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ABSTRACT Shotgun metagenomic sequencing has transformed our understanding
of microbial community ecology. However, preparing metagenomic libraries for
high-throughput DNA sequencing remains a costly, labor-intensive, and time-con-
suming procedure, which in turn limits the utility of metagenomes. Several library
preparation procedures have recently been developed to offset these costs, but it is
unclear how these newer procedures compare to current standards in the field. In
particular, it is not clear if all such procedures perform equally well across different
types of microbial communities or if features of the biological samples being proc-
essed (e.g., DNA amount) impact the accuracy of the approach. To address these
questions, we assessed how five different shotgun DNA sequence library preparation
methods, including the commonly used Nextera Flex kit, perform when applied to
metagenomic DNA. We measured each method’s ability to produce metagenomic
data that accurately represent the underlying taxonomic and genetic diversity of the
community. We performed these analyses across a range of microbial community
types (e.g., soil, coral associated, and mouse gut associated) and input DNA amounts.
We find that the type of community and amount of input DNA influence each meth-
od’s performance, indicating that careful consideration may be needed when select-
ing between methods, especially for low-complexity communities. However, the
cost-effective preparation methods that we assessed are generally comparable to
the current gold-standard Nextera DNA Flex kit for high-complexity communities.
Overall, the results from this analysis will help expand and even facilitate access to
metagenomic approaches in future studies.

IMPORTANCE Metagenomic library preparation methods and sequencing technolo-
gies continue to advance rapidly, allowing researchers to characterize microbial com-
munities in previously underexplored environmental samples and systems. However,
widely accepted standardized library preparation methods can be cost-prohibitive.
Newly available approaches may be less expensive, but their efficacy in comparison
to standardized methods remains unknown. In this study, we compared five different
metagenomic library preparation methods. We evaluated each method across a
range of microbial communities varying in complexity and quantity of input DNA.
Our findings demonstrate the importance of considering sample properties, includ-
ing community type, composition, and DNA amount, when choosing the most
appropriate metagenomic library preparation method.
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Recent advancements in high-throughput sequencing have revolutionized genomic
discovery and unlocked new insights regarding the diversity and function of microbial

communities (1–4). For example, shotgun metagenomic sequencing has clarified how the
functional capacity of the gut microbiome links to human health (5–8), improved the effi-
cacy of antibiotic resistance gene discovery (9–12), identified beneficial soil microbes for
agricultural use (13–15), and uncovered novel, medically relevant biosynthetic gene clus-
ters in marine microbes (16–18). However, while metagenomes offer rich opportunities to
transform discovery, the financial cost of producing metagenomic data limits their applica-
tion. Because much of this cost is associated with the preparation of metagenomic DNA
for high-throughput sequencing, there is hope that emergent economical products and
procedures can expand the scope of metagenomic investigations.

Illumina’s Nextera XT and DNA Flex kits (the latter now known as “Illumina DNA Prep”)
have been the most widely used methods for preparing metagenomic libraries and have
effectively served as industry-standard approaches. Indeed, Illumina DNA sequencing plat-
forms remain the most widely utilized for generating genomic and metagenomic data, and
their library preparation kits are accordingly used to prepare samples for sequencing. Due to
their frequent use, these kits are subject to extensive evaluation and refinement. For exam-
ple, Illumina recently released an updated version of their “gold-standard” Nextera XT kit,
which was rebranded as Nextera DNA Flex (and now Illumina DNA Prep). This new kit allows
greater flexibility across a wider range of genomes, from small genomes (microbial and
amplicons) to more complex genomes found in eukaryotic and human systems. The Flex kit
also resolved sequencing biases identified in the Nextera XT kit that occur in genomic
regions with extreme GC content (19, 20). These features of the Nextera DNA Flex kit have
contributed to its broad adoption in metagenomic investigations.

One downside to the Nextera DNA Flex kit is its relatively high price, which pres-
ently costs roughly $46 per sample. While this cost may be reasonable considering the
demand for the product and its observed efficacy, it is high enough that it limits the
scale of many metagenomic investigations. For example, studies performing high-
throughput analyses on hundreds or thousands of samples may be forced to utilize
nonmetagenomic approaches (e.g., 16S rRNA gene sequencing) due to the library
preparation expense. In an effort to circumvent this challenge, several alternative and
competitive genomic library preparation methods have recently been developed and
applied to metagenomic investigations. These approaches fall into two categories:
methods that increase the economy of Illumina Nextera by modifying various aspects
of the manufacturing protocols (e.g., see reference 21) and those that use entirely dif-
ferent technologies (e.g., seqWell plexWell96). These approaches hold great promise to
improve the throughput of metagenomic investigations by reducing library prepara-
tion costs. For example, the recent method known as “Hackflex” achieves an 11-fold
decrease in per-sample reagent costs compared to the Illumina kit protocols (22).

Although several alternative library preparation approaches have been assessed from the
perspective of whole-genome sequencing, very little is known about their accuracy and preci-
sion when applied to metagenomic investigations. It is crucial that the performance of novel
library preparation procedures be specifically assessed in diverse metagenomic communities
as different community types provide unique sequencing challenges not common to tradi-
tional whole-genome sequencing. For example, metagenomic communities vary in complex-
ity, with some communities having few distinct taxa (e.g., insect gut) and others being very
highly diverse (e.g., soil). Library preparation procedures may vary in their abilities to unbias-
edly sample DNA across the different genomes present in the community, whether due to
amplification bias in regions with extreme GC content, kit-specific library tagmentation strat-
egies (e.g., enzymatic versus tagmentation), or biases specific to bacterial species present in a
community (20). Biological samples vary in their biomass, which affects the amount of whole-
community DNA that is subject to the library preparation approach. The sensitivity of these
approaches to the amount of input DNAmay hence impact study outcomes (23–26).

To advance the utility of low-cost metagenomic library preparation methods, we
quantified the performances of five recently developed approaches. Our investigation
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assessed how different features of metagenomic samples, including community com-
plexity and biomass, impact the performance of these procedures. In particular, we
compared Illumina Nextera DNA Flex, a modified DNA Flex protocol (21), Qiagen
QIASeq FX DNA, PerkinElmer NextFlex Rapid DNA-Seq 2.0, and seqWell plexWell96
library preparation methods using community-acquired DNA obtained from three dif-
ferent types of microbial communities: low-complexity communities (represented by
Acropora hyacinthus microbiomes), moderately complex communities (represented by
Mus musculus fecal microbiomes), and a highly complex community (represented by a
soil microbiome). We also evaluated how each approach performs on a commercially
available mock community comprised of 10 microbial species. Our analysis clarifies the
performances of these approaches across these different sample conditions, and the
results will assist investigators in identifying appropriate approaches for their metage-
nomic investigations.

RESULTS
Library preparation procedure, community type, and input concentration influence

metagenomic library characteristics. To determine how metagenomic library characteris-
tics (e.g., insert sizes and millions of sequences generated) varied across different metage-
nomic library preparations, we regressed each library characteristic on community type,
library preparation, and input DNA concentration (Table 1). We found that these predictor
variables statistically affected the following characteristics: median fragment size [F(31,48) =
29.94; R2 = 0.90; P , 2.2 � 10216], library concentration [F(31,48) = 12.44; R2 = 0.82;
P = 3.51 � 10214], library molarity [F(31,48) =11.75; R2 = 0.81; P = 1.09 � 10213], sequence read
length [F(39,60)= 56.81; R2 = 0.96; P, 2.2� 10216], number of reads generated [F(39,60) = 11.69;
R2 = 0.81; P , 2.2 � 10216], read GC content [F(39,60) = 2,285; R2 = 0.99; P , 2.2 � 10216],
duplication rate [F(8,91) = 2.494; R2 = 0.11; P = 0.02], and percentage of reads filtered [F(39,60) =
1,716; R2 = 0.99; P, 2.2 � 10216]. The sequence duplication rate was sensitive only to com-
munity type [F(3,91) = 5.93; P = 9.0 � 10204]. Specifically, communities with low microbial di-
versity such as the coral (t = 2.885; P = 4.88 � 1023) and mock (t = 2.16; P = 0.03) commun-
ities had elevated duplication rates. All other library characteristics were sensitive to
interactions between community type, library preparation, and input DNA concentration,
and many characteristics were also impacted by the independent effects of these variables.
For example, the library preparation method [F(3,48) = 148.85; P = 2.61 � 10224] and commu-
nity type [F(3,48) = 11.83; P = 6.39� 10206] affected the median fragment size independent of
the interaction between these parameters and the DNA input [F(9,48) = 5.93;
P = 1.56 � 10205]. Library concentration was impacted by community type [F(3,48) = 5.72;
P = 1.98203], library preparation [F(3,48) = 20.75; P = 9.22 � 10209], input DNA concentration
[F(1,48) = 186.86; P , 2.2 � 10216], and their interaction [F(9,48) = 6.09; P = 1.16 � 10205].
Library molarity was similarly impacted by community type [F(3,48) = 5.63; P = 2.18 � 10203],
library preparation [F(3,48) = 35.69; P = 2.82 � 10212], input DNA concentration [F(1,48) =
126.21; P = 4.89� 10215], and their interaction [F(9,48) = 4.40; P = 3.16� 10204].

The number of sequences generated was sensitive to the preparation procedure
[F(4,60) = 41.68; P = 1.10 � 10216], community type [F(3,60) = 67.67; P = 3.09 � 10219], and
DNA input concentration [F(1,60) = 5.62; P = 2.09 � 10202] as well as the interaction
between these variables [F(12,60) = 2.25; P = 2.00 � 10202]. The number of sequence
reads that were quality filtered and derived from the host genome was also signifi-
cantly affected by this interaction [F(12,60) = 5.16; P = 7.44 � 10206]. Metagenome libra-
ries constructed for coral communities had increased levels of quality filtering
(t = 62.11; P = 3.66 � 10256), while filtering in soil (t = 26.65; P = 9.84 � 10209) and
mock (t = 26.56; P = 1.39208) communities was decreased compared to fecal samples.
Read filtering was also consistently increased in samples prepared with the Nextera
Flex reduced method (t = 212.38; P = 3.59218) and reduced in the samples prepared
using the QIASeq FX procedure (t = 24.89; P = 7.84206).

Metagenomic read characteristics were also significantly impacted by the examined
variables. For example, the GC content of reads was significantly dependent on the
community type [F(3,60) = 2.89 � 104; P = 9.38 � 10295]. GC content was also affected by
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the library preparation method [F(4,60) = 442.80; P = 8.71 � 10244]; a significant effect of
the interaction between library preparation, community type, and input DNA concen-
tration [F(12,60) = 2.68; P = 5.98 � 10203] was also observed for GC content. Finally, aver-
age read length after quality filtering varied by both community type [F(3,60) = 60.78;
P = 3.54 � 10218] and preparation procedure [F(4,60) = 404.25; P = 1.21 � 10242].
Collectively, these findings indicate that metagenomic library preparation procedures
yield distinct library characteristics for different community types.

Different library preparation methods result in similar taxonomic profiles of a
standardized mock community.While library preparation procedures vary in the result-
ing metagenomic library and sequence characteristics, it is unclear if this variation results
in different downstream assessments of community composition. To address this question,
we quantified how each library preparation method predicted the taxonomic composition
of a defined mock community. We compared the taxonomic composition generated by
each library preparation to the ZymoBIOMICS microbial community standard’s defined tax-
onomic composition of the mock community. Strong correlations (r = 0.93 to 0.97;
P = 1.29 � 1026 to P , 2.2 � 10216; FDR [false discovery rate] , 1.0 � 1025) were
observed between the MetaPhlAn2-inferred taxonomic abundances and the theoretical
taxonomic abundances of taxa present in the mock community (Fig. 1; see also Table S1 in
the supplemental material). To confirm that this was not due to bias in the MetaPhlAn2
database, we also compared the inferred taxonomic abundances using Kraken2 and
observed similar taxonomic associations (r = 0.93 to 0.96; all P , 2.2 � 10216;
FDR, 2.2� 10216) and abundance profiles (Fig. S1).

The MetaPhlAn2 results showed that the Nextera Flex full and Nextera Flex reduced
methods, which are widely used in metagenomic studies, had the lowest correlations
(r = 0.93 to 0.96; P = 1.29 � 1026 to 2.66 � 1028) with the theoretical composition of
the mock community. The lower correlations produced by these two library prepara-
tion procedures are driven by an underestimation of the abundance of Lactobacillus
fermentum and an overestimation of the abundances of Staphylococcus aureus and
Enterococcus faecalis. The strongest correlations were observed with the QIASeq

FIG 1 Metagenomic library preparation methods accurately predict the taxonomic composition of a simplified mock community. Scatterplots of
the observed and theoretical taxonomic compositions of a mock community are shown. The library preparation methodology is indicated by
point colors, and the input concentration is denoted by point shapes. Values in each panel represent the Pearson correlation coefficients.
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FX (r = 0.97; P = 1.21 � 1028 to 5.79 � 1029), plexWell96 (r = 0.96 to 0.97;
P = 2.58 � 1028 to 1.24 � 1028), and NextFlex Rapid (r = 0.96 to 0.97; P = 1.02 � 1027

to 2.38 � 1028) methods (Fig. 1). Together, these data indicate that library preparation
methods subtly influence some taxonomic estimates but that all methods examined
overall performed well at recapitulating simple, defined microbial communities.

Community taxonomic profiles are significantly impacted by library preparation
procedure and input concentration. Next, we quantified the impact of library prepara-
tion methods and input concentrations on the species-level taxonomic profiles of soil,
coral, mock, and fecal metagenomes. The library preparation procedure was signifi-
cantly associated with the resulting taxonomic microbiome profiles as measured by
permutational multivariate analysis of variance (PERMANOVA) in coral (R2 = 0.87;
P = 2.00 � 1024) and soil (R2 = 0.33; P = 5.00 � 1023) but not in fecal (R2 = 0.32;
P = 0.06) or mock (R2 = 0.26; P = 0.15) communities (Fig. 2A). In the fecal and mock
communities, no association was found between the input concentration and

FIG 2 Microbial taxonomic diversity varies by library preparation method and input concentration. (A) PCA ordinations of microbial taxonomic diversity
(Kraken2) for each sample type. (B) Correlation heat maps of taxonomic abundances generated from each library type. For each preparation method, a 0.5-
ng input (n = 1), a 1.0-ng input (n = 3), and a 5-ng input (n = 1) were used. Row and column side plots indicate the library preparation methodology and
the input concentration. (C and D) Box plots of dissimilarities (Bray-Curtis) among technical replicates (n = 3 [1-ng inputs]) (C) and different input
concentrations, 0.5 ng (n = 1), 1.0 ng (n = 3), and 5 ng (n = 1) (D). Letters indicate significant differences (P , 0.05).
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microbiome beta-diversity. However, in coral (R2 = 0.02; P = 0.02) and soil (R2 = 0.13;
P = 5.4 � 1023) communities, we identified a significant association between diversity
and input. We also identified a significant interaction effect between input concentra-
tion and metagenomic preparation method in coral (R2 = 0.07; P = 1.4 � 1023). The tax-
onomic abundance profiles of each library were highly correlated (r = 0.63 to 1;
FDR , 2.2 � 10216) across library preparation methods (Fig. 2B), suggesting that the
preparation methodology associates with distinct community profiles and offering a
high level of profile prediction precision between each preparation method.

To quantify how variable individual replicates were across different library prepara-
tion methods, we examined the dissimilarity in taxonomic beta-diversity within each
library preparation method. Methods that yield low intraconcentration (i.e., 1-ng/ml
input) dissimilarities indicate high levels of reproducibility, while methods with low
interconcentration dissimilarities (i.e., all concentrations) would indicate that the taxo-
nomic profiles generated using this method are robust to variation in the library input
concentration. We found that variation in intraconcentration taxonomic dissimilarity
was low, and modest significant differences were observed only in fecal communities
(H = 10.2; P = 0.04) across library preparation methodologies (Fig. 2C). The interconcen-
tration dissimilarity was also low in all communities but varied significantly in fecal
(H = 12.3; P = 0.02), mock (H = 11.6; P = 0.02), and soil (H = 15.6; P = 3.6 � 1023) sam-
ples but across preparation methods potentially due to variance in dissimilarity for the
Nextera Flex reduced and plexWell96 libraries (Fig. 2D). Together, these data suggest
that the taxonomic profiles generated using the methods under investigation are simi-
larly reproducible, but the robustness varied across methods.

Community gene abundance profiles are sensitive to library preparation
procedures and input DNA concentrations. Metagenomic investigations frequently
seek to define the genetic diversity of microbial communities. Using the number of distinct
gene families observed in the data (i.e., gene family richness) as well as the functional com-
position of the community (i.e., gene family beta-diversity), we measured how different
library preparation procedures affected the determination of a community’s functional
capacity. Gene family richness varied by library preparation method and input concentra-
tion in coral [F(9,15) = 31.90; R2 = 0.92; P = 3.47 � 10208], fecal [F(9,15) = 9.13; R2 = 0.75;
P = 1.20 � 10204], and mock [F(9,15) = 8.78; R2 = 0.74; P = 1.51 � 10204] communities, while
soil richness [F(9,15) = 1.41; R2 = 0.13; P = 0.27] was less sensitive to these effects (Fig. 3A).
We also observed a significant interaction between library preparation procedure and
DNA input on the predicted functional profiles of coral [F(4,15) = 8.00; P = 1.16 � 10203],
fecal [F(4,15) = 5.64; P = 5.60 � 10203], and mock [F(4,15) = 7.78; P = 1.33 � 10203]

FIG 3 Metagenomic diversity varies by library preparation method and input concentration. Gene richness (A) and Shannon entropy (B) plots for each
sample type are shown.
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microbiomes. However, these associations were not always consistent across different
library preparation procedures. For example, gene richness was elevated in coral samples
prepared with the plexWell96 method (t = 5.53; P = 5.77 � 10205), while a contrasting pat-
tern was observed in both fecal (t = 26.38; P = 1.23 � 10205) and soil (t = 21.958;
P = 6.91 � 10202) samples, and no difference was identified in mock community samples
(t =20.58; P = 0.57). Similar effects of library preparation method and input concentration
were observed on Shannon entropy (Fig. 3B). Specifically, significant effects were observed
for coral [F(9,15) = 11.09; R2 = 0.79; P = 3.75 � 10205], fecal [F(9,15) = 62.29; R2 = 0.96;
P = 1.89 � 10210], mock [F(9,15) = 11.04; R2 = 0.79; P = 3.85 � 10205], and soil [F(9,15) = 5.06;
R2 = 0.60; P = 2.95� 10203] samples.

As measured by PERMANOVA, we found that gene family beta-diversity (Bray-Curtis)
was significantly associated with library preparation method for coral [F(4,15) = 3.62; R2 =
0.44; P = 2.00 � 10204], fecal [F(4,15) = 7.82; R2 = 0.60; P = 2.00 � 10204], mock [F(4,15) = 3.36;
R2 = 0.41; P = 2.00 � 10204], and soil [F(4,15) = 3.39; R2 = 0.40; P = 2.00 � 10204] communities
(Fig. 4A). However, the association between library preparation procedure and gene family

FIG 4 Microbial functional diversity varies by library preparation method and input concentration. (A) PCA ordinations of gene family beta-diversity for
each sample type. (B) Correlation heat maps of gene family abundances generated from each library type. Row and column side plots indicate the library
preparation methodology and the input concentration. For each preparation method, a 0.5-ng input (n = 1), a 1.0-ng input (n = 3), and a 5-ng input
(n = 1) were used. (C and D) Box plots of dissimilarities (Bray-Curtis) among technical replicates (n = 3 [1-ng inputs]) (C) and different input concentrations,
0.5 ng (n = 1), 1.0 ng (n = 3), and 5 ng (n = 1) (D). Letters indicate significant differences (P , 0.05).
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beta-diversity is muted in comparison to taxonomic beta-diversity (Fig. 2A), possibly as a
result of the increased overall similarity in gene family abundances across samples of the
same community type (r = 0.99 to 1.00; P , 2.2 � 10216) (Fig. 4B). Despite this increased
similarity between library preparation methods for gene family abundances, the beta-diver-
sity of technical replicates varied across library preparation methods for coral (H = 11.43;
P = 2.21 � 10202), fecal (H = 9.03; P = 6.02 � 10202), mock (H = 12.1; P = 1.66 � 10202), and
soil (H = 11.5; P = 2.15 � 10202) samples. However, significant differences were not
detected between individual library preparation methods (Fig. 4C). The robustness of meta-
genome beta-diversity to input concentration differed across library preparation methods
for coral (H = 24.33; P = 6.86 � 10205), fecal (H = 24.53; P = 6.26 � 10205), mock (H = 25.65;
P = 3.72 � 10205), and soil (H = 13.83; P = 7.85 � 10203) samples (Fig. 4D). Notably, the
plexWell96 method had elevated variability compared to the other library prep methods in
coral, fecal, and mock community samples. In soil, these patterns were mitigated (Fig. 4D).
Overall, these data demonstrate that, similar to the taxonomic profiles, library preparation
methods affect gene diversity profile predictions.

DISCUSSION
Taxonomic and functional profile predictions are similar across methodologies.

Although the Nextera kits are widely used and considered the gold standard for meta-
genomic sample preparation, their cost can limit researchers from conducting expan-
sive project aims. As applications for metagenomic sequencing continue to increase,
researchers are left with the difficult task of balancing the need for high-quality data
with the cost of their generation. The development of new protocols that modify the
standard Nextera kit protocol as well as several new economical library preparation
kits has the potential to dramatically alter the field by expanding the accessibility of
shotgun metagenomics. However, the quality of libraries prepared using more eco-
nomical methods varies substantially (19). While previous studies have demonstrated
that different library preparation procedures can affect metagenome characteristics
(27–30), these studies did not evaluate contemporary procedures, nor did they con-
sider the sensitivity of the approaches to different metagenome sample types. Here,
we demonstrate that library quality as well as taxonomic and functional profiles vary as
a function of environmental community type and biomass. Our findings suggest that
while researchers need to be aware of differences between kits, overall, the taxonomic
and functional profiles produced are similar and grant comparable precision among
the kits (Fig. 5).

Several investigations have identified key differences in library characteristics across
metagenomic library preparation procedures, often by incorporating multiple study
designs. These variations can result in substantial changes in the quality of the metage-
nomic library and are important considerations in preparation method selection. For
example, Baym et al. demonstrated that a custom Nextera XT protocol yielded a sub-
stantially reduced insert fragment length (21). Smaller fragments have higher propor-
tions of adapter contamination in reads, while fragments that are too large may be
preferentially lost during the Illumina cluster generation process (31). We observed sig-
nificant effects of community type, library preparation procedure, and input DNA con-
centration on fragment size. In our hands, the Nextera Flex protocols generated the
largest library insert sizes, while the QIASeq FX and plexWell96 procedures consistently
produced the smallest. However, the Nextera procedures also produced libraries with
the lowest average GC content compared to the other procedures examined. This
reduced representation of GC content could impact the representation of genes with
high GC content and skew both taxonomic and functional profiles (19, 32). The inter-
acting effects of library preparation procedure, community type, and DNA input on GC
content further indicate that specific library preparation procedures may have distinct
insertion site biases.

Comparing library characteristics across environmental sample types, samples with
low relative diversity (i.e., coral) had both a high percentage of duplicate reads and a
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FIG 5 Library preparation summary and cost metric reference guide. Hands-on time refers to the active time necessary for essential benchwork tasks.
Fragment size categories are relative to other kit fragment sizes for each sample type. Recapitulation of mock community refers to the correlation
coefficient of a given mock community and the community produced by each kit. Precision refers to the level of variability in taxonomic community
composition between 1.0-ng DNA input technical replicates for each sample type.
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high number of reads filtered and removed from the resulting libraries regardless of
the input concentration. This high level of filtering is likely due to the extreme levels of
host DNA contaminants relative to the other sample types and additionally may point
to the larger issue of host sequence contamination, regardless of the library prepara-
tion method, in similar research studies. However, coral samples also had similar levels
of precision across kit types, with the exception of lower precision with QIASeq FX,
demonstrating that different kit types may still be viable options in other low-complex-
ity study systems.

Samples with moderate (fecal) and high (soil) microbial diversity had much lower
respective average percentages of sequencing reads filtered than coral samples but
with a higher average GC content across libraries than coral samples. Fecal sample
libraries had the highest variability in precision between kit types, with the exception
of Nextera Flex reduced, likely due to the more complex community composition.
However, our study also had a relatively low average sequencing depth across all sam-
ples due to sample number and financial constraints; the high intracommunity variabil-
ity in precision that we observed may be resolved with higher sequencing coverage
(33). It is also possible that longer insert fragment sizes introduce greater variability
due to lower base quality in the produced community composition regardless of sam-
ple type (34), although this was not the case for coral, soil, or mock libraries with the
longest fragment sizes.

In successfully recapitulating the taxonomic profiles of a mock microbial commu-
nity, all library preparation methods performed similarly overall; however, variation in
taxonomic profiles for the environmental sample types showed subtle differences
between methods. While higher levels of intracommunity variation per method could
again be due to low sequencing depth, our results of higher variation for the coral
sample types with lower relative diversity are consistent with previous findings that
library coverage is increased for highly complex microbial communities. Furthermore,
while it may appear that all preparation methods perform poorly in both taxonomic
and functional resolution for low (coral)- and high (soil)-diversity sample types, it must
be noted that these profiles may only be as complete as the reference databases used
for assignment, and it is well known that these databases are preferentially curated
with human microbiome sequences and studies in mind (35).

Financial and opportunity costs of metagenomic preparation methods differ.
Decreasing the costs of kits and reagents associated with library preparation improves
access to metagenomic approaches. The Nextera DNA Flex full preparation actualized
cost remains the most expensive of the five methods tested, with NextFlex Rapid XP
and QIASeq FX in the median relative expense range and Nextera Flex reduced prep
and plexWell96 as the most economical choices for metagenomic library generation.
However, due to the above-noted effect of the specificity of the environmental sample
type on the performance of the preparation method, neither the most economical
choice nor the most expensive may necessarily suit every study or generate the high-
est-quality libraries. Due to the effects of preparation procedure, community type, and
DNA input on fragment size and both taxonomic and functional profiles of metage-
nomic samples, comparing communities across multiple study designs may require
additional covariates in statistical design. For future studies, we recommend incorpo-
rating the library preparation technique as a potential covariate in statistical design to
account for these known differences and potential biases.

Finally, one important limitation of our study is the lack of biological variation (i.e.,
only one sample per community type), which makes it challenging to determine
whether technical variation inherently matters to a particular study. For some applica-
tions, such as biomarker discovery, technical variance may contribute to decreased
sensitivity and specificity if technical biases exist for a library preparation procedure.
On the other hand, technical variation is expected to have more modest impacts on
studies of differential gene abundance across case and control groups because biologi-
cal variance will likely overwhelm technical variance. Thus, the interpretation of the
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impact of the technical variation on future analyses should be carefully considered
within the context of the biological variation of their specific application.

Conclusion. Collectively, these findings demonstrate that no single metagenomic
library preparation approach performed the best across all community types and con-
ditions evaluated. Rather, the performance of approaches varied as a function of the
sample and the amount of input DNA. Consequently, researchers should consider
these variables when selecting library preparation approaches, especially when
attempting to optimize data quality, accuracy, and precision. To aid in this effort, we
provide Fig. 5 as a reference guide to aid in choosing preparation methods with cost
and performance in mind. We hope that this information helps improve the accessibil-
ity and utility of metagenomic investigations. Further study is needed to determine
what community properties (e.g., GC content and taxonomic diversity, etc.) dictate
these differences in library procedure performance in order to generate more general-
izable guidance for procedure selection. That said, our results show that the different
approaches generally produced relatively consistent taxonomic and gene family diver-
sity profiles, which indicates that selecting approaches based on cost and ease of
implementation may be appropriate for some studies (namely, those in which the loss
of accuracy and precision is tolerable). However, we recommend careful consideration
of the community type and the amount of input DNA when selecting a metagenomic
library preparation procedure to ensure optimal performance.

MATERIALS ANDMETHODS
Genomic DNA extraction. Prior to metagenomic library construction, genomic DNA was extracted

from environmental samples originating from soil from the North American Project To Evaluate Soil
Health Measurements (36), coral (Acropora hyacinthus), and mammalian feces (Mus musculus; C57BL/6),
using methods outlined below. In addition to environmental samples, we used the ZymoBIOMICS micro-
bial community DNA standard (catalog number D6306, lot number ZRC193008) to more efficiently
assess bias associated with library preparation methods on a standard mock community.

For the coral slurry, coral nubbins preserved in RNA/DNA Shield (ZymoBIOMICS) were vortexed in
15-ml tubes with a combination of ceramic and garnet bead lysing matrices at ;2,500 rpm for 25 min.
DNA was extracted from 300 ml of the resulting coral slurry using the ZymoBIOMICS DNA/RNA miniprep
kit (Zymo Research Corp., Irvine, CA, USA) following an additional 2-step enzyme incubation to increase
the recovery of bacterial DNA: (i) the addition of 30 ml chicken egg white lysozyme (10 mg/ml;
Novagen), 1.8 ml mutanolysin (50,000 units/ml from Streptomyces globisporus ATCC 21553; Sigma-
Aldrich), and 1.8 ml lysostaphin (4 KU/ml from Staphylococcus staphylolyticus; Sigma-Aldrich) with incu-
bation at 37°C for 1 h and (ii) 1 h of incubation at 50°C following the addition of 15 ml proteinase K
(20 mg/ml; Thermo Scientific) and 30 ml proteinase K digestion buffer (0.1 M NaCl, 10 mM Tris [pH 9.0],
1 mM EDTA, 0.5% SDS, nuclease-free water). Following digestion, 1 volume of kit-specific DNA/RNA lysis
buffer was added in order to proceed with the manufacturer’s recommended extraction protocol.

For soil, the sample was taken on 27 February 2019 at the Virginia Tech Eastern Shore Agricultural
Research and Extension Center. Samples were collected as 12 composite knife slices of soil to a depth of
15 cm, and each of the 12 slices was passed through an 8-mm filter. Detailed sampling methods were
described previously by Norris et al. (36). Following collection, 0.25-g aliquots of soil were stored at
280°C after overnight shipment from the collection site. Soil aliquots were then extracted according to
the Earth Microbiome Project protocol (37) using a KingFisher Flex kit (Thermo Fisher).

For mouse feces, DNA was isolated from a single fecal pellet using the DNeasy PowerSoil isolation
kit (Qiagen) according to the manufacturer’s instructions. An additional 10-min incubation step at 65°C
directly before bead beating was added to enhance microbial cell lysis. The samples were then homoge-
nized using Vortex-Genie 2 and a vortex adapter (Qiagen) at the highest setting for 10 min.

Metagenomic library preparation and sequencing. Environmental DNA samples were prepared
for metagenomic sequencing according to the manufacturers’ protocols using the following four com-
mercially available kits: (i) the Illumina Nextera DNA Flex library kit, (ii) the Qiagen QIASeq FX DNA library
kit, (iii) PerkinElmer NextFlex Rapid DNA-Seq kit 2.0, and (iv) seqWell plexWell96. In addition, we included
a fifth preparation method using the modified “reduced” protocol established by Baym et al. to increase
the number of libraries that Nextera DNA Flex could generate (21). Genomic DNA was quantified using a
Qubit 1� high-sensitivity (HS) double-stranded DNA (dsDNA) assay kit for soil, fecal, and coral commun-
ities. The mock community DNA concentration was not quantified as ZymoBIOMICS manufacturer infor-
mation provided a known concentration of 100 ng/ml. Following quantification, all samples prepared
using Nextera Flex full, QIASeq FX, and NextFlex Rapid XP were diluted with water to 0.2 ng/ml. To deter-
mine how the DNA input affected library generation, each standardized DNA concentration was then
added to obtain the respective 0.5-ng, 1.0-ng, and 5.0-ng inputs. Samples prepared using plexWell96
were diluted to 0.25 ng/ml with water, and appropriate additive volumes were made to obtain 0.5-ng
and 1.0-ng input concentrations. For samples with 5.0-ng inputs, samples were diluted to 1.25 ng/ml,
and 4 ml of the sample was then used to obtain a 5.0-ng input concentration. For the Nextera Flex
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reduced reaction, all samples were diluted to 5.0 ng/ml with nuclease-free water. A 1-ml aliquot of this
dilution was used for 5.0-ng input libraries. For 0.5-ng and 1.0-ng input libraries, sufficient water was
added to the 1-ml dilution to bring the respective concentrations to 0.5 ng/ml and 1.0 ng/ml.

The library insert size was assessed for the Nextera DNA Flex (full and reduced) and plexWell96
methods using Agilent TapeStation 4200 high-sensitivity D5000 DNA ScreenTape. The insert size for the
QIASeq FX and NextFlex Rapid XP methods was quantified using the Agilent Bioanalyzer 2100 high-sen-
sitivity DNA chip as these libraries are more prone to having adapter dimers, which are poorly resolved
using the TapeStation. The library concentration was assessed with the Qubit 1� high-sensitivity dsDNA
quantification kit (Thermo Fisher). The resulting libraries were normalized to the lowest concentration
for each library prep kit based on molarity using the Qubit concentration and Bioanalyzer/TapeStation
median fragment sizes (except for plexWell96, which pools early on in the library prep procedure). All 20
of the normalized samples from each kit were then pooled, and each of the 5 pools was verified using
quantitative PCR (qPCR). These 5 pools were normalized and pooled just prior to sequencing for paired-
end reads of 150 bp on a single lane with the Illumina HiSeq3000 system.

Microbial community gene family abundance and taxonomic diversity. Quality filtering, adapter
removal, and host read filtering were performed using shotcleaner v0.1 (38) with default parameters. For
mouse fecal samples, host reads were removed by alignment to the mouse reference genome
(GRCm38). A similar procedure was used for coral samples except that these reads were filtered against
a concatenated version of the coral (Acropora millepora; GenBank accession number QTZP00000000.1
[39]) and symbiont (Symbiodiniaceae sp. clade A MAC-Cass KB8 [UniProt taxon identifier 671378])
genomes. Quality-controlled sequence reads were input into HUMAnN 2.0 (40) for taxonomic and func-
tional classification using the UniRef90 database and default parameters. HUMAnN 2.0 outputs for each
community type were combined and renormalized to counts per million using HUMAnN 2.0 utility
scripts before downstream analysis. High-quality reads were also taxonomically classified using Kraken2
v2.0.8-beta (41, 42) and a custom reference database that included sequences from all human, mouse
(GRCm38), UniVec core, bacterial, archaeal, viral, fungal, and protozoal sequences in the NCBI RefSeq
database (accessed 8 October 2019) as well as the Symbiodiniaceae sp. clade A MAC-Cass KB8 and A. mil-
lepora genomes. Taxonomic data derived from Kraken2 were normalized by dividing the number of tax-
onomic annotations within a given hierarchy by the total number of overall reads annotated (i.e., relative
abundances of different bacterial species, genera, or phyla).

Statistical analyses. Independent linear models (R::stats::lm) were used to determine how commu-
nity type, library preparation method, and input DNA concentration affect the variance of the resulting
library characteristics, including the number of reads generated, median fragment size, library concen-
tration, library molarity, mean read length, read duplication rate, mean read GC content, and total reads
filtered and removed. Since we reasoned that it was likely that interactions between the predictors exist,
we employed a model selection procedure to identify the most parsimonious model for each character-
istic examined. For each characteristic, we built a set of models of increasing complexity: (i) a reduced
model with only additive effects (equation 1) and (ii) a model with interaction terms for community
type, library preparation procedure, and DNA input concentration (equation 2).

Characteristic ¼ b 0 1 b 1 communityð Þ 1 b 2 library preparationð Þ 1 b 3 DNA inputð Þ 1 « (1)

Characteristic ¼ b 0 1 b 1 communityð Þ � b 2 library preparationð Þ � b 3 DNA inputð Þ 1 « (2)

We then used the Akaike information criterion (AIC) to select the most parsimonious model and analysis
of variance (ANOVA) to determine the significance of each term in the selected model [F(df1 = K 2 1,
df2 = n 2 K, a = 0.05)]. Because sequencing libraries produced from distinct samples are pooled as part of
the plexWell library preparation protocol, a single value is available for median fragment size, sequence
library concentration, and sequence library molarity for this method.

The similarity between taxonomic profiles generated by the library preparation methods and the
known taxonomic composition of the ZymoBIOMICS microbial community DNA standard was assessed
by Pearson’s correlation test (R::stats::cor.test). To measure the variation in species-level taxonomic pro-
files generated by different library preparation methods across soil, coral, and fecal communities, we cal-
culated Pearson’s correlation coefficient of the generated taxonomic abundance profiles for each pair of
samples. This analysis was conducted using Kraken2, a sensitive read-binning tool, and MetaPhlAn2, a
marker-gene-based abundance estimation tool to eliminate the possibility that mammalian biases in
marker gene databases would skew results in environmental samples. We accounted for the effects of
multiple correlation tests using the false discovery rate (R::stats::p.adjust, method = fdr).

The additive and interactive statistical effects of library preparation and DNA input concentration on
the microbiome composition, as measured by the Bray-Curtis dissimilarity metric, were evaluated using
PERMANOVA (R::vegan::adonis, permutations = 5,000, method= bray) and visualized using an ordination
of principal-component analysis (PCA) for each community. Differences in the Bray-Curtis dissimilarity of
species-level taxonomic abundance profiles within and across library preparation methods were meas-
ured using Kruskal-Wallis tests (R::stats::kruskal.test) with a post hoc pairwise Wilcoxon test (R::stats::pair-
wise.wilcox.test). A Holm correction was used to control Wilcoxon test family-wise error rates.

Shannon entropy and gene richness were calculated for HUMAnN 2.0 gene abundance profiles using
R and vegan. Linear regression quantified associations between gene-level alpha-diversity and library
preparation and input DNA concentration for each community type. Associations with gene-level Bray-
Curtis dissimilarity, preparation method, and DNA input were quantified using PERMANOVA (R::vegan::
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adonis, permutations = 5,000, method = bray). Differences in gene abundances and metagenomic dis-
similarity were quantified as described above for taxonomy.

Data availability. Raw sequence data are available from the NCBI under BioProject accession num-
ber PRJNA747032. The GitHub code repository for reference of processing and analyzing raw data is
available at https://github.com/chrisgaulke/ht_metagenomes.
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FIG S1, EPS file, 0.4 MB.
TABLE S1, CSV file, 0.02 MB.
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