognosis. In order to begin
to appreciate the complexitywithwhich addiction-related process-
es can give rise to heterogeneous circuit
dysfunctions, next we will briefly discuss
the varying plausible levels of addiction
pathogenesis in this context before re-
turning to how a combined approach of
decision-making neuroeconomics and
off-line plasticity manipulations can aid
in resolving disease heterogeneity.

On addiction heterogeneity
Drug-related experiences are capable of
leaving lasting influences on the brain
and behavior (Robinson and Berridge
2003; Le Moal and Koob 2007). Thus,
problematic drug abuse and susceptibility
to relapse is often attributed to neuronal
pathologies in mechanisms of learning,
memory, and plasticity (Nestler 2001;
Hyman and Malenka 2001; Hyman
2005; Kauer and Malenka 2007; Thomas
et al. 2008; Lüscher and Malenka 2011).
This view has dominated much of addic-
tion neurobiology research. However, an
ultimate understanding of addiction
pathogenesis will depend on appreciating
the multiple plausible causes of drug-use
(Fig. 3).

The vast majority of drug users in
fact do not go on to display problematic
drug use (Fig. 3A; Anthony et al. 1994).
Comparisons between casual drug users
and problematic drug users can perhaps
reveal fundamental differences in neuro-
biological functions underlying the
severity and chronicity of or resiliency
from relapse. There is a large body of
work in both human and nonhuman an-
imals comparing compulsive drug-seek-
ing behaviors to non-drug-exposed and
non-drug-treated controls. There is a rela-

tively smaller literature comparing individual differences in com-
pulsive drug-seeking behaviors to casual drug consumption.

However, several recent studies have suggested that even
within standard animal addiction models, only subsets of animal
subjects show phenotypes that closely resemble human addictions
(Ahmed 2005, 2010; Ahmed et al. 2013; Pickard et al. 2015). For ex-
ample, Vandaele et al. (2016) found that although all rats tested
showed larger progressive ratio breakpoints to cocaine and heroin
than to saccharin, most rats would choose saccharin over cocaine
or heroin if given an actual choice between them. Perry et al.
(2013) found that the subset of rats that would choose cocaine or
heroin over saccharin in the two-available-choice condition
showed other similar addiction-related phenotypes. Deroche-
Gamonet et al. (2004; see also Kasanetz et al. 2010) found that,
while all rats would lever-press or nose-poke for cocaine, only a
subset would cross a shock to reach the drug, and that same subset
showed excessively high progressive ratio breakpoints. Jaffe et al.
(2014) found that the subset of nicotine-seeking rats that showed
excessively high progressive ratio breakpoints also showed a lack
of Kamin blocking response to nicotine, even though their
Kamin blocking response to food was normal.

Most studies investigating the neuroscience of addiction pa-
thology have focused almost exclusively on those due to internal
factors within a subject, meaning within the brain (Fig. 3B).

A

B

C

D

E

F

Figure 3. On addiction heterogeneity: Classes of plausible dysfunctions. (A) All drug use can be sub-
divided into casual drug use (majority) versus problematic drug use. (B) Individuals with problematic
drug use can be divided into those with pathologies (originating cause) due to external, social factors
versus pathologies rooted within the individual either via a predisposing vulnerability or a direct
change induced by an ingested substance. (C ) Internal pathologies can be divided into those with
primary changes in neurons versus nonneuronal players (e.g., glia). (D) Neuronal changes, or plasticity,
can be divided into changes that come about from normal mechanisms of learning and memory or a
dysfunctional breakdown of such processes that normally do not occur. (E) Normal mechanisms of
learning and memory can be driven in reward-related circuits by dopamine-mediated processes or
non-dopamine-mediated processes (e.g., endocannabinoid signaling). Blue arrows in between nodes
indicate interaction pathologies that could have either unidirectional or bidirectional influences on
each other. (F) Any resultant changes in the brain that arise from internal pathologies, regardless of
the underlying primary mechanism, can each induce failure modes in dissociable neural circuits, each
of which can give rise to fundamentally distinct addiction etiologies in separable neural computations.
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Pathology, by definition, is derived from the Greek words “pathos”
meaning “disease” and “logos” meaning “treatise,” describing the
science of the causes and origins of disease states. Sometimes the
term pathology can be misused and instead of referring to disease
origin, may sometimes be ascribed to reflect measurable evidence
of disease state, either as dysfunctions downstream fromdisease or-
igin or even disease symptomology. However, in certain cases, the
cause and origin of problematic drug use can be entirely attributed
to external (i.e., environmental) factors. For example, in a neural
system that may be working perfectly normally, with no predispo-
sition or known susceptibility to drugs, it might be the case that as-
sociations constructed in certain social settings can drive drug
abuse. For instance, television ads or the entertainment industry
that publicize, glorify, or sexualize drug use can drive problematic
drug use in viewers with access to thosemedia. In such cases, a fail-
ure in an individual’s brainmay not be the underlying origin of his
or her addiction, normight themechanism of action of the ingest-
ed substance on the individual’s brain be the origin of maladaptive
behavior. In such cases, successful treatments may need to be root-
ed in environmental and social interventions. Of course, two indi-
viduals who undergo similar media exposures might yet emerge
with different disease states. Thus, for such questions, problematic
drug use is likely rooted in an interaction pathology between the
individual neural system and the external environment (Fig. 3B
blue arrows).

Many of the neuroscience studies of addiction and the brain
have focused almost exclusively on those with neurophysiological
etiologies (Fig. 3C). However, recent work highlights the involve-
ment of key nonneuronal players including glia and the immune
system, both centrally and peripherally located, that could serve
roles as sources of dysfunction, potential diagnostic or prognostic
disease biomarkers, or possible novel avenues for therapeutic
intervention. Astrocytes and microglia functions, including those
critical for synapse formation, can be disrupted by alcohol, psy-
chostimulants, and opioids through either direct means, indirect
means through neuronal signaling, or through the innate immune
system, which together contribute to added drug-abuse liability
(Navarrete and Araque 2008, 2010; Fox et al. 2012; Araos et al.
2015; Northcutt et al. 2015; Lewitus et al. 2016; Karlsson et al.
2017; Lacagnina et al. 2017; Ostroumov and Dani 2017; Calipari
et al. 2018; Neuhofer and Kalivas 2018). It is certainly possible
that primary dysfunctions in nonneuronal players could give
rise to secondary neuronal dysfunctions and vice versa with
interacting pathologies (Fig. 3C blue arrows), but it is important
to consider primary dysfunctions in order to better appreciate
addiction etiology. It is possible that both neurophyisological
and glial dysfunctions could exist in fundamentally distinct forms
of addiction, yet this remains to be explored. One could imagine
a scenario in which primary dysfunction in glia that give rise to
maladaptive neuronal plasticity could continue to give rise to
maladaptive circuit changes even if neuron-targeted therapies are
administered.

Within the realm of neuronal changes, some addiction-
related changes depend on dysfunctional forms of plasticity and
some are instantiated through normal learning mechanisms (Fig.
3D). Addiction-related changes in memory are often thought to
be functioning within intact learning mechanisms at the molecu-
lar and cellular levels (if perhaps at an accelerated rate or enhanced
level) (Hyman and Malenka 2001; Hyman 2005; Kauer and
Malenka 2007; Thomas et al. 2008; Zweifel et al. 2008; Harnett
et al. 2009; Lüscher and Malenka 2011; Kodangattil and Dacher
2013; Wolf 2016; Hearing et al. 2018). The vast majority of
nonhuman-animal studies examining these questions start from
the hypothesis that drugs of abuse, either directly or indirectly,
take advantage of endogenous reward-related systems and usurp
normal mechanisms of learning and memory. While a prominent

view, there are several reports suggesting this is only one potential
path to drug addiction. In fact, it is important to be careful with the
term “plasticity.” Changes in strength of synaptic transmission
(e.g., potentiation, depression) either through presynaptic mecha-
nisms (e.g., changes in vesicle release probability) or postsynaptic
mechanisms (e.g., changes in receptor densities) can store informa-
tion about the historical past (Couey et al 2007; Thomas et al. 2008;
Goriounova and Masvelder 2012; Atwood et al. 2014). Changes in
plasticity itself, often termed “metaplasticity,” describe a distinct
process in which the history of a given structure alters the
direction or magnitude of plasticity in response to subsequent
stimulation (Abraham and Bear 1996; Lee and Dong 2011;
Mameli et al. 2011; Mamelli and Luscher 2011). Thus, metaplastic-
ity describes changes that augment or diminish the overall degree
with which a system is capable of changing and thus can interact
with normal learning mechanisms (Fig. 3D, blue arrows).

The vast majority of neuroscience addiction research has fo-
cused on changes in dopaminergic signaling or synaptic pathways
known to bemodulated by dopamine (Fig. 3E). However, plasticity
involving other neuromodulators, including endocannabinoids,
serotonin and norepinephrine are known to contribute to learning
and memory, and any of these might also be subject to change in
addiction (Chevaleyre et al. 2006; Weinshenker and Schroeder
2007; Hernandez and Cheer 2015; Müller and Homberg 2015)
and could conceivably interact with each other (Fig. 3E blue
arrows).

In light of these multiple plausible causes underlying contin-
ued drug use, a key concept to consider is towhat extentmight het-
erogeneous circuits be differentially affected (Fig. 3F). Even within
a single branch of plausible neurobiological mechanisms of addic-
tion—changes mediated through dopaminergic pathways—stud-
ies examining drug-induced plasticity have not fully appreciated
the heterogeneity of circuits within which these mechanisms
may be taking place, especially within the context of decision-
making information processing. That is, questions of which cir-
cuits andwhat information underlie addiction-related plasticity re-
main largely unresolved.

Steps toward resolving addiction heterogeneity
Neuroeconomic tasks are capable of capturing scenarios of eco-
nomic conflict that can operationalize decision-making concepts
of reward value, self-control, and impulsivity in a number of differ-
ent ways. The Restaurant Row task in rodents canmeasure the con-
flict between wanting highly desired rewards offers despite
knowing better to seek out smarter alternatives in multiple
decision-making valuation systems separated within the same trial
(Sweis et al. 2018a). This demonstrates a way for nonhuman ani-
mals to communicate “should versus shouldn’t” judgements
through complex reward-seeking behaviors. This can model in ro-
dents the difficult types of complex decisions humans recovering
from addiction struggle with before relapsing, and we found that
2 wk of prolonged abstinence from cocaine or morphine produced
dissociable lasting disruptions in these fundamentally distinct
decision-making algorithms (Sweis et al. 2018c).

In such a neuroeconomic framework, the concept of self-
control becomes much more nuanced as it can have different im-
plications for the separable neural computations contained within
distinct decision-making systems. This brings into question the
“hypofrontality” model of addiction that characterizes the inabil-
ity of individuals with weaker corticostriatal connections to regu-
late maladaptive motivated behaviors (Kalivas and Volkow 2005;
Bickel et al. 2007). How the strength of connectivity between
twobrain structures alters separable aspects of valuation processing
during on-going behaviors is a field of study that remains at its
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infancy. Pursuing this aim is at the core of linking mechanisms of
memory and plasticity to decision-making processes in order to
more deeply resolve heterogeneity in addiction pathogenesis.

Supporting this hypothesis of the effect of hypo-frontality
on decision-making corrections, and by taking the combined
approach described in Figure 2D, we found that long-term depres-
sion induced in the infralimbic to accumbens shell pathway
produced lasting changes in foraging but not deliberative
behaviors measured within the same trial (Sweis et al. 2018d).
Furthermore, individual differences in strength of connectivity
of this pathway could explain self-control-related decisions in a
foraging algorithm independent of and separate from self-control-
related decisions in a deliberative algorithm (Sweis et al. 2018d).
Interestingly, this circuitmanipulation, which has been previously
shown to change in both cocaine- and morphine-abstinent
mice (Thomas et al. 2000, 2001; Hearing et al. 2018), has also
been shown to provoke reinstatement of conditioned place prefer-
ence in animals exposed to cocaine (Benneyworth et al. 2018)
while blocking reinstatement in animals exposed to morphine
(Hearing et al. 2016).

This approach can reveal the lasting functional consequences
of synaptic remodeling on distinct aspects of decision making not
accessed using classic experiments andnot directly interrogated us-
ing on-line neuromodulation approaches. This suggests that
circuit-specific manipulations of plasticity are capable of disrupt-
ing distinct aspects of decisionmaking relevant to certain subtypes
of addiction only revealed when tested on complex behavioral
tasks. This also suggests that treatments that may help prolong ab-
stinence and prevent relapse in certain types of addiction validated
by testing in simple behavioral paradigms such as conditioned
place preference or drug self-administration could potentially
worsen disease state in other types of addiction. Of course, many
circuits beyond the IL-NACsh pathway are certainly thought to
change during the time course of addiction (e.g., drugs on board,
during acutewithdrawal, immediately following a relapse episode).
Demonstrations of deliberative algorithms encoded in hippocam-
pal-prelimbic and prelimbic-accumbens core pathways (Johnson
et al. 2007; Powell and Redish 2014; Padilla-Coreano et al. 2016;
Papale et al. 2016), circuits which have also been shown to change
in addiction models (Chen et al. 2013), make interrogating such
circuits prime candidates for next steps using this combinedneuro-
economics and plasticity approach.

Conclusion
Neural plasticity is purported to underlie long-lasting maladapta-
tions in behavior, making addiction a chronic disorder of life-long
struggle against relapse. It is this property of addiction—lasting
changes in synaptic function that persist long after drugs of abuse
have cleared an individual’s system—that makes addiction a disor-
der of learning and memory and thus of decision-making. Recent
advancements in decision science and neuroeconomics reveal
that neurally dissociable valuation processes access distinct mem-
ories differently, and thus are uniquely susceptible to change as
the brain changes during addiction. Therefore, addiction is best
considered not as the disease itself but rather as a collection of
symptoms of neurobiological diseases that are proving to be
more heterogeneous than previously thought. Furthermore, addic-
tion is notmerely a disease ofmemory, but rather a consequence of
changes in how decision-making processes access thosememories.
The advancement of our understanding of addiction etiology
and thus development of better, lasting disease-augmenting thera-
pies tailored to the individual will depend on tasks and neuro-
modulatory approaches that can access the complexity of circuit-
computation-specific processes in the brain.
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