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Abstract: Single Particle Tracking (SPT) is a powerful class of methods for studying the dynamics of
biomolecules inside living cells. The techniques reveal the trajectories of individual particles, with a
resolution well below the diffraction limit of light, and from them the parameters defining the motion
model, such as diffusion coefficients and confinement lengths. Most existing algorithms assume these
parameters are constant throughout an experiment. However, it has been demonstrated that they
often vary with time as the tracked particles move through different regions in the cell or as conditions
inside the cell change in response to stimuli. In this work, we propose an estimation algorithm to
determine time-varying parameters of systems that discretely switch between different linear models
of motion with Gaussian noise statistics, covering dynamics such as diffusion, directed motion, and
Ornstein–Uhlenbeck dynamics. Our algorithm consists of three stages. In the first stage, we use a
sliding window approach, combined with Expectation Maximization (EM) to determine maximum
likelihood estimates of the parameters as a function of time. These results are only used to roughly
estimate the number of model switches that occur in the data to guide the selection of algorithm
parameters in the second stage. In the second stage, we use Change Detection (CD) techniques to
identify where the models switch, taking advantage of the off-line nature of the analysis of SPT data
to create non-causal algorithms with better precision than a purely causal approach. Finally, we
apply EM to each set of data between the change points to determine final parameter estimates. We
demonstrate our approach using experimental data generated in the lab under controlled conditions.

Keywords: single particle tracking; single molecule biophysics; fluorescence

1. Introduction

Single Particle Tracking (SPT) is a class of experimental techniques and mathematical
algorithms for following sub diffraction-limit sized particles moving inside living cells,
including viruses, proteins, and strands of RNA [1–3]. Particles of this size cannot be
resolved with standard optical microscopy, irrespective of the magnification. However, by
labeling the particle (or particles) of interest with a fluorescent reporter such as a fluorescent
protein or quantum dot, the motion of the tag and, by extension, the motion of the particle
can be observed. While there are many different schemes, the general paradigm in SPT
involves capturing a series of wide-field fluorescence images, localizing the fluorescent
particle in each frame to form a trajectory, and then analyzing the trajectory to estimate
motion model parameters.

There are a variety of motion models relevant to the biophysical application domain,
including free diffusion, confined diffusion, directed motion, and combinations of these,
such as joint diffusion and directed motion [4,5]. Given noisy observations of such a model
(such as from a trajectory estimated by localizing a fluorescent particle in each frame of an
image sequence), the most common technique to estimate the model parameters is to fit
the chosen model to the Mean Square Displacement (MSD) curve. This very simple and
popular approach has been enormously successful in probing biomolecular dynamics [6,7].
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However, the resulting estimates depend on user choices such as the number of points to
include when fitting the MSD data to the model, and the scheme does not account for many
factors, including observation noise, motion blur arising from camera integration times,
and other experimental realities [8]. While approaches based on optimal estimation, and
in particular Maximum Likelihood (ML) techniques, are more complicated and often less
intuitive than the MSD, they have a sound theoretical footing that guarantees efficiency
and consistency of the estimates, and they consistently have been shown to outperform the
MSD. ML algorithms have been developed for free diffusion [8–11], Ornstein–Uhlenbeck
flow [12], and extended by one of the authors to more general motion models [13,14].

Most approaches, both those that use the MSD and those based on optimal estimation,
typically assume that the model parameters, while unknown, are fixed. There have been
some efforts on extending the analysis to determine the most likely model among a given set
but these also assumed fixed parameters in each model with only one model active on the
entire data set [5,15]. Other works have considered models that discretely switch between
different motion models, each of which has a fixed (and unknown) set of parameters. One
of the authors considered time-varying parameters using a jump Markov model [16] but
such models impose a probabilistic structure on the changing parameter values that may
be non-physical. In addition, they require a priori knowledge of the number of states.
Other works have taken a data-driven technique to infer the number of states from the
data directly [17,18]. However, these approaches have several parameters that need tuning
and, while they are somewhat insensitive to that tuning, they also rely on a good choice of
prior distributions on the parameter estimates. In [15], the problems of determining when
a model switch occurred was separated from classifying what motion model is active but
was not combined with optimal parameter estimation. Sliding (or rolling) windows have
also been applied to SPT data, though with the single goal of segmenting the data based
on features in the MSD [19–22]. More recently, machine learning techniques have been
brought to bear on the problem of trajectories with time-varying parameters [23,24]. While
results have been promising, there is a need to train the underlying neural networks and as
a result there are concerns about transfer learning when applying the methods to different
model classes than those used for training.

As with these prior works, the present paper focuses on systems that discretely jump
between different parameter values and builds on our prior efforts using sliding windows
and optimal estimation to produce an ML estimate of the parameters [25,26]. Here we
describe a novel three stage algorithm that combines change detection to determine when
model switches occur with ML estimation to find parameter estimates for each model.
We assume each mode of motion is described by a general linear stochastic model with
Gaussian noise statistics that encompasses a wide variety of dynamics. The first stage of our
approach applies a sliding window to estimate the parameters of a general linear dynamic
model at each point in time. These results are intended to help the user visualize the data
and to inform the selection of tuning parameters for the second stage. In that second stage,
we apply a Change Detection (CD) scheme to segment the data into regions with constant
parameters. In the final step, we again determine ML estimates of the model parameters.

In both the first and third stages, the goal is to find an estimate of the (fixed) param-
eters defining a model over some given period of time, either a sliding window (stage
one) or between time points where model changes were detected (stage three). Estimation
of fixed model parameters from a set of measurements can be done using a variety of
estimation methods, including fitting the desired model to the MSD, spectral factorization
based on an auto-regressive, moving-average reformulation of Equation (1) [27,28], direct
likelihood maximization using quasi-Newton numerical schemes [29–31], or Expectation
Maximization (EM) [32]. Of these, MSD, despite its popularity, typically has the worst
performance [10,13,14]. The others are all optimization based schemes and similar perfor-
mance can be expected. EM, however, has at least two large benefits. First, in addition to
producing (approximate) ML estimates of the parameters, it also yields the smoothed dis-
tributions on the particle locations from the data. Second, the approach is easily extended
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to nonlinear observation and motion models [13,14]. We therefore focus on this method as
the core algorithm.

The second stage of our approach relies on CD for segmentation of the data. CD is
a mature area and has been applied to a wide range of applications, including speech
processing [33,34], image processing [35], analysis of electroencephalogram (EEG) and
electrocardiogram (ECG) signals [36–38], and geophysics [35]. They have also been used
in the context of SPT to segment trajectories based on model type, most commonly to
distinguish between free and confined modes of motion [39–41]. CD methods use a
threshold on a detection (residual) signal to indicate when a change has occurred and their
performance depends heavily on the choice of that level. The main goal of the windowed
estimation of stage 1 is to guide the user in the choice of the threshold. In this work we
take advantage of the off-line nature of the analysis to use non-causal CD, averaging the
results from forward and backward passes through the data to minimize the expected
delay between the true and estimated change points.

Throughout the paper we use simulations to demonstrate and explore the elements of
our three-stage method. We then validate the scheme using experimental data generated
under controlled conditions that provide both real data and ground truth values through
the use of a synthetic motion approach we have developed [42].

2. Methods

Data in SPT typically comes in the form of a sequence of camera images following
both two-dimensional and three-dimensional motion. There are many algorithms for doing
localization and linking [43,44] and we assume these steps have been performed prior
to applying our approach. Note that while the focus of this paper is model parameter
estimation, our algorithm does refine the given trajectories through the filtering and
smoothing elements that are integral to our approach; details can be found in, e.g., [26].
The motion in each axis is assumed to be independent and described by a general linear
time-varying model in each direction given by

xk+1 = atxk + bt + wk, wk ∼ N (0, qk),

yk = xk + vk, vk ∼ N (0, rk),
(1)

where k is the discrete time index, xk, yk, wk, and vk are scalars, qk = 2Dk∆t is the variance
of the process noise defined by the diffusion coefficient Dk and the sampling time ∆t, and rk
is the variance of the measurement noise as generated by a variety of processes, including
shot noise due to the physics of photon generation in fluorescence and read-out noise in
the camera. We note that there are important modes of motion in the biophysical domain
that are not captured by Equation (1), and in particular those that are non-Gaussian in
nature that need nonlinear or even non-Markovian models (see, e.g., [45–47]). However,
system (1) can represent a variety of very relevant models in the SPT application. For
example, setting ak ≡ 1, bk ≡ 0 describes pure diffusion; choosing ak < 1, bk ≡ 0, yields an
Ornstein–Uhlenbeck model that can capture tethered motion of a biomolecule or be used
to approximate confined diffusion [12,48]. We further assume that the parameters are fixed
for a finite interval of time before switching to different values for another interval. The
number of switches is not known a priori.

Our goal, then, is to determine the number of switches and to estimate the parameter
values inside each interval. As described in Section 1, we take a three stage approach:
(1) estimation of continuously varying parameters using sliding windows, (2) change
detection for segmentation, and (3) parameter estimation on each interval. Our approach
is illustrated in Figure 1. In what follows, we first describe the core elements of the three
stages before bringing them together in the final algorithm.
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Figure 1. Overview of the three-stage algorithm for estimating parameters of a linear motion model that switches values at
discrete times.

2.1. Background on EM

As noted in Section 1, the EM algorithm is at the core of our technique. Here we give
a brief overview of this well-known approach to ML estimation.

2.1.1. EM for Fixed Parameter Estimation

Both the first and the last stage rely on using a set of N measurements, YN =
{y1, y2, . . . , yN}, to infer the parameters of the model in Equation (1). In the first stage, esti-
mation inside each window assumes constant parameters, and in the last stage, estimation
in each interval also assumes fixed parameters. In this section, then, we assume a time
invariant model and note this by dropping the subscript t on the parameters.

The EM algorithm was introduced as a method for finding ML estimates when the
likelihood function either could not be expressed in an analytical form or was too complex
for direct optimization [32]. It is an iterative scheme that moves towards a local optimal
of the likelihood. The essential idea is to use a so-called hidden variable, which in our
case is taken to be the underlying particle trajectory XN = {x1, x2, . . . , xN}, to create an
auxiliary function Q, which approximates the log-likelihood function. This function is
defined as the conditional expectation of the joint log-likelihood of the observations and
underlying trajectory,

Q(θ, θ̂(i)) = E{log[pθ(XN , YN)]|YN , θ̂(i)}, (2)

where θ̂(i) is the current estimate of the parameter. Calculating Q is referred to as the
‘E-step’ and depends on the conditional expectation given the complete data YN . For our
model in Equation (1), the necessary distributions to calculate this expectation can be
calculated using a Kalman filter and Kalman smoother. The next estimate of the parameters
is then found through the ‘M-step’ by maximizing the auxiliary function

θ̂(i+1) = arg max
θ
Q(θ, θ̂(i)). (3)

For the general linear model considered here, the auxiliary function takes the form

Q
(

θ, θ̂(i)
)
= −N log q−1 − N log r−1 +

N

∑
k=1

E
{
(yk − xk)

2r−1 + (xk+1 − axk − b)2q−1
∣∣∣YN , θ̂(i)

}
, (4)

where θ =
[
a b q−1 r−1]T . For further details and a robust numerical implementation

of the EM algorithm, see [49].

2.1.2. EM Using Local Likelihood

The essential idea behind the local likelihood approach is to do estimation inside
a sliding window. As the window is slid along the data, an estimate of the parameter
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θ is produced at each point in time. It is important, however, to define these windows
appropriately. The general local likelihood is given by

lt(θt) =
N

∑
k=1

Kk,tl(yk|θt), (5)

where h is the window size, l(yk|θt) is the standard likelihood function, and

Kk,t = K
(

k− t
h

)
,

is a kernel (also known as a weighting function) satisfying K(v) ≥ 0 and
∫

∞
−∞ K(v)dv = 1.

When selecting a kernel, it is important to use smooth windows to minimize an effect
known as Gibbs ringing which causes oscillations in the time-varying estimate [50]. This
can be achieved using kernels with rounded edges that progressively downweight data
points far from the window center. A family of kernels defined by a parameter γ to achieve
this is given by

K(v) =


(1−v2)γ

22γ+1B(γ+1,γ+1) , if |v| ≤ 1,

0, otherwise,
(6)

where B(a, b) =
Γ(a)Γ(b)
Γ(a + b)

and Γ(·) is the standard gamma function. For γ = {0, 1, 2}, we

obtain what are known as the uniform, Epanechnikov, and biweight kernels, respectively.
Applying EM to this scenario simply means using the local likelihood to generate the

auxiliary function. To distinguish it from the standard function in Equation (2), we denote
it as Qt. For the general linear system in Equation (1), we have

Qt(θt, θ̂
(i)
t ) = −

(
log q−1

t + log r−1
t

)
+

N

∑
k=1

Kk,t + q−1
t

[
S̃11 − S̃T

01ΓT
t − ΓtS̃01 + ΓtS̃00ΓT

t

]
+ r−1

t

N

∑
k=1

(
Kk,t

[
(yk − x̂k|h)

2 + Pk|h

])
,

(7)

with

S̃00 =
N

∑
k=1

[
Kk,t[x̂2

k|h + Pk|h] Kk,t x̂k|h
Kk,t x̂k|h Kk,t

]
, (8)

S̃11 =
N

∑
k=1

Kk,t

(
x̂2

k+1|h + Pk+1|h

)
, (9)

S̃01 =
N

∑
k=1

[
Kk,t[x̂k+1|h x̂k|h + Pk+1,k|h]

T

Kk,t x̂k+1|h

]
. (10)

Note that to arrive at the expressions above, we included the kernel function in
Equations (7)–(10) and explicitly calculated the expected values in the auxiliary func-
tion. The conditional mean x̂k|h, covariance Pk|h, and cross covariance Pk,k−1|h, define
the smoothed distribution on the underlying state and can be calculated from the Kalman
filter and smoother (see, e.g., [51]). The inclusion of the parameter h in these expressions
denotes that they depend upon the choice of window size. The maximization step can be
performed explicitly by taking the derivatives of Qt with respect to the parameters, setting
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them to zero, and solving. Defining the vector Ξ(i) =
[

â(i) b̂(i)
]T

, the resulting estimates
are given by

Ξ(i+1) = S̃01S̃−1
00 , (11)

q̂(i+1)
t =

1
n

(
S̃11 − S̃T

01

(
Ξ(i+1)

t

)T
− Ξ(i+1)

t S̃01 − Ξ(i+1)
t S̃00

(
Ξ(i+1)

t

)T
)

, (12)

r̂(i+1)
t =

1
n

N

∑
k=1

Kk,t

[(
yk − x̂k|h

)(
yk − x̂k|h

)T
+ PT

k|h

]
, (13)

where n = ∑N
k=1 Kk,t. Throughout this work we apply the Epanechnikov window (γ = 1).

Note that when working with a single, independent window (as in Phase 3 of our approach),
it is reasonable to select a rectangular (uniform) window (γ = 0). However, we found that
because the change detection of stage 2 (described below) is not exact, better performance
in terms of parameter estimation is achieved by downweighting samples at the edges as
they may actually belong to a different model. Note that we have previously established
that under this EM scheme, the local likelihood increases at each step and thus this local
version inherits the results from standard EM that the algorithm will converge to at least a
local maximum [26].

2.2. Algorithm Stages
2.2.1. Stage 1: Sliding Window Estimation with Local Likelihood

The first stage of our approach is to apply EM with local likelihood using a sliding
window approach. As noted above, the role of this stage is only to inform the user about
likely changes in the dynamics to guide the selection of thresholds for use in automatic
change detection (described in Section 2.2.2 below), not to produce any final estimates.
To demonstrate this stage, we generated realizations of a system given by Equation (1)
that switched the diffusion coefficient from D = 0.1 to D = 0.2 µm2/s, sampled at a
rate of ∆t = 0.1 s and with the other parameters fixed at a = 1, b = 0, and r = 0.1. For
simplicity, we assumed the fixed constants a, b, and r were all known and only D needed
to be estimated. We then processed the data using both a rectangular window (which we
refer to as the naive approach) and an Epanechnikov window.

For this simple setting of only estimating the covariance of the process noise (that is, the
diffusion coefficient), there are multiple adaptive filtering algorithms, dating back to the 60’s
(see, e.g., [52,53]). A recent version of these methods that minimized a quadratic function
of the innovations (that is, the difference between the predicted and actual measurements)
was introduced in [54]. Based on the Kalman filter, this method was shown to outperform
prior techniques. We therefore compare our results to the algorithm in [54] as a benchmark
in this simple setting of diffusion-only estimation. It is important to note, however, that
our algorithm is more general as it is able to estimate all the model parameters.

The results are shown in Figure 2 for two different data sets, one with D changing at
time 200 and one with the change at time 300. Each set consists of 10 realizations of the
trajectories and the results shown in Figure 2 are averaged over those ten runs. To highlight
the effect of the window size, we used h = 150 on the first data set and h = 250 on the
second. As expected, with the shorter window all algorithms show a faster response. Both
EM methods show a smoother response and better accuracy than the Kalman filter-based
scheme. While both windows have similar behavior, the use of an Epanechnikov window
clearly helps to smooth out the estimate relative to the naive, rectangular window, though
the effect is more muted with the longer window.
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(a) Window size h = 150.
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(b) Window size h = 250.

Figure 2. Estimating the diffusion coefficient (solid black) using local EM with (blue) an Epanechnikov
window, (red) a naive, rectangular window, as well as using a (green) a Kalman filter based scheme.
Estimation was done using a window size of (a) h = 150 and (b) h = 250.

2.2.2. Stage 2: Change Detection

Given a sequence of random variables yn from a probability density function de-
pendent on a parameter θ, CD aims to find the unknown time tc such that the (vector)
parameter θ = θo for t < tc, and θ = θ1 ( 6=θo) for t >= tc. There is a rich literature on CD
and many different techniques have been developed for a wide variety of settings (see,
e.g., [55,56]). In general, the idea behind CD is to first define a residual signal that is close to
zero when the parameter has not changed and that rapidly increases after a change, and
then to define a decision rule which monitors the residual and declares when a change
has occurred. In the SPT setting, the problem is particularly challenging due to the need
to detect non-additive spectral changes in the model since the diffusion coefficient enters
through the variance of the input noise.

CD relies on a model describing how the parameter affects the measurements. While
our SPT data is described by the system in Equation (1), CD is difficult to apply to such state-
space formulations. For this second stage, then, we choose to describe our measurements
with a simple Autoregressive with Exogenous Input (ARX) model as these have been shown
to be effective for capturing spectral changes [37,57]. There are more general models of this
type that have been applied to parameter identification in SPT, including for anomalous
diffusion based on fractional dynamics in single particle trajectories [58,59]. However, the
goal of this stage is just CD, not model identification, and the ARX model provides a simple
approach with well-established theory for finding change points in the data.
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ARX models of order p are given by

yk =
p

∑
i=1

aj
iyk−i + εk, var{εk} = σ2

ε , (14)

where j is an index indicating a specific model and aj = (aj
1, aj

2, . . . , aj
p) are the model

parameters for that model. Given a set of data, we can automatically determine the best
order p for a model using the Bayesian Information Criterion (BIC) as follows. The BIC is
defined by

BIC(p) = −2l(θ̂) + p log N, (15)

where l(θ) is the log-likelihood, N is the number of data points, p the model order, and θ̂
the ML estimate of the parameter. The model order is then selected as the one minimizing
the BIC.

To demonstrate the ARX model approach, we generated 50 realizations using Equation (1)
with three different run lengths and then estimated the parameters of the ARX model
Equation (14) using the BIC. The resulting model orders that optimized the BIC are shown
in Figure 3. In all cases the BIC indicates that a low order model, often with just one
parameter, is sufficient.
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Figure 3. ARX model estimation based on the BIC criterion with run lengths of (left) 200, (center) 150, and (right) 100.

For the residual signal we use a sufficient statistic for detecting spectral changes known
as the cumulative sum (CUSUM) (see [56,60]). CUSUM can be defined in a few different
ways; here we use a version based on the likelihood ratio given by the general formulation

sk = log
pθ1(yk|Yk−1)

pθo (yk|Yk−1, )
, gk = (gk−1 + sk)

+, (16)

where Yk−1 is all the data up to time k− 1, (·)+ = max{·, 0}, and θo and θ1 are the parameter
values before and after the change, respectively. Finally, we define the decision rule by
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selecting a threshold λ such that a parameter change is declared to occur at the time when
gk exceeds that threshold,

t̂c = min{k : gk ≥ λ}. (17)

As written in Equations (16) and (17), the CUSUM test assumes prior knowledge of
the parameter values before and after the change. In our setting, of course, these values
are not known ahead of time. We overcome this by simultaneously estimating two ARX
models of the form in Equation (14). The first of these, termed Mθ0 is a long term model
that is estimated using all of the data from the most recently detected change up to the
current time. The second, Mθ1 is estimated using data from a sliding window of size h.
Inserting the ARX models in Equation (16) yields the CUSUM signals for our setting,

sk =
1
2

log
σ2

ε0

σ2
ε1

+
(e0

k)
2

2σ2
ε0

−
(e1

k)
2

2σ2
ε1

, gk =
n

∑
i=1

sk, (18)

where ei
k is the residual error of the ith model given by the difference between the predicted

and true measurement at time k. The two models are compared using the CUSUM test
with a threshold λ selected by the user. Once a parameter change is detected, both models
are reset, the prior data is discarded, and the process started again to search for the next
change point. The threshold λ is tuned by the user to achieve satisfactory results, guided
by the expected number of model changes as indicated by Stage 1 of our approach.

In general, there is a delay between the actual change and the point of detection
imposed by the time it takes the residual signal to grow. This is mitigated somewhat by
the fact that the time assigned to the detected change corresponds to the beginning of the
sliding window of the second model but in general still leads to a bias in the estimated
change time. When detecting changes online, this bias can be reduced by increasing the
sensitivity of CD by selecting a lower threshold at the cost of possibly increasing false
positives in CD. In the SPT context, however, estimation is typically done offline in post-
processing. We take advantage of this to reduce the bias in estimating the change time by
performing two passes on the data, one forward in time and one backward in time. CD
points from the two passes that are close enough (as defined by the user) are averaged to
reduce the bias. If there is no clear match then the CD from the forward pass is selected.

To illustrate the CD stage, we performed two sets of 50 independent simulations of
the system in Equation (1) at a measurement noise level of r = 0.001 µm2 (corresponding
to a localization precision of approximately 32 nm), with a sampling rate of 0.1 s and a
total trajectory of 100 s. In the first setting, all parameters except for a were held fixed at
b = 0 and D = 0.05 µm2/s. Initially, the remaining parameter was set to a = 1, switched
to a = 0.8 after 30 s (k = 300) and returned to a = 1 at 70 s (k = 700). The results are
shown in Figure 4. In these simulations, there is some improvement in the detection time
of the first change when using the averaged result. For the second change, however, results
based on just the forward pass were better than either the backward or averaged. As
the measurement noise is increased, though, detection becomes more challenging and a
larger delay is expected since the threshold will likely need to be set higher to avoid false
positives. To explore this, we ran another set of 50 trials but with a measurement noise of
r = 0.01 µm2/s (corresponding to a localization precision of 100 nm). These results are
shown in Figure 5. Under this setting, both the forward and backward passes have larger
bias, larger variance, and many more outliers than in the low noise setting and the results
based on the averaged value are more reliable.
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Figure 4. Detected time of change under a low noise setting based on using only the forward pass, only the backward pass,
or averaging the two. (left) Estimates of the time of the first change (at k = 300) of the parameter a from a value of 1 to 0.8
and (right) estimates of the time of the second change (at k = 700) back to 1.
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Figure 5. Detected time of change under a high noise setting based on using only the forward pass, only the backward pass,
or averaging the two. (left) Estimates of the time of the first change (at k = 300) of the parameter a from a value of 1 to 0.8
and (right) estimates of the time of the second change (at k = 700) back to 1.

In the second setting, all parameters except the diffusion coefficient were held fixed at
a = 1 and b = 0 and the measurement noise was again set to r = 0.001 µm2. The diffusion
coefficient was initially set to 0.05 µm2/s, switched after 30 s (at k = 300) to 0.2 µm2/s
for the next 40 s, and switch back to 0.05 µm2/s (at k = 700). The results are shown in
Figure 6. Note that for the first change, the forward pass yields the most accurate estimate
of the change while for the second change the backward pass is more accurate. We also
ran a second set of 50 trials at the larger noise of r = 0.01 µm2; these results are shown
in Figure 7 and show a similar effect with respect to the forward, backward, or averaged
results as in the low noise setting. This reflects the fact that in general detecting an increase
in a covariance parameter is easier than detecting a decrease. Without prior knowledge of
the change, the average of the forward and backward estimates provides a robust result.
Of course, the windowed estimates of the first stage of our approach could be used to
estimate the direction of change and the thus guide the user to choose either the forward
or backward CD result.
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Figure 6. Detected time of change under a low noise setting based on using only the forward pass, only the backward pass,
or averaging the two for the (left) first change (at k = 300) of the diffusion coefficient from 0.05 to 0.2 µm2/s and the (right)
second change (at k = 700) back to 0.05 µm2/s.

2.2.3. Stage 3: Final Estimation and the Complete Algorithm

The final stage is simply to run the EM algorithm on each set of data between the
detected change points to produce the final estimates. The three stage algorithm, illustrated
in Figure 1, thus proceeds as follows. Given a trajectory of single particle tracking data, the
user first selects a window size h and runs local EM to produce continuous estimates of the
parameters. Shorter windows are of course more sensitive to parameter changes but less
robust to noise. While there are data-driven methods for selecting an appropriate window
size such as the Steins Unbiased Risk Estimator (SURE) [61], the results of this stage are
used only to roughly estimate the number of parameter changes and a trial-and-error
approach driven by domain knowledge and experience will likely be sufficient. In Stage 2,
the user selects a threshold λ for the CUSUM test. As with the window size, some trial-
and-error is likely needed to determine a good threshold but this choice is now informed
by the expected number of changes indicated by the Stage 1 result. After running CD, the
original data can be segmented into windows of maximal length, each of which has a fixed
model. In Stage 3, the constant parameter EM algorithm in Equations (2) and (3) is then
run on each segment independently to determine the final estimates.
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Figure 7. Detected time of change under a high noise setting based on using only the forward pass, only the backward pass,
or averaging the two for the (left) first change (at k = 300) of the diffusion coefficient from 0.05 to 0.2 µm2/s and the (right)
second change (at k = 700) back to 0.05 µm2/s.
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2.3. Generation of Synthetic Data

While simulations can be very useful to explore algorithm efficacy, it is important to
test algorithms on realistic data, ideally with accompanying ground truth. Our experimen-
tal procedure to achieve this, known as synthetic motion and described in detail in [42],
consists of four steps: (1) generate numerical sample paths using the motion model in
Equation (1) for a given set of parameters, (2) control the motion of a fluorescent particle
(such as a quantum dot or fluorescent microsphere affixed to a coverslip) using a piezo-
electric stage with nanometer-scale precision, (3) acquire images of the moving particle
using a widefield microscope, and (4) process the resulting images to generate a measured
trajectory. Our specific implementation uses a high speed 3D piezostage (Nano-PDQ, Mad
City Labs) mounted on an inverted optical microscope (Zeiss Axiovert 200) and controlled
using a custom-designed controller to achieve both high speed and precision (below 10 nm)
in positioning. The controller was implemented on an field programmable gate array
(FPGA) on a National Instruments compact Reconfigurable Input Output system (NI cRIO
9076). Particle motion was observed using a 63×, 1.2 N.A. water immersion objective and
diffraction-limited images captured using an sCMOS camera (Prime 95B, Photometrics). To
avoid motion artifacts, the piezostage was moved and allowed to settle at the next position
in the trajectory while the camera was offloading the previous image and held stationary
during the next image acquisition. Acquired images were then segmented and the location
of the fluorescent particle in each frame estimated using a nonlinear least-squares fit to a
Gaussian profile [62]. Four sequential frames from a typical synthetic data set are shown in
Figure 8.

Figure 8. Four sequential segmented image frames from a synthetic motion sequence.

3. Results and Discussion

We generated 90 trajectories of synthetic data with a step size of ∆t = 0.1 s, each
consisting of 1000 frames. The parameters at, bt, and Dt were set as shown in Table 1,
corresponding to pure diffusion for 250 steps, an Orenstein–Uhlenbeck (O-U) motion for
the next 250 steps, fixed motion for 250 steps, and finally directed motion with diffusion for
the final 250 steps. The observation noise rt was determined by the experimental conditions.
The values during the first three phases were selected based on classification results for
the motion of the transmembrane protein CD44 on the surface of macrophages as reported
in [15] while the values for the final, directed motion stage correspond to a speed of 2 µm/s,



Molecules 2021, 26, 886 13 of 21

consistent with the speed of dynein on microtubules and inspired by early results of SPT in
virus tracking [63].

Table 1. Synthetic motion parameter values.

Time Step
Parameter 1–250 251–500 501–750 751–1000

at [unitless] 1 0.86 1 1
bt [µm] 0 0 0 −0.1

Dt [µm2/s] 0.1 0.01 0 0.01

Figure 9 shows the generated trajectories and a zoom-in on those trajectories over the
first 750 data points. Note that these trajectories are those produced from the Gaussian
fitting-based analysis of the image data; see Section 2.3. The trajectories show a clear
diffusive motion in the first 250 steps and then a transition to the tethered motion. Visually
there is only a small difference between the OU motion and the fixed motion due to the
small diffusion coefficient during the O-U phase and the measurement noise. In what
follows we first carry out the analysis for the single specific trajectory shown in blue.
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Figure 9. Synthetic motion trajectories generated from image data over (left) the full 1000 frames and (right) over the first
750 frames to highlight the diffusive nature of the motion. The example trajectory used is highlighed in blue. Vertical red
dashed lines are where the model values changed according to the values in Table 1.

The first stage of our algorithm is to run the local-likelihood based estimation algo-
rithm. For this we chose a window of size h = 200; the resulting time-varying estimates
of the parameters are shown in Figure 10. Note that while we are estimating all four pa-
rameters of the model in Equation (1), we do not expect the measurement noise to change
and thus look only at the parameters at, Dt, and bt in this stage. The curves in Figure 10
clearly indicate that there are likely model changes occurring, though they do not clearly
reveal where or how many. From the at curve, it seems reasonable to infer 2–3 changes
with switches at approximately k = 500, k = 700, and k = 800. The value of Dt seems to
go through two changes at the approximate times k = 250 and k = 800. Finally, bt seems
to change values twice, once near k = 700 and again near k = 800. Combining these,
and recognizing that multiple parameter values may change in a model switch, Stage 1
indicates there are likely three changes in this data set.

The next stage is to run the CD scheme. The BIC criterion led to an ARX model
order of p = 1. The resulting residual signal in Equation (18) for the forward pass is
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shown in Figure 11 (the residual for the backward pass is qualitatively similar). Guided
by the results of Stage 1, we selected a threshold of λ = 2.1, leading to a detection of
three changes. The change times based on the forward pass were found to be at time
steps [321, 544, 755]; using the backward pass only they were at [247, 422, 735]. The final
detection times were thus taken to be the average of these, [284, 483, 745], quite close to the
true times of [250, 500, 750].
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Figure 10. Results of stage 1: time varying estimates of parameters (left) a, (center) D, and (right) b,
using a sliding window of size h = 200.
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Figure 11. Residual signal for change detection. The selected threshold is indicated with a red
dashed line.

The final stage is then to run the EM-based ML estimation in each segment. The
resulting parameter values are given in Table 2. For the parameters with ground truth,
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the percent error is also given in the table. In general, the results are quite good. The one
exception is in the value of at in the third stage where the particle is fixed. This is discussed
a bit more below after analyzing the results for all the trajectories.

Table 2. Estimated motion parameter values and percent error from ground truth.

Time Step
Parameter 1–284 285–483 483–745 746–1000

at [unitless] 0.9691 (3.1% error) 0.8661 (0.7% error) 0.2482 (75.2% error) 1.0006 (0.06% error)
True at 1.0 0.86 1.0 1.0

bt [µm] −0.0015 (1.5% error) 0.0007 (0.7% error) −0.0463 (4.63% error) −0.098 (2.0% error)
True bt 0 0 0 −0.1

Dt [µm2/s] 0.0408 (52% error) 0.0064 (36% error) 0.0094 (N/A % error) 0.0112 (12% error)
True Dt 0.1 0.01 0 0.01

rt [µm2] 0.0041 0.002 0.0054 0.0052

We then applied our algorithm to all 90 trajectories in the synthetic motion data
set we created. Since in practice it is unlikely one would tune the algorithm for each
trajectory when analyzing large data sets, we applied the same ARX model order (p = 1)
and threshold (λ = 2.1) to every trajectory (better results would be expected, of course, if
each trajectory was handled independently). Using these settings, the CD identified three
changes in 64 of the trajectories and two changes in the remaining 26.

We consider first the 64 trajectories with three detected changes. Histograms for the
estimated times of the model change based on the average of the forward and backward
passes are shown in Figure 12 for the cases with three changes; the mean detected times
were k1 = 276.2, k2 = 497.1, and k3 = 717.

Figure 12. Histograms of the detected times of model changes when three changes were detected (64 trajectories) for the
(left) first, (center) second, and (right) third change. Red dotted lines indicate the true change times of 250, 500, and 750.
Mean detected times are 276.2 for the first, 497.1 for the second, and 717 for the third.

The results of the final stage of our algorithm on the 64 trajectories yielding three
change points are shown as boxplots in Figure 13 while the mean and standard deviation
of the estimates are shown in Table 3. Since these trajectories yielded three changes, the
estimated values can be compared directly to the ground truth values. These results show
very good performance across all parameter estimates with the one exception being the
values of at in the third stage. In this stage, the particle is fixed. The EM algorithm,
however, assumes some amount of stochasticity in the model (that is, that Dt should not
be exactly zero) and appears to compensate for this by biasing at toward smaller values;
this would correspond to a larger restoring force that keeps the particle near zero. While
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we do not have ground truth for the measurement noise rt, the estimates correspond to
a localization error of 60–70 nm which is reasonable for the imaging conditions in the
synthetic motion data.

Table 3. Mean and standard deviation of the motion parameter values in each segment over the
64 trajectories with 3 detected changes, together with the true values.

Parameter Segment 1 Segment 2 Segment 3 Segment 4

at [unitless] 0.9768 ± 0.0237 0.8282 ± 0.127 0.7085 ± 0.3185 1.002 ± 0.0011
True at 1.0 0.86 1.0 1.0

bt [µm] 0.0011 ± 0.025 0.0029 ± 0.0165 0.0109 ± 0.047 −0.0836 ± 0.015
True bt 0 0 0 −0.1

Dt [µm2/s] 0.0874 ± 0.023 0.01934 ± 0.025 0.0030 ± 0.0083 0.0264 ± 0.0141
True Dt 0.1 0.01 0 0.01

rt [µm2] 0.0045 ± 0.0022 0.0045 ± 0.0031 0.0046 ± 0.0034 0.0049 ± 0.0016
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Figure 13. Cont.
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Figure 13. Box plots showing median, center two quartiles, and outliers for the estimates of the
model parameters in each segment for the 64 trajectories considered.

The remaining 26 trajectories showed only two changes. Figure 14 highlights the
trajectories where only two changes were found, with the remaining shown in light gray.
Interestingly, this particular set of trajectories does show a marked difference from the
other trajectories. In particular, there appears to be higher noise in the data which obscures
the differences between the second set of model parameters (from times 250–500) and the
third (from times 500–750). The blue curves look qualitatively similar throughout that
entire time span while the trajectories in gray show a clear diminishing of motion after
time 500. Because results from these curves could not be compared against the ground
truth, they were not analyzed further.
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Figure 14. Synthetic motion trajectories generated from image data with the 26 trajectories yielding only two changes
highlighted in blue. Vertical red dashed lines are where the model values changed. (left) Full trajectories. (right) Zoom in to
highlight differences between the blue and gray trajectories.

4. Conclusions

We described and demonstrated a three-stage algorithm for analyzing single particle
tracking data for systems with time-varying parameters that switch between (unknown)
discrete values. Our approach depends on two primary parameters, a window size for
the first stage and a detection threshold for the second. In general, the choice of window
size depends on user experience and expected rate of change of model parameters. A
smaller window size will be more sensitive to changes but may also produce false positives.
However, since the results of this stage are only used to guide the selection of the threshold
parameter, there is some amount of insensitivity to its choice. The second parameter is
the threshold on the CUSUM signal for change detection and should be selected based
on the number of changes expected in the data, informed by the windowed estimation
of the first stage. In practice, users may wish to cycle between the first two stages of the
algorithm before setting on a final window size. Finally, the data is segmented into regions
of fixed parameters and EM applied one last time to determine the model estimates. We
demonstrated the approach using data from a synthetic motion technique that provides
both experimental measurements and ground truth values. These results produced accurate
parameter estimates and also identified trajectories where the synthetic data did not quite
match the expected model.

This work focused on a general linear model with Gaussian noise for describing the
particle motion. There are at least three natural extensions. For the first, a fourth stage
where the results of the third stage are used to guide selection of a specific model (e.g.,
selecting pure diffusion will set a = 1 and b = 0) to reduce the number of parameters that
need to be estimated. Running EM estimation once again but now for the more limited
model should yield a refined estimate of the model parameters. The second extension is
to replace the linear dynamics and Gaussian statistics with a more general parameterized
model that encompasses nonlinear motion, nonlinear observations, and non-Gaussian
statistics. This could be used, for example, to estimate parameters of a confined diffusion
model directly (rather than approximating such motion with an O-U model), to allow for
different classes of anomalous dynamics, or to eliminate the need for applying an external
localization algorithm as the EM algorithm will produce trajectories in addition to ML
estimates of the model parameters; see [64] for initial work along these lines. The third
extension is to handle missing data points in the particle trajectories. Our current approach
assumes a constant time step in between each point on the trajectory. It is not uncommon
in SPT data that some points are missing, either due to errors in localization, fluctuations
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in signal intensity, or other issues and extending our method to allow for known but
non-constant time steps along the trajectory would expand the types of data that could
be analyzed.
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