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Identification of Key Components 
in Colon Adenocarcinoma Using 
Transcriptome to Interactome 
Multilayer Framework
Ehsan Pournoor1, Zaynab Mousavian2, Abbas Nowzari Dalini2 & Ali Masoudi-Nejad1*

Complexity of cascading interrelations between molecular cell components at different levels from 
genome to metabolome ordains a massive difficulty in comprehending biological happenings. However, 
considering these complications in the systematic modelings will result in realistic and reliable 
outputs. The multilayer networks approach is a relatively innovative concept that could be applied for 
multiple omics datasets as an integrative methodology to overcome heterogeneity difficulties. Herein, 
we employed the multilayer framework to rehabilitate colon adenocarcinoma network by observing 
co-expression correlations, regulatory relations, and physical binding interactions. Hub nodes in this 
three-layer network were selected using a heterogeneous random walk with random jump procedure. 
We exploited local composite modules around the hub nodes having high overlay with cancer-specific 
pathways, and investigated their genes showing a different expressional pattern in the tumor 
progression. These genes were examined for survival effects on the patient’s lifespan, and those with 
significant impacts were selected as potential candidate biomarkers. Results suggest that identified 
genes indicate noteworthy importance in the carcinogenesis of the colon.

One of the most prominent aspects of computational biology is network biology in which network science plays 
an essential role in discovering biological occurrences. Networks are reconstructed from different biological phe-
nomena and deduced from mathematical and topological aspects. Protein-protein interaction (PPI), metabolic, 
and regulatory networks are examples of biological networks that have frequently been employed in recent years. 
However, nature comes with a lot of complexity. Inside a cell, there is a broad spectrum of entities contributing to 
create different cascading interactions that define the cell life and function. Considering these complexities in the 
modeling will gain comprehensive and valuable insights on biological events.

Currently, thanks to progress in high-throughput sequencing technologies and large projects such as TCGA1, 
there is a booming amount of omics data that could be used for wide-ranging analyses. Curated databases contain 
information for regulatory interactions between biomolecules and their targets, single nucleotide polymorphisms 
(SNPs), biological pathways, and gene expression profiles of various phenotypes. Moreover, tools and applica-
tions, developed by scientific societies, are increasingly accessible, resulted in an easier exploration of biological 
happenings2. However, these data are heterogeneous, inconsistent, and provider technologies may come with a 
bias3. To overcome these problems, data integration would be an asset. Recently, integrative systems biology has 
become a popular area in which more than just a single type of biologic data is incorporated4–7. Bearing these 
considerations in mind, the results will be more truthful and reliable. In an excellent review article written by 
Koyel et al.8, they described different approaches in integrative biological networks. Also, Peng et al.9 proposed a 
new multi-omics approach for bladder cancer-related genes discovery.

Systematically, multi-omics datasets could be regarded as multilayer networks. Based on scientific defini-
tions10,11, a multilayer network contains multiple layers (different layers for different types of interactions) and 
considering the topology of layers, various kinds of multilayer networks are characterized. As Hmimida et al.12 
mentioned, multilayer networks exploration can be executed in three ways. First, Layer Aggregation, in which all 
layers are aggregated to make a single network and traditional single layer (monoplex) analysis could be applied 
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to explore it. Second, Ensemble (Consensus) approaches, in which each layer is individually evaluated; then, the 
results are combined to create the final consequence. Third, methods extended for multilayer networks (briefly 
called extended approaches), in which the analysis process is simultaneously conducted on all layers. Didier et 
al.13 compared these three approaches in terms of community detection and found that the extended modularity 
function has superiority over the other two methods.

The extension of topological attributes from monolayer to multilayer is a critical and challenging topic in this 
area12,14–16. Hmimida et al.12 have defined metrics (such as degree, shortest-path, neighbor set) for multiplex net-
works using an entropy-like aggregate function. Domenico et al.16 proposed reducibility methods for multilayer 
networks to eliminate redundant interactions and layers. In this context, community detection for multilayer 
networks is considered one of the most challenging topics. Given the topological perspective, a community is 
a cluster of densely connected nodes, which are far from other clusters. Communities may be either local or 
global and may have overlap with each other. Recently, various extended multilayer community detection algo-
rithms have been proposed to seek modules in layers simultaneously17–21. A specific type of community detection 
method is based on seed-centric approach, in which communities are localized around predefined (manual or 
computational) seed nodes12,22.

Extended approaches for multilayer networks were recently used in biological and medical sciences. 
Berenstein et al.23 have taken benefit from these methods for the application of drug repositioning in neglected 
diseases. Furthermore, Rai et al.24 found a similar structure in the PPI network of seven types of cancers using 
spectral graph theory and the multilayer framework. Although these kinds of integrative methods were used 
recently in some contexts of biology, there is still a gap in their usage in prognosis and diagnosis of human 
disorders such as cancer even with the high availability of omics datasets. Also, because of the complexity of 
this kind of research with high dimensional data, previous multilayer-based works have relied mostly on the 
usage of two types of data and missed complementary interactions such as regulatory links in transcriptional and 
post-transcriptional phases.

Here, we utilize an extended approach to find functional communities in colon adenocarcinoma (COAD). To 
model such a multifaceted system in a realistic and comprehensive way, three levels of abstraction are declared. 
First, at the transcriptional level, gene correlations can be defined to represent the co-expression patterns among 
the genes. Second, at the post-transcriptional level, biomolecules such as RNAs and proteins have regulatory 
interrelations. Regulatory interactions indicate direct or indirect control of gene expression. Third, physical inter-
actions show bindings of molecules such as proteins or RNAs to other molecules (such as protein-protein and 
RNA-protein bindings). In this arrangement, it is possible that a regulatory interaction may also be a physical 
binding interaction. Accordingly, we construct a three-layer network with co-expression, regulatory and physical 
interaction layers. One of the novelties addressed in this study is utilizing the most diverse types of interactions 
including co-expression, signaling, kinase-substrate, metabolic enzyme-coupled, nucleoproteins, protein com-
plexes, RNA-RNA, and regulatory in a multi-layer framework to get a holistic view of the genes involved in car-
cinogenesis. The analysis program in this research contains the following steps to achieve potential biomarkers 
derived from raw datasets. We employ a local seed-centric community detection algorithm to explore modules in 
the multilayer network. In this process, to select seed items computationally, we propose an innovative multilayer 
heterogeneous random walker to score nodes. The top-ranked nodes are applied as seeds, and local communities 
around these seed nodes are computed as modules of interest. Out of the identified modules, those with a high 
overlap with COAD, based on validated databases, are selected as candidate modules for further steps. For every 
module, differential expression (DE) analysis is performed to extract differentially expressed genes (DEGs). We 
conduct the survival analysis for DEGs in the final step, to find genes that their differential expression influences 
the survival of patients with COAD. Modules containing a large amount of these genes are selected as final mod-
ules, and the functional enrichment was carried out on them. Finally, we discussed the upstream regulators of 
candidate genes to specify their role in the differential expression of target candidates and the related biological 
pathways. This kind of novel evaluation led us to identify a list of new potential targets in colorectal cancer25.

Materials and methods
Data collection and preprocessing.  In the process of data collection, the information needed to build a 
multilayer network was gathered from multiple sources. As presented in the research workflow (Fig. 1), in this 
step, three types of data were used: gene expression profiles, regulatory relationships, and physically binding 
interactions. First, to build the co-expression network (layer 1), RNAseq data for COAD were exploited from the 
TCGA data portal26. In the preprocessing of expression data, we performed sample and gene filtering and then 
used the FPKM-UQ (Fragments Per Kilobase of transcript per Million mapped reads upper quartile) normalized 
data to generate the network. In the gene filtering step, genes with the following conditions were excluded: (1) 
missing values in any samples, (2) the expression count value of zero in more than 80% of all samples27, (3) genes 
that possessed the expression rates with zero standard deviation across all samples, and (4) genes with average 
CPM (count per million) lower than 1.

Second, for the generation of regulatory layer, we utilized the experimentally curated regulatory interactions 
using the NPInter (non-coding RNA interactions with biomolecules)28, the RegNetwork29 (Regulatory Network 
Repository of Transcription Factor and microRNA Mediated Gene Regulations), and the TRRUST (database of 
TF-target regulatory information)30 databases. Third, the network of physical interaction layer was assembled 
using the interactome data, as previously published31. These data comprise different interactions including (1) 
regulatory interaction of transcription factors, (2) yeast two-hybrid (Y2H) binary interactions, (3) metabolic 
enzyme-coupled interactions, (4) signaling interactions, (5) protein complexes, (6) kinase-substrate interactions, 
and (7) low-throughput manually curated interactions in the literature. In addition to the co-expression layer, 
in other layers (regulatory and physical interaction), genes possessing the average expression value of zero in 
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Figure 1.  The Workflow of the research.

Figure 2.  (A) A sample heterogeneous multilayer network of the transcriptome to interactome. (B) A typical 
random walk with the random jump.
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transcriptomic data were also removed. Our reason is that genes with no expression will never be translated into 
proteins, and they have no regulatory function or physical binding interactions.

Multilayer network construction.  Herein, we used FPKM-UQ normalized data and established the 
co-expression network using the WGCNA27 package in the R. In this layer; we selected those correlations having 
the values higher than 0.75 (considering scale-freeness of the network). Since the gene-set is made of both cod-
ing and non-coding RNAs and contains regulators and their targets, in the WGCNA “adjacency” function, we 
set the network type to “unsigned,” and correlations were calculated using the Pearson Correlation Coefficient 
(PCC) measure. The output is a weighted and undirected network in which the edge weights address correlations 
between the genes. We built other layers of the multilayer network (regulatory and physical binding layers) using 
interactions deduced by the experimentally curated databases. The regulatory network is directed, while the phys-
ical interaction network is undirected; however, both of them are unweighted networks. Figure 2A depicts such a 
heterogeneous multilayer network.

Personalized seed selection.  In most of the seed-centric community detection approaches, the seeds are 
either selected manually (such as predefined nodes) or based on their specific properties (such as being a hub). 
Here, to select seeds in a sophisticated way, nodes were ranked using a random walk with a random jump proce-
dure. To attain this objective, we customized the random walker to walk in all three layers considering the hetero-
geneity. Since the network topology (node set, edge set, directedness, and edge weighting) is different in each layer 
(Fig. 2A), we proposed a walker algorithm (algorithm 1) to resolve this kind of ambiguity.

The walker must be able to move in all three layers with the ability to change layers and nodes. Figure 2B shows 
a sample walk with node and layer exchange. In this procedure, moving to a neighbor follows the probability 
function P i j( , )l  defined in Eq. (1) for unweighted and Eq. (2) for weighted networks.

As defined by Kivelä et al.10, given a set of nodes   and a set of layers = …L L L{ , , , }s1 2 , ⊆ ×V LLV  spec-
ifies nodes and   ⊆ ×E V V  denotes the edge list (including inter-layer and intra-layer edges) in a multilayer 
framework. We indicated the multilayer network graph with notation V LL L LG V E( , , , )= . In this context, the 
probability of proceeding to a next neighbor in unweighted networks (regulatory and physical interaction layers) 
is defined as:
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where P i j( , )l  is the probability of proceeding from node i to any other neighbor (out-neighbors) j in layer l, ml 
indicates the neighbors (or out-neighbors if the network is directed) of node i in layer l, and Al demonstrates the 
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Algorithm 1.  Proposed heterogeneous multilayer random walker.
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where Corr i j( , ) implies the co-expression correlation between nodes (genes) i and j. Also, the walker must be able 
to go from a node to its counterparts in other layers. For instance, when the walker is at node x inside layer L1, for 
any layer ∈ ≠L r, 1r , if Lrcontains node x, the walker can jump to node x in Lr, or stay in L1 itself. In each step, 
the walker should choose to go to one of its counterparts in other layers (line 7 in algorithm 1) or move to one of 
its neighbors in the same layer (lines 13 in algorithm 1). We set the probability of moving to a neighbor in the 
same layer as same as moving to its counterpart in a different layer to enable the walker to score nodes based on 
shared properties of nodes in all layers in an unbiased manner. Moreover, to avoid tangle in traps, we set the 
walker to jump with a predefined probability βor continue to walk with a probability of − β1  (line 10 in algorithm 
1). To be fair in the selection of jump destination and ascribe it to the biological gene expression, we set the per-
sonalized random jump probability as:

=
∑ =

pr i i
k

( ) exp( )
exp( ) (3)k

N
1

where pr i( ) specifies the probability to jump to node i, iexp( ) indicates the average expression of gene i across the 
samples of patients with cancer and N is the total number of genes (nodes) in the multilayer framework.

Local seed-centric module detection.  We used a local community detection approach to detect the func-
tional composite modules around the seed nodes in our multilayer network. The idea underlying this approach is 
to find items that contribute to the development of carcinogenesis. Items are scattered in layers, and their nature 
might be a gene, RNA, or protein; however, we consider the equivalent gene names in the final module. Since 
currently there is not an applicable community detection algorithm about large heterogeneous multilayer net-
works compatible with our network; in this phase, we considered layers in an unweighted and undirected manner. 
We utilized ML-LCD local community detection method22 to discover modules for every seed node. It is a mod-
ularity expansion-based community detection method, which has better performance in large multilayer net-
works. Given a seed node ∈v0 , ML-LCD algorithm attempts to find a subgraph G Gv0

 ⊆  that consisted of the 
seed node v0 and maximizes the local community function (LC) in Eq. (4). For simplifications, the letter C is used 
to denote local community subgraph. In this regard, ⊆ E EC  demonstrates the edge set of the subgraph.
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In Eq. (5), LC C LC C( )/ ( )int ext  indicates the density of links inside C, over the density of links between nodes 
inside and outside of the C. To formulate local community function LC, terms Shell Nodes and Boundary Nodes 
should be defined. In this regard, to specialize the edges inside the community C in a layer Li, symbol 

= | ∃ ∈E u v u L v L E{( , ) (( , ), ( , )) }i
C

i i
C  will be used. For a local community being constructed, the shell nodes 

refer to nodes outside of the community that is a neighbor of nodes inside the community (displayed by symbol 
S), and these within-community neighbors of shell nodes are also called boundary nodes (depicted by symbol B):
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edges of layer Li. As reported by22, LC C( )int  and LC C( )ext  are defined as:
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where iω  (for every Li ∈ ) is non-negative coefficient, with  1L Li i
ω∑ =∈ , demonstrating layer weights.

Module validation and biomarker extraction.  Communities detected by the mentioned approach 
should be validated by a biological viewpoint. Our goal was to seek modules (communities) that their genes 
were involved in the malignant tumor of the colon. We chose modules possessing considerable counts of genes 
associated with COAD according to the DisGeNet32 and containing a significant number of DEGs. For these 
disease-related modules, functional enrichment analysis is a strategy to check the role of module genes in path-
ways and processes. To enrich the discovered modules, we employed two popular tools, the Enrichr33,34 and 
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ToppFun enrichment portal of the ToppGene35, and studied the presence of modules genes in tumor-associated 
pathways and biological processes. We selected the KEGG36 and Reactome37 as reference pathway databases.

For the genes inside the discovered modules, that were not previously reported as COAD-associated genes in 
the DisGeNet database, differential gene expression analysis was performed. Herein, we focused on genes that 
their expression pattern statistically differs in the malignant tumor. We did DE analysis using the Limma38 and the 
edgeR39 R packages based on workflow presented in40 and selected genes with larger fold changes ( FClog( ) 1> ) 
and smaller p-value (adj. p-value < 0.01).

To observe the effects of the expression level of discovered DEGs on the survival of patients, the survival 
analysis was carried out. This examination was applied to compare the lifespan of people when the expression of 
a gene differs from the normal. Kaplan-Meier (KM)41 curve is a worthy choice when the data are censored, and 
there is not complete information on subjects. It estimates the lifespan of a group of people having a low gene 
expression rate in comparison to another group with a high expression rate. The SurvExpress42 utility was used 
for the log-rank test and Kaplan-Meier survival analysis. In this phase, we chose those genes that a change in their 
expression rates influences the survival rate of patients with COAD and considered them as potential biomarkers. 
Although the impact of variations on the expression of upstream regulators is not the only reason for changes 
in the expression of downstream genes, it provides some explanations for these alterations. Finally, to validate 
changes in the transcription levels of biomarkers, in the regulatory layer, we performed a regulation follow-up on 
upstream items of biomarkers.

Results
Data preparation and network generation.  The obtained dataset from the TCGA includes total 
RNAseq expression data for 60483 coding/non-coding RNAs in 424 samples that consisted of samples collected 
from healthy subjects and patients with colon cancer. Thus, we selected the paired samples that comprised of 49 
samples obtained from healthy individuals and their cancer counterparts (49 normal specimens and 49 cancerous 
samples). Then, we carried out gene filtering as described in the “Materials and Methods” section. The cleaned 
data include the expression count value for 14515 genes in 98 samples. The 49-paired samples were used in the 
differential gene expression analysis. However, only the expression data of 49 cancerous samples were applied 
for the co-expression network construction. The generated co-expression layer comprises 5993 nodes and 75121 
edges. On the other side, the regulatory and physical interaction layers were directly generated from source data-
sets. The physical interaction layer has 12751 nodes and 135712 edges, and the regulatory layer encompasses 
17640 nodes with 133180 edges.

Figure 3.  (A) Evaluation of walker in terms of precision and recall for COAD. (B) Distribution of nodes score.

# Seed Seed RW score
number of 
module genes

Involvement 
percentage p-value FDR B&H

1 SP1 0.977729191 239 0.414 2.667E-33 3.54E-30

2 EGR1 0.858748157 250 0.464 3.344E-44 3.31E-41

3 USF1 0.805867697 153 0.614 5.507E-48 2.97E-44

4 YY1 0.674073321 140 0.364 4.201E-15 7.65E-13

5 E2F1 0.559109168 156 0.25 6.14E-07 3.27E-05

6 MXI1 0.523567397 63 0.302 0.00003692 0.001946

7 JUN 0.511059135 140 0.457 2.984E-25 3.84E-22

Table 1.  Explored modules around seed nodes with an overlap percentage higher than 0.25 in COAD.
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Personalized seed selection.  We ranked nodes in the network using the proposed heterogeneous multi-
layer random walker. The walker was set to jump with a probability of β = 0.2 or continue to walk with a proba-
bility of 0.8. We ran the walker for three million moves and ranked nodes based on scores (Min. = 0.0, 1st Qu. = 
0.0015, Median = 0.0032, Mean = 0.00612, 3rd Qu. = 0.00610, Max = 1.0). Although the goal of this project was 
far from the gene prioritization, to test the accuracy of our personalized seed selection algorithm against a ran-
dom selection of genes, we examined the result of the walker in terms of precision and recall (Fig. 3). Precision 
(Eq. 8) measures the percentages of retrieved items that are relevant. However, recall (Eq. 9) evaluates the percent-
age of relevant items that have been retrieved. Results show that the proposed ranking system performs much 
better than the random assortment (diagonals of the chart). The complete result of random walker scores is pro-
vided in Supplementary File S1. We designated nodes with score larger than 0.5 (rw_score > 0.5) as seed nodes. 
As reported by the DisGeNET database, 11 out of 12 chosen seed nodes are involved in COAD, as previously 
mentioned, indicating that our computationally explored centroid seeds are biologically meaningful.

precision
relevant items retrieved items

retrieved items
{ } { }

{ } (8)
∩=

recall
relevant items retrieved items

relevant items
{ } { }

{ } (9)
∩=

Module detection.  For the selected seed nodes, we calculated local communities using the ML-LCD 
method. Since there is not any precedence on the three layers, we set layer weight 1/3Li

ω =  for all layers equally. 
We selected modules whose genes (at least 25%) are known as predisposing genes in the development of COAD 
according to the reports by curated databases. Out of 12 modules found in this step, seven were related to colon 
cancer with an overlap more than the specified threshold (Table 1). The detailed information of 12 modules and 
their genes are available in Supplementary File S2.

Also, we checked random walk scores of module items separately to observe if there is a relationship between 
the module score and the percentage of its overlap with COAD. In all validated modules (seven modules), the 
minimum, maximum, median, and average scores were calculated (Table 2). It was observed that the average 
module score was highly associated with the involvement of module in COAD. For example, for the module 
with the seed gene USF1 (called module USF1), the average score of module items was the highest (avg. score = 
0.05692) and it was the most related module to cancer (overlap = 61%). It emphasizes that COAD-related mod-
ules contain nodes with a high random walk score (hub nodes in the multilayer framework).

DEG analysis and module evaluation.  To assess each detected module, we applied differential gene 
expression analysis, with limitations adj. p-value < 0.01 and FClog( ) 1> . As presented in Table 3, the module 
E2F1 has the highest value of differentially expressed genes (100 DEGs from 117 genes). We started with DEGs 

Module Seed Min Max Avg. Median Involvement %

USF1 0.0061 0.80587 0.05692 0.03458 61%

YY1 0.00422 0.67407 0.03989 0.02677 46%

JUN 0.00158 0.51106 0.03635 0.0257 45%

EGR1 0.00219 0.85875 0.03331 0.02212 41%

SP1 0.00214 0.97773 0.03095 0.01978 36%

MXI1 0.00422 0.52357 0.02937 0.01693 30%

E2F1 0.00417 0.55911 0.01669 0.0091 25%

All Genes 0 1 0.00613 0.0032 —

Table 2.  Module relevance to COAD in terms of Random walk scores.

Module Seed USF1 YY1 JUN EGR1 SP1 MXI1 E2F1

1 # module genes 153 140 140 250 239 63 156

2 # COAD genes in 1 94 (61%) 51 (36%) 64 (45%) 116 (46%) 99 (41%) 19 (30%) 39 (25%)

3 # DEGs in 1 21 (13%) 8 (5%) 11 (7%) 40 (16%) 35 (14%) 1 (1%) 130 (83%)

4 # DEGs in (1–2) 3 (5%) 4 (4%) 3 (3%) 12 (8%) 14 (10%) 1 (2%) 100 (85%)

5 # Survival Candidate in 4 1 0 0 0 0 0 9

Table 3.  Module comparison and evaluation. The first row demonstrates the number of genes inside each 
module. For each module, its overlap with COAD has been presented in the second row. Values in the third 
row are the count of DEGs inside each module. However, the fourth row shows the number of DEGs in module 
genes, which were not previously reported as COAD-related genes in databases. Additionally, the number of 
genes with significant effects on patients’ survival (according to the fourth row) are presented in the fifth row.
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that their expression rate was changed in the transition from healthy to cancer state, and continued to survival 
analysis. Among the identified DEGs that were not reported in databases, 10 genes had different expression pat-
terns (modules with seed genes E2F1 and USF1), resulting in a different survival rate with log-rank test p-value < 
0.05 (Table 3, Fig. 4). The genes CDC6, RRM2, ORC1, NCAPG, MAD2L1, MCM6, CCNF, CDCA2, ECT2, and 
DEPDC1B, are the output candidate genes identified in explored modules, which are differentially expressed 
between normal and cancer states, and their differential expression levels have noteworthy effects on the lifespan 
of patients. Since we looked for novel unreported genes, we ignored modules with low coverage of DEGs and 
survival biomarkers and proceed with two significant modules, the module E2F1 (high DEG and survival rate) 
and the module USF1 (high overlap) for functional enrichment analysis.

In another parallel process, we performed another tryout to validate our approach in finding differentially 
expressed genes inside detected modules. For this purpose, the proportional test was used to check the accuracy 
of our method in distinguishing genes that their expression varies between healthy samples and patients with 
COAD. In other words, this test was designed to answer the question of whether the proposed approach would be 

Figure 4.  Kaplan-Mier curves (from SurvExpress tools) for candidate biomarkers RRM2, ORC1, NCAPG, 
MAD2L1, MCM6, and CDCA2 selected with log-rank test p-Value < 0.05.

Figure 5.  FLN subnetworks for modules with seed nodes (A) E2F1 and (B) USF1. Nodes’ sizes are based on 
their degree.

https://doi.org/10.1038/s41598-020-59605-z


9Scientific Reports |         (2020) 10:4991  | https://doi.org/10.1038/s41598-020-59605-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

sufficiently precise in discovering DEGs inside the identified modules. For this aim, the “One-sample proportions 
test with continuity correction” method was applied. This was executed through the prop.test function in the R. 
The prop.test can be used for examination of the null hypothesis if the proportions (probabilities of success) in 
several groups are the same, or they have certain equal values. Pearson’s chi-square test statistic 16.87184 with 
degree freedom of 1 and a p-value of 3.99906e-05 demonstrates relatively high precision in the detection of DEGs 
in our proposed module detection approach.

Functional enrichment.  The module E2F1 has the highest number of differentially expressed genes that 
have survival impact; however, it has a low coverage with respect to the predefined COAD genes. On the side, 
the module USF1 covers more percentage of COAD-related genes but contains fewer DEGs and effects on the 
survival rate. To study these two modules deeply, we utilized the human Functional Linkage Network (FLN), 
in which each node is a protein, and there is an edge between two nodes if there is evidence that nodes have a 
degree of the functional similarity. In this network, edges are weighted and predicted based on PPI interactions, 
gene expression profiles, literature mining, experimental techniques, and computational approaches43,44. A com-
mon methodology for predicting function based on FLNs applies a simple local threshold rule (mentioned as 
‘guilt-by-association’)45. For the genes inside modules that were not specified as COAD related genes in databases, 
to explore their role in neoplastic cellular processes, we used functional linkage similarities of those genes with 
previously annotated genes. In the full FLN network, edge weights demonstrate the functional similarity between 
proteins. We extracted the subnetworks of the two modules from the human FLN network provided that the 
edge weights were higher than the average of the whole network. The E2F1 FLN (Fig. 5A) is a dense subnetwork 
with an average path length of 1.18 and a density of 0.41. Out of 156 genes inside the module, 148 genes have 
functional similarities above the average values with respect to other module members. We surveyed the direct 
neighbors (containing 12111 nodes) of the module E2F1 (module boundary); of them, 1496 were specified as 
cancer-related genes (coverage = 0.78). The module USF1 (Fig. 5B) has a high intersection with the COAD; how-
ever, its boundary neighbors also have a tight coverage with cancer-related genes (coverage = 0.84). It is a dense 
subnetwork with a density of 0.59 and a network diameter of 1.4. Among genes belonging to the module USF1, 

Term P-value Adj. P-value Z-score

Androgen receptor signaling pathway WP138 6.79E-58 2.17E-55 −1.38815

TGF-beta Signaling Pathway WP366 7.66E-38 1.23E-35 −1.2601

Nuclear Receptors WP170 6.06E-31 4.85E-29 −1.53161

Adipogenesis WP236 8.28E-30 5.3E-28 −1.04883

Cell Cycle WP179 1.46E-27 7.77E-26 −1.11229

AGE/RAGE pathway WP2324 2.48E-25 1.13E-23 −1.9584

Non-small cell lung cancer WP4255 1.44E-23 4.62E-22 −1.53125

RAC1/PAK1/p38/MMP2 Pathway WP3303 2.65E-23 7.06E-22 −1.39478

Oncostatin M Signaling Pathway WP2374 5.77E-22 1.35E-20 −1.85675

Circadian rhythm related genes WP3594 5.89E-22 1.35E-20 −0.88343

TGF-beta Receptor Signaling WP560 1.01E-21 2.16E-20 −2.33059

VEGFA-VEGFR2 Signaling Pathway WP3888 1.54E-21 3.09E-20 −0.79477

DNA Damage Response (only ATM dependent) WP710 1.04E-20 1.97E-19 −1.06194

TNF related weak inducer of apoptosis (TWEAK) Signaling Pathway WP2036 5.64E-20 9.49E-19 −2.38891

Brain-Derived Neurotrophic Factor (BDNF) signaling pathway WP2380 8.93E-20 1.43E-18 −0.86385

Chromosomal and microsatellite instability in colorectal cancer WP4216 2.24E-19 3.41E-18 −1.18043

Energy Metabolism WP1541 3.53E-19 5.13E-18 −1.95291

Leptin signaling pathway WP2034 4.51E-19 6.28E-18 −1.01867

IL-4 Signaling Pathway WP395 3.2E-18 4.1E-17 −1.68254

RANKL/RANK (Receptor activator of NFKB (ligand)) Signaling Pathway WP2018 4.26E-18 5.25E-17 −1.67297

ErbB Signaling Pathway WP673 9.84E-18 1.12E-16 −1.27747

Aryl Hydrocarbon Receptor WP2586 1.5E-17 1.65E-16 −1.90374

Thymic Stromal LymphoPoietin (TSLP) Signaling Pathway WP2203 2.06E-17 2.2E-16 −2.11

Wnt/beta-catenin Signaling Pathway in Leukemia WP3658 2.55E-17 2.64E-16 −2.43499

Nuclear Receptors Meta-Pathway WP2882 3.15E-17 3.15E-16 −0.67084

DNA Damage Response WP707 1.11E-16 1.08E-15 −1.09236

miRNA Regulation of DNA Damage Response WP1530 2.12E-16 1.94E-15 −1.33999

Non-genomic actions of 1,25 dihydroxyvitamin D3 WP4341 2.12E-16 1.94E-15 −0.88709

Vitamin D in inflammatory diseases WP4482 3.05E-16 2.71E-15 −2.36581

Corticotropin-releasing hormone signaling pathway WP2355 4.19E-16 3.62E-15 −1.07055

Integrated Cancer Pathway WP1971 4.43E-16 3.64E-15 −2.03412

Interleukin-11 Signaling Pathway WP2332 4.43E-16 3.64E-15 −2.02649

Table 4.  Significant pathways for the module USF1.
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153 genes were in its FLN subnetwork, demonstrating the biological and chemical similarities between them. The 
functional linkage subnetworks are biological evidence on the modularity and resemblance of their genes and 
suggest a strong possibility to constitute a module and act together in biological pathways.

Additionally, to evaluate the relevance of selected modules to the development of carcinogenesis, we per-
formed functional enrichment analysis. Results showed a significant correlation between discovered modules and 
pathways involved in the malignant tumors of the colon. Therefore, we set a threshold of 0.05 for enrichment adj. 
p-value. The extracted significant pathways for modules USF1 and E2F1 are listed in Tables 4 and 5, respectively. 
The detailed results for functional enrichment of the two modules are accessible in Supplementary File S3. It was 
found that both modules were involved in pathways such as Adipogenesis, Cell Cycle, Chromosomal and micro-
satellite instability in colorectal cancer, and TGF-beta Signaling Pathway that they play crucial roles in colorectal 
cancer. However, the module E2F1 seems to be involved in a specific way. Its genes have roles in key pathways 
involved in colon cancer such as Wnt Signaling Pathway, Apoptosis, Tumor suppressor activity of SMARCB1, G1 
to S cell cycle control, TGF-beta Signaling Pathway, H19 action Rb-E2F1 signaling, and CDK-Beta-catenin activity, 
Regulation of Wnt/B-catenin Signaling by Small Molecule Compounds and lncRNA involvement in canonical Wnt 

Term P-value Adj. P-value Z-score

Cell Cycle WP179 1.97965E-63 2.71E-61 −1.15315

G1 to S cell cycle control WP45 3.94348E-47 1.8E-45 −1.95642

DNA Replication WP466 2.39913E-38 8.22E-37 −2.09373

miRNA Regulation of DNA Damage Response WP1530 1.76872E-24 4.85E-23 −1.72269

DNA Damage Response WP707 3.80714E-23 8.69E-22 −1.32103

DNA IR-damage and cellular response via ATR WP4016 9.81255E-22 1.92E-20 −1.27862

ATM Signaling Pathway WP2516 1.88381E-11 2.87E-10 −2.23923

Integrated Cancer Pathway WP1971 4.75612E-11 6.52E-10 −2.23108

Regulation of sister chromatid separation at the metaphase-anaphase transition WP4240 9.65678E-10 1.1E-08 −2.3819

DNA IR-Double Strand Breaks (DSBs) and cellular response via ATM WP3959 1.02091E-08 9.99E-08 −2.07864

H19 action Rb-E2F1 signaling and CDK-Beta-catenin activity WP3969 5.12131E-08 4.68E-07 −2.84809

ID signaling pathway WP53 1.10338E-07 8.89E-07 −2.87544

Human Thyroid Stimulating Hormone (TSH) signaling pathway WP2032 8.12668E-07 5.3E-06 −1.74211

Tumor suppressor activity of SMARCB1 WP4204 3.90517E-06 2.43E-05 −2.13364

Non-small cell lung cancer WP4255 1.2629E-05 6.92E-05 −1.38824

DNA Mismatch Repair WP531 3.77788E-05 0.000185 −2.89841

Photodynamic therapy-induced AP-1 survival signaling. WP3611 4.32184E-05 0.000197 −1.95428

Wnt Signaling Pathway WP363 5.23527E-05 0.000231 −2.18808

TGF-beta Signaling Pathway WP366 8.00653E-05 0.000343 −0.93161

LncRNA involvement in canonical Wnt signaling and colorectal cancer WP4258 9.45935E-05 0.000393 −1.14694

Chromosomal and microsatellite instability in colorectal cancer WP4216 0.000265291 0.001069 −1.07313

Regulation of Wnt/B-catenin Signaling by Small Molecule Compounds WP3664 0.000292112 0.001143 −1.89391

Aryl Hydrocarbon Receptor WP2586 0.000450398 0.001668 −1.83167

Androgen receptor signaling pathway WP138 0.000698091 0.002391 −1.02597

Wnt/beta-catenin Signaling Pathway in Leukemia WP3658 0.001060871 0.00338 −2.25473

PPAR Alpha Pathway WP2878 0.001060871 0.00338 −1.32492

Wnt Signaling Pathway and Pluripotency WP399 0.001227751 0.003823 −0.87218

Extracellular vesicle-mediated signaling in recipient cells WP2870 0.001619214 0.004822 −1.99363

Association Between Physico-Chemical Features and Toxicity Associated Pathways WP3680 0.001763243 0.00514 −1.61192

ATR Signaling WP3875 0.002099432 0.005981 −2.88868

Adipogenesis WP236 0.00354635 0.009717 −0.68844

Homologous recombination WP186 0.004456552 0.011972 −2.24022

Endoderm Differentiation WP2853 0.005003582 0.013183 −0.7774

PI3K-Akt Signaling Pathway WP4172 0.005302493 0.013706 −0.26886

Regulation of Microtubule Cytoskeleton WP2038 0.005527788 0.014024 −1.48329

Senescence and Autophagy in Cancer WP615 0.009259877 0.023066 −0.91906

Wnt Signaling WP428 0.012618554 0.029806 −0.8459

Vitamin D Receptor Pathway WP2877 0.014158639 0.032877 −0.63668

IL-7 Signaling Pathway WP205 0.016124042 0.036213 −2.13899

RAC1/PAK1/p38/MMP2 Pathway WP3303 0.016118811 0.036213 −0.70315

AMP-activated Protein Kinase (AMPK) Signaling WP1403 0.016757067 0.037028 −0.97432

Apoptosis WP254 0.028018802 0.04767 −0.75476

Table 5.  Significant pathways for the module E2F1.
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signaling and colorectal cancer. Moreover, Gene Ontology (GO) that is associated with E2F1 modules includes 
biological processes such as mitotic cell cycle, cell division, chromosome organization, G1/S transition of the mitotic 
cell cycle, DNA metabolic process, and DNA repair which are linked to cell proliferation (Supplementary File S3).

Method evaluation.  In order to evaluate the framework of this study against other community detection 
methods, we defined a two-step comparative analysis.

First, to assess our results in contrast with other multilayer methods, two well-known frameworks, Gene4x46 
and mPageRank19, were selected and measures of central tendency were used to examine the distribution of 
each method overlap with disease-related genes (Table 6). We applied the mPageRank on the two layers of 
co-expression and PPI, by choosing random seeds from COAD-specific genes, as defined in the original arti-
cle. However, the Gene4x is not a seed-centric approach, and from its multiple output modules, we selected 
top-ranked ones with considerable size for the valuation task. Here, due to the unavailability of differential expres-
sion data for the Gene4x method, evaluation has continued with the finding of the similarity of modules to gene 
sets involved in colorectal cancer. The results of this evaluation reveal the accuracy of our method in finding 
relevant communities.

Second, to test the performance of the prepared framework with other single-layer methods, another valida-
tion on detected modules was accomplished using DEG-based criteria defined by Cantini et al.46. We selected 
two single-layer community detection algorithms, Loavin47 and Label-propagation48, which were applicable to 
large networks. In comparing the proposed multi-layer framework with the module identification methods in 
single-layer networks, our aim is to investigate whether adding more layers to the proposed method has led to 
the identification of better modules. The two methods were executed on the co-expression layer and their output 
modules having an acceptable size were selected to be assessed. Here, we examined the fold change and p-value of 
differentially expressed genes inside modules. Data distribution for the logarithm of fold change values, student’s 
t-test p-value and standard deviation of fold change values for the modules are depicted in Fig. 6. The compar-
ison results denote that the approach presented here outperforms the other two methods in terms of unfolding 
homogenous modules containing genes with a higher change in their expression with low p-values.

Discussion
In the previous sections, we investigated the relevance of the modules with COAD in terms of functional linkage 
networks and pathway analyses, and results suggest that the two modules were highly correlated with the disease 
causality. Therefore, we discussed the candidate biomarkers of the two modules extracted from the survival anal-
ysis: CDC6, RRM2, ORC1, NCAPG, MAD2L1, MCM6, CCNF, CDCA2, ECT2, and DEPDC1B.

ORC1 is a protein-coding gene, which is overexpressed in colon cancer. ORC1 is involved in some critical path-
ways: Cell Cycle, DNA Replication, E2F transcription factor network, G1 to S cell cycle control, and Retinoblastoma 
(RB) in cancer. Gene ontology annotations that are related to this gene include chromatin binding. MCM2 and 
MCM6 are the upstream transcription factors regulating the ORC1 protein factor and are upregulated in the case 
of cancer; therefore, it could provide some explanations for the upregulation of ORC1 (Fig. 7). ORC1 is an impor-
tant paralog of CDC6. The CDC6 protein is essential for the initiation of DNA replication, which is a crucial phase 
during the cell division. This protein acts as a regulator at the early steps of DNA replication. It could be localized 
within the cell nucleus during cell cycle G1 but translocated to the cytoplasm at the initiation of S phase. Among 
its related pathways, namely Cell cycle_Role of APC in cell cycle regulation and CDK-mediated phosphorylation and 
removal of CDC6 are more characterized compared with others. Gene ontology annotations that are associated 
with this gene comprise nucleotide and kinase binding. Among its regulators, MCM3, E2F2, MCM2, E2F1, E2F7, 
FOXM1, ARID3A and MCM7 are all overexpressed in cancer. Correspondingly, MYC and AR are the other regu-
lators, down-regulated when the cells are transformed into cancer cells.

CCNF (cyclin F) is another protein-coding gene, which encodes a member of the cyclin family. Cyclins are 
regulators of cell cycle transitions through their capability to bind and activate cyclin-dependent protein kinases. 
It is introduced as a key gene in carcinogenic pathways associated with colorectal adenoma-to-cancer progres-
sion49. In the same way, MAD2L1 (Mitotic Arrest Deficient 2 like 1) is a component of the mitotic spindle assembly 
checkpoint that prevents the onset of anaphase until all chromosomes are suitably aligned at the metaphase plate. 
Among its associated pathways, Mitotic Metaphase and Anaphase and Cell cycle_Role of APC in cell cycle regula-
tion are well-defined and investigated. In a study conducted by Abal et al.50, they mentioned that APC inactivation 
is associated with abnormal mitosis and concomitant BUB1B/MAD2L1 up-regulation. However, the overexpres-
sion of these two genes was correlated with tumor metastasis and poor prognosis of patients with breast cancer51. 
Its expression is amplified in colon cancer as well.

The CDCA2 gene encodes a subunit of protein phosphatase 1, which is associated with cell cycle and has rela-
tively higher expression in cancer conditions. POU2F2 is a regulator of CDCA2, which is down-regulated in colon 
cancer, and it is a negative regulator of CDCA2. Conversely, POU5F1 is another controller of CDCA2, which is 
overexpressed in cancer and a positive regulator.

Method/
Framework Min. 1st quart. Med. 3rd quart. Mean Max.

Gene4x 0.2580 0.2583 0.2586 0.2589 0.3183 0.3750

mPageRank 0.0 0.0016 0.0032 0.0048 0.1865 0.3838

Our Approach 0.2692 0.2697 0.2702 0.2706 0.4121 0.6143

Table 6.  The overlap of communities resulted from multi-network methods with DisGeNet.
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Among the proposed gene list, ECT2 (Epithelial Cell Transforming 2) is another biomarker previously men-
tioned that it is involved in breast cancer52. Its expression is increased in tumor tissues of patients and involved in 
the following pathways RET signaling and G-protein signaling_RhoA regulation. Annotations that are associated 
with this gene include protein homodimerization activity and GTPase activator activity. Its role in colorectal cancer 
is discussed earlier by Chen et al.53 and Luo et al.54.

Condensin complex is responsible for the condensation and stabilization of chromosomes during mitosis and 
meiosis. NCAPG (Non-SMC Condensin I Complex Subunit G) encodes a subunit of Condensin complex, and phos-
phorylation of the encoded protein activates the complex. Mitotic Prometaphase and Cell cycle Chromosome con-
densation in prometaphase are biological pathways in which NCAPG plays a role in them. RRM2 (Ribonucleotide 
Reductase Regulatory Subunit M2) is another DEG that it has a crucial impact on the survival rate of patients with 
cancer. It has been indicated that RRM2 is involved in the pathogenesis of pancreas adenocarcinoma. However, its 
role in colorectal cancer has been addressed in several studies55,56. KRAS-mediated upregulation of RRM2 is vital 
for the proliferation of colorectal cancer cell lines57.

The protein encoded by MCM6 is one of the extremely conserved mini-chromosome maintenance proteins 
(MCM) that are necessary for the beginning of eukaryotic genome replication. The MCM complex consisted of 
this protein, as well as MCM2, MCM4, and MCM7. This complex has been shown to have DNA helicase activity 
and act as a DNA unwinding enzyme. The phosphorylation of the complex by CDC2 kinase decreases the heli-
case activity, signifying a role in the regulation of DNA replication. Huang et al. mentioned that the interaction 
between RAD51 and MCM complex is indispensable for the formation of RAD51 foci in colon cancer HCT116 
cells58. Also, its significance has been shown in other types of cancers59,60. Accordingly, the protein DEPDC1B has 
some significant roles in pathways p75 NTR receptor-mediated signaling and Signaling by Rho GTPases. An impor-
tant paralog of this gene is DEPDC1, and it is overexpressed in the case of tumor progression. Our computations 
suggest that the genes mentioned above have a critical role in colon carcinoma; however, additional experimental 
validations are needed to approve these markers.

Conclusion
In this research, we employed multilayer networks to model colon adenocarcinoma and investigated its func-
tional core components. We used the transcriptome-to-interactome integrative approach, and different omics 
data sources to reconstruct disease network and study its foundations. Then, we utilized an extended com-
munity detection algorithm and achieved two modules with centroid genes USF1 and E2F1, which are dense 

Figure 6.  Comparison of single-layer methods, Loavin and Label-propagation, with our approach using DEG-
based criteria defined by Cantini et al.46. (A) |mean i∈C (log2 (fold change)i)|; (B) sdi∈C (log2 (fold change)i); 
(C) Student’s t-test p-value. The framework employed here unfolds homogenous communities (low standard 
deviation of expression change) containing genes with higher changes in their expression and less p-value.

Figure 7.  Three-layer overview of genes, namely ORC1, MCM2, and MCM6. (A) Regulatory layer. MCM2 and 
MCM6 (from MCM complex family) both regulate the transcription of the gene ORC1. (B) Co-expression layer. 
All three genes have expression correlations (negative and positive). (C) Physical binding layer.
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subnetworks, and their genes have functional linkage similarities. Both modules showed a significant overlay with 
COAD-related genes and pathways; however, the module E2F1 contained statistically meaningful differentially 
expressed genes, and it had a marked effect on the survival of patients with COAD. We selected suitable DEGs as 
potential biomarkers and examined their regulatory cascade flow. Results of the literature mining suggest that the 
candidate genes play roles in critical pathways associated with cell cycle, apoptosis, and COAD progression; how-
ever, their role in the development and pathogenesis of cancer should be approved by experimental approaches 
in the future. The approach employed here is a general framework applicable to other problems in this context; 
however, the construction of the multilayer network is the core part of the procedure that must be constructed 
based on the phenotype-specific transcriptomic dataset. Modules extracted in this study are dedicated to colon 
adenocarcinoma, which should be confirmed experimentally.
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