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A B S T R A C T

Lesion-symptom mapping is a key tool in understanding the relationship between structure and function in
neuroscience as it can provide objective evidence about which regions are crucial for a given process. Initial
limitations with this approach were largely overcome by voxel-based lesion-symptom mapping (VLSM), a
method introduced in the early 2000s, which allows for a whole-brain approach to study the association between
damaged areas and behavioral impairment by applying an independent statistical test at every voxel. By doing
so, this technique eliminated the need to predefine regions of interest or classify patients into groups based on
arbitrary cutoff scores. VLSM has nonetheless its own limitations; chiefly, a bias towards recognizing cortical
necrosis/gliosis but with poor sensitivity for detecting injury along long white matter tracts, thus ignoring
cortical disconnection, which can per se lead to behavioral impairment. Here, we propose a complementary
method that, instead, establishes a statistical relationship between the strength of connections between all brain
regions of the brain (as defined by a standard brain atlas) and the array of behavioral performance seen in
patients with brain injury: connectome-based lesion-symptom mapping (CLSM). Whole-brain CLSM therefore
has the potential to identify key connections for behavior independently of a priori assumptions with applic-
ability across a broad spectrum of neurological and psychiatric diseases. We propose that this approach can
further our understanding of brain-structure relationships and is worth exploring in clinical and theoretical
contexts.

1. Introduction

For over a century, observations of patients with brain damage have
shed light on the neurobiological substrates of different brain functions.
The core principle of this association is as follows: if a patient with
brain injury to area X is unable to perform behavior A, one can hy-
pothesize that area X must be crucial for the execution of A. An ex-
tension of this is the double dissociation, where those with damage to
area X are impaired at task A but not task B, whereas the opposite
pattern is seen for individuals with injury to area Y. These observations
have proved influential in our understanding of brain function. For
instance, in its origins, our understanding of the neurobiological basis
of language stemmed from this approach. The classic dichotomy sti-
pulates that while lesions to Broca's area in the left inferior frontal gyrus
lead to speech production deficits (Broca, 1861), damage to Wernicke's
area in the left superior temporal gyrus disrupts auditory comprehen-
sion (Wernicke, 1874). By the same principle, the interruption of fibers

connecting these two regions impairs speech repetition (Lichtheim,
1885).

With the advancement of techniques that measure brain activation
(e.g. functional magnetic resonance or event-related potentials), how-
ever, we have accumulated evidence to suggest a far more complex
picture of brain function (Dronkers et al., 2007; Mesulam, 2005;
Rudrauf et al., 2008). Following the example of language, we now re-
cognize that substantial overlap exists between the neural systems en-
gaged during speech production and comprehension (Silbert et al.,
2014; Pickering and Garrod, 2014). Accordingly, some of the newer
models stipulate the existence of a functional core that is associated
with many language processes, i.e., shared domain-specific neural
systems (Fedorenko and Thompson-Schill, 2014). Other authors have
also suggested that specific patterns of brain activation rely on the kind
of information being processed (i.e, semantic, lexical, or syntactic) ra-
ther than the modality (e.g. comprehension vs. production) (Menenti
et al., 2011) and more contemporary models of speech processing
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propose dissociable but interacting pathways that interface sensory
networks with semantic-conceptual systems (a ventral stream) with
motor-articulatory systems (dorsal stream) (Hickok, 2012; Hickok and
Poeppel, 2000; Hickok and Poeppel, 2004; Hickok and Poeppel, 2007;
Fridriksson et al., 2016).

However, while it is undisputable that brain activation techniques
have expanded our understanding of complex brain functions and
functional neuroimaging, there remains a crucial problem regarding the
findings from functional studies: indirect measures of neural activation
detected with functional neuroimaging do not necessarily reflect a di-
rect relationship between structure and function. Areas identified by
functional studies are both the ones that are crucial for the tasks, as well
as those connected to crucial areas, but not indispensable. For example,
while an intra-cortical recording can identify the precise location and
time-course of a neuron that predicts behavior, it is unable to reveal
whether this neuron is required for the behavior. On the other hand,
disruption methods such as cortical stimulation or lesions can dissociate
areas that are merely involved with a task from those required by the task
(though we note that these techniques are best used synergistically, e.g.
a recording suggests when a neuron is involved and therefore guides the
stimulation, which demonstrates that only disruption at this time in-
fluences behavior). One common example of this phenomenon is the
activation of homologue language areas in the right hemisphere during
speech production tasks (Bottini et al., 1994). While these right hemi-
sphere regions may be involved in speech production, destruction of
these regions due to stroke or surgery rarely leads to profound im-
pairments of speech production (in stark contrast to the regions in the
left hemisphere). At the moment, there are no discernible differences in
signal quantification that can confirm which active regions are indis-
pensable, versus those that are not.

For these reasons, there remains a gap between classic lesion-
symptom mapping and functional studies. Lesion-symptom mapping is
one of the few neuroscience tools that can provide objective evidence
about which regions are crucial for a given process. However, it has
been largely limited in its ability to elucidate the networks that extend
beyond the typical lesion site. Conversely, functional studies commonly
reveal broad patterns of activation, but it is unclear which networks are
indeed directly associated with a specific function. A classic example is
the activation of interhemispheric structures, such as the anterior cin-
gulate or the cuneus, during task-driven language functional studies
[e.g. (Geranmayeh et al., 2014)]. These areas are perfused by the
anterior cerebral artery and therefore not commonly affected in in-
dividuals with language problems after an ischemic brain lesion (which
are typically seen with medial cerebral artery strokes). Therefore, lesion
mapping cannot determine their role in language production. Func-
tional studies, in turn, by means of showing multiple and diverse areas
of brain activity during language tasks, hinder the ability to conjecture
if said areas play critical roles for specific language functions, as these
assumptions are based on associations that cannot be directly tested
without additional techniques or technologies. Thus, a method that
could combine lesion-symptom mapping with network assessments
beyond the lesion location could have a broad impact in our under-
standing of brain function. Here, we review available lesion-symptom
mapping techniques and describe how a novel approach, entitled con-
nectome-based lesion symptom mapping (CLSM), can help bridge this
gap. This method leverages principled and modern techniques for
conventional lesion-symptom mapping, combined with structural con-
nectome data, which, in turn, provides a comprehensive measure of
network damage (and residual integrity) related to, and extending be-
yond, the stroke lesion. There are specific aspects of this technique that
require careful methodological considerations in order to derive reli-
able data-driven conclusions, such as how to properly measure the
connectome in brains with lesions, how to combine connectome and
lesion data, how to approach statistical analyses, and how to assess
network measures based on link weight or more advanced graph theory
approaches. These are discussed below.

2. Lesion-symptom mapping

Conventional lesion-symptom mapping, which infers that area X
must be crucial for behavior A if a person can no longer perform A after
damage to brain region X, has been systematically improved since its
inception more than a century ago. There were initially some caveats
that limited the applicability of lesion studies in a more systematic
fashion. First, earlier studies lacked an objective way to quantify lesion
size and location, leading to qualitative inspections and case series re-
porting several patients with similar lesions who exhibited comparable
clinical deficits. Second, the mere overlap of lesions across patients does
not necessarily imply that the area of maximal overlap is the one re-
quired for a given function (Rorden and Karnath, 2004). Third, when
comparing the behavioral performance between controls and patients
with injury to a specific brain region of interest (ROI), one may oversee
the contribution to behavior that different subregions within that ROI
may exert (for example, if the superior temporal gyrus is studied as a
unique ROI, the separate contributions of the anterior and posterior
aspects of this area to different language functions may go undetected).
Finally, when comparing the extent of brain lesions between a group
with certain behavioral impairments and another without such deficits,
one must necessarily apply an often-arbitrary cut off to the outcome
variable in order to classify participants into comparable groups.

In an attempt to overcome these limitations, Bates and collaborators
(Bates et al., 2003) introduced voxel-based lesion symptom mapping
(VLSM), which as we describe below, allowed for a whole-brain ap-
proach to study the association between damaged areas and behavioral
impairment. Here, we argue that a new approach, connectome-based
lesion symptom mapping (CLSM) can further complement our under-
standing of structure-function relationships by providing valuable in-
formation beyond lesion localization that predicts a given behavior.

3. Voxel-based lesion-symptom mapping (VLSM)

The motivation behind the development of VLSM was the analysis
of how damaged tissue relates to behavioral performance on a voxel-by-
voxel basis, as done by functional neuroimaging. The advantage of this
approach is that it can reveal specific brain regions that contribute to
behavioral performance without having to a priori define which struc-
tures may be relevant or what performance scores constitutes normal
vs. impaired behavior/function. This is achieved by analyzing con-
tinuous behavioral data (for example, score on the Western Aphasia
Battery) on a voxel-by-voxel basis. For instance, for each voxel, a group
comparison of the behavioral score is performed (e.g. by means of a t-
test or measures of effect size) between participants with and without a
lesion in that specific voxel. By doing so, one is no longer required to
predefine regions of interest with contentious boundaries or encom-
passing sub-regions with different functions. In addition, since the t-test
uses the continuous behavioral scores, one does not need to classify
patients into two discrete groups (those with and without an impair-
ment) using arbitrary cutoff scores. Therefore, this method is able to
capture the graded degree of impairment often seen following brain
injury. This technique has been used in stroke patients to study lan-
guage functions (Fridriksson et al., 2016; Mirman et al., 2015; Dronkers
et al., 2004), including speech fluency (Bates et al., 2003), speech
comprehension (Bates et al., 2003; Dronkers et al., 2004), and speech
production (Borovsky et al., 2007; Basilakos et al., 2015; Fridriksson
et al., 2010), as well as other behavioral impairments such as post-
stroke swallowing difficulties (Galovic et al., 2017), somatosensory
deficits (Meyer et al., 2016; Preusser et al., 2015), high level perceptual
deficits (Karnath et al., 2004), and even depression (Kim et al., 2017),
among others. A summary of the techniques involved in VLSM is pre-
sented in Fig. 1.

Crucial to the interpretation of findings derived from patients with
brain injury (for example, following stroke) is the fact that damage may
extend beyond the area of apparent injury as seen on structural scans.
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Specifically, white matter damage (disconnection) may have broad
ramifications outside the area of necrosis and can thus lead to remote
dysfunction of apparently intact cortical lesion (Carrera and Tononi,
2014; Mukherjee, 2005; Fridriksson et al., 2007; Bonilha et al., 2014a;
Bonilha et al., 2014b; Bonilha and Fridriksson, 2009; Catani and
Mesulam, 2008a). This is one of the anatomical bases for diaschisis
(Bonilha et al., 2014a; Catani, 2005; Catani et al., 2012) but cortical
disconnection is not readily detectable by VLSM and the influence of
remote cortical dysfunction on behavior is only partially examined with
this approach. Furthermore, there is an inherent bias in the distribution
of cortical brain lesions based on nervous system architecture/organi-
zation of vasculature which can lead to erroneously attributing crucial
roles to certain areas (Mah et al., 2014; Inoue et al., 2014), specifically
those naturally prone to damage (Caviness et al., 2002). In particular,
based on vascular perfusion territories, there are two important phe-
nomena that bias statistical analyses: 1) areas that are close to the stem
of the vascular territory (for example, M1 segment in the middle cer-
ebral artery) are commonly affected and are frequently co-lesioned
which distal crucial areas, thus leading to the inability to statistically
dissociate both areas; 2) brain regions that are outside typical perfusion
areas may serve a role for behavior that goes undetected; for example,
the lower aspect of the temporal pole is not perfused by the middle
cerebral artery, so in VLSM studies evaluating patients with middle
cerebral artery strokes, this area is not included in the extent of lesion,
and thus its role remains unstudied.

In addition, as VLSM applies an independent statistical test at every
voxel, this method has inherently poor sensitivity for detecting injury
along long white matter tracts. While severing the tract at any location
should logically lead to similar disconnection, damage at different lo-
cations generates apparent counter examples from the perspective of
the mass-univariate approach. In addition, the scanning modalities ty-
pically used for VLSM are more sensitive for detecting cortical necrosis
and gliosis rather than white matter disruption. As previously stated, it
is well recognized that structural damage also affects white matter, and
secondary white matter loss can extend to other regions beyond the
post-injury (e.g. stroke) damage.

For these reasons, exploring the association between specific con-
nectivity pathways and cognitive performance or behavior may provide
complementary information to the relationship between damaged
structure and function, which can be useful to better understand the
role of systems integration in the neurobiology of cognition and beha-
vior. For example, in language, the clinical characteristics of post-stroke
aphasia, e.g., whether receptive or expressive, are not always predicted
by the location of the necrotic cortical lesion (Fridriksson et al., 2007;

Croquelois and Bogousslavsky, 2011; Dronkers, 2000). Altogether, this
suggests that broader, beyond-lesion, cortical dysfunction may have a
large clinical impact for at least some patients with damage to the
brain. It also indicates that network pathology is crucial to shape the
expression of clinical deficits, prompting the development of a com-
plementary approach: connectome-based lesion-symptom mapping
(CLSM). As we will argue below, CLSM can provide a more systematic
assessment by evaluating brain damage as a combination of necrosis as
well as disconnection. CLSM can also provide insight into networks lo-
cated beyond the specific arterial perfusion territories (e.g., middle
cerebral arteries) and thus reveal the importance of brain regions that
are damaged but are not mapped as injured by VLSM.

4. Connectome-based lesion-symptom mapping (CLSM)

CLSM establishes a statistical relationship between connectome in-
jury and behavioral performance. We employ the word ‘connectome’ to
refer to the structural framework of connections across the whole brain
and we discuss CLSM here in the context of structural connectivity, but
the same principles could be applied to functional connectivity.
Specifically, the structural connectome provides a panorama of all
medium to large scale white matter connections in the brain, i.e., it is a
representation of how large populations of neurons are integrated and
organized. With current techniques, the structural connectome can be
derived from a combination of white matter data from diffusion-
weighted MRI [for review, see (Assaf et al., 2017)] and high-resolution
gray matter maps. The latter permits the division of the cortex into
specific regions of interest (ROIs), which can be pre-defined regions
based on standard criteria (e.g. brain atlases). A whole-brain con-
nectome approach measures the strength of the connection between all
possible pairs of ROIs. This can more frequently be achieved by dif-
ferent methods, most commonly either by estimating fiber count (de-
terministic tractography) or by means of evaluating the probability of
fibers between two regions (probabilistic tractography). Regardless of
the tractography method employed, a two-dimensional weighted ma-
trix can represent the connectome, where each cell is the weight (i.e.,
“connection strength”) between two structures. In connectomes re-
constructed from deterministic tractography, the sparsity is high since
many connections cannot be resolved. As such, deterministic con-
nectome matrices are composed of a skewed distribution with many
zeros and decaying prevalence of higher weight connections. Prob-
abilistic connectome matrices, in turn, are also composed by skewed
distributions with fewer links with higher weight, but the prevalence of
zeros is lower. In addition, binary connectomes may be obtained from

Fig. 1. Voxel-based lesion-symptom mapping (VLSM). VLSM is performed by first defining the location of the post-stroke necrotic/gliotic tissue. Panel A demonstrates axial T1-weighted
slices of one representative patient with a chronic post-stroke lesion (hypointense areas on top row slices), which is demarcated in red on the bottom row slices. Panel B is a 3D rendering
that illustrates the magnitude of brain damage. Lesions from multiple individuals are then transformed into the stereotaxic MNI space and, for each voxel, a statistical analysis is
performed by assessing whether there is a difference in a given behavioral measure (e.g. test score) in the group of subjects with a lesion in that voxel, versus the group of subjects without
the lesion in that voxel. The results are then corrected for multiple comparisons based on the number of tested voxels. The top row in Panel C demonstrates the overlay of multiple lesions
(red indicating areas with higher overlap) and the bottom row demonstrates an example of a voxel-wise statistical analyses (white-yellow voxels more strongly associated with behavioral
measures).
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either deterministic or probabilistic tractography are also relatively
sparse in that they have many connections that are either true zeros or
low-weight being coded as zeros, while higher weight connections are
counted as ones based on a predefined critical threshold.

Based on the above, it becomes evident that connectomes can
contain information that is different in quality (continuous, binary, or
skewed) depending on the choice that was used to best represent the
data. This is typically a choice by the investigators depending on the
quality (number of directions, number of shells) of the diffusion scan,
the degree of confidence on the tractography algorithm to resolve
complex anatomy, and the ability to process probabilistic tractography
in parallel. As such, the statistical analysis being applied in CLSM has to
take into account the type of data that are being included in the model.
For example, binomial analyses or chi-square in the case of binary
connections (similar to VLSM), or parametric and non-parametric
continuous measures in the case of weighted connectomes.

Our standard approach has been to use probabilistic tractography,
since it yields a continuous measure of probability in terms of link
weight that is amenable to linear models, including applications such as
support vector machine (SVM). Because link weight is a continuous
measure, the general linear model (GLM) can be employed to establish
the statistical relationship with the continuous behavioral variable in
order to identify connections that are crucial for a given function. It is
also possible to define a weight threshold to determine the presence or
absence of significant connections, yielding a “binary connectome” that
can also undergo GLM to compute an association with behavioral per-
formance. A summary of the steps used to build the connectome is
presented in Box 1 and in Fig. 2.

The whole-brain CLSM approach has the potential to identify key
connections for behavior independently of a priori assumptions. For
example, we have recently (Yourganov et al., 2016) shown how CLSM
can unveil connections between brain regions that contribute to specific
language functions otherwise not predicted by VLSM. Specifically, we

showed connections involving parietal regions that contribute to au-
ditory comprehension and a connection between the pars orbitalis and
the dorsal part of the middle frontal gyrus crucial for speech repetition.
CLSM can also help explain clinical outcomes (e.g. success of epilepsy
surgery or likelihood of improving post-stroke anomia with speech
therapy) that may be dependent on the integrity of white matter tracts
beyond cortical sparing (Gleichgerrcht et al., 2015; Bonilha et al.,
2016). The flexible nature of what “behavioral data” are used for CLSM
(e.g. test performance, or clinical diagnosis, or outcome, or any other
quantifiable variable) gives this approach the potential to be applicable
across a wide array of neurological and psychiatric diseases as well as
cognitive functions [e.g. (Gleichgerrcht et al., 2016)] and behavioral
domains.

What is more, complementary to CLSM, the structural connectome
matrices can be modeled using frameworks such as graph theory in
order to characterize their global and regional properties. For example,
one can examine the network's efficiency, its organization into modules
or motifs, and even determine the influence that specific regions exert
on the whole network. Exploring some of these measures and how they
relate to behavioral outcomes has the potential to provide valuable
clinical and theoretical information. For instance, if CLSM reveals that
the connection between brain regions Y and Z is critical for behavior A,
understanding the influence that Y and Z exert on the network (e.g., by
means of graph theory measure “betweeness-centrality”) can be im-
portant for understanding structural-functional relations as well as for
clinical prognosis and development of tailored rehabilitation interven-
tions in the future.

Alternative to CLSM, which focuses on fiber tractography between
all ROIs defined by a cortical (i.e., gray matter) atlas, a number of
methods have been developed that rely directly on white matter atlases
(Thiebaut de Schotten et al., 2008; Thiebaut de Schotten et al., 2015).
For example, white matter bundle analysis relies on a predefined
tractography atlas based on a priori anatomical knowledge of white

Box 1
How to build the connectome in stroke survivors?

Brain injury can lead to significant neuroanatomical distortions that pose a significant challenge for neuroimaging post-processing, par-
ticularly regarding spatial normalization and tissue segmentation. These are necessary procedures during the reconstruction of the brain
connectome and this section describes a step-by-step approach to construct the connectome of individuals who survived stroke and have
brain lesions secondary to post ischemic necrosis. First, the raw MR images, typically available in the DICOM format must be converted to
NIfTI format popular with scientists. It is important to choose a conversion that is able to extract and transform the diffusion gradient table
(Li et al., 2016). The next step is to obtain probabilistic gray and white matter maps, which will be used to define gray matter regions of
interest and white matter masks for tractography. Conventional cortical segmentation programs have been designed for non-lesioned brains
and they typically lead to gross errors when processing brains with tissue damage. For this reason, it is essential to employ a tool that has
been optimized for brains with lesion, particularly stroke survivors. The “Clinical Toolbox” is an extension of the Statistical Parametric
Mapping (SPM) software, which was developed by our group (Rorden et al., 2012) in order to optimize the segmentation and registration of
brains with distorted anatomy due to large lesions. This processes requires a manually traced mask of the area of injury, which is typically
drawn on T2-weighted or T1-weighted images. The lesion mask is used to minimize the impact of the lesion on the normalization estimates,
either via explicit masking (Brett et al., 2001) or by substituting healthy tissue for homologous regions of the intact hemisphere (Nachev
et al., 2008). This yields transformation matrices for normalization into standard stereotaxic space (MNI space) and vice versa. Normal-
ization and tissue segmentation are performed iteratively, generating probabilistic tissue maps in native T1 and standard MNI space. Once
transformations matrices are obtained, a neuroanatomical atlas, e.g., Automated Anatomical Labeling (Joliot et al., 2015; Tzourio-Mazoyer
et al., 2002) can be non-linearly registered onto the probabilistic gray matter map (in native T1 space) and used to divide the gray matter
into ROIs. Subsequently, the ROIs generated from the previous step, as well as the white matter map, are moved to B0 space. To achieve
this, the T1-weighted image can be registered to an inverted fractional anisotropy (FA) map. Alternatively, if T2-weighted image is
available, it can be linearly co-registered onto the native T1 image and then linearly transformed to the B0 image. The transformation
matrices are subsequently applied to the map of segmented ROIs and to the white matter probabilistic tissue map, yielding cortical ROIs
and white matter maps in DWI space. With all data in diffusion space, either a probabilistic or a deterministic DTI algorithm can now be
applied to determine the strength of all pairwise connections between all ROIs. This strength is either the probability that two ROIs are
connected (probabilistic approach) or the number of streamlines with a correction that accounts for distance travelled and the volumes of
the ROIs involved (deterministic approach). With a matrix of link strengths, CLSM is performed by assessing link or node wise statistics.
Furthermore, graph theory measures can be derived from this matrix to characterize global and regional aspects of the patient's con-
nectome.
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matter pathways (Catani and Mesulam, 2008b), such as the arcuate
fasciculus, the superior longitudinal fasciculus, and so forth [for ex-
ample, see (Catani et al., 2013; Catani, 2008; Craig et al., 2009)].
Analogous methods identify pathways based on DTI metrics (e.g. var-
iations in functional anisotropy), either by still requiring predefined
known white matter bundles [e.g. (Ivanova et al., 2016)] or by aligning
DTI from multiple patients onto a single common space to infer a tract
“skeleton” that represents the center of all tracts common to the pooled
group (Smith et al., 2006). These types of approach require a homo-
geneous distribution of links across subjects, and they can both un-
derestimate link weights (e.g. by not including fibers running in par-
allel) and overestimate link weights (e.g. by counting fibers that happen
to be overlap with a specific predefined tract location on their way from
one structure to another). This is likely prone to error in cases of da-
maged brains, with large variability in residual white matter connec-
tions. In favor of this approach – specifically in the context of injured
brains – however, is the fact that probabilistic white matter maps can
constrain tractography, thus limiting errors.

Furthermore, CLSM estimates – for each link weight – the fibers
going between two specific ROIs. In contrast, these white matter bundle
approaches can possibly provide information about pathways with
uncertain origins (i.e., with clear approximate white matter location
but without knowing exactly what cortical regions those tracts are
connecting), which have been useful in several aspects of cognition,
most notably language functions [e.g. (Catani and Mesulam, 2008b;
Agosta et al., 2010)].

It should be emphasized that tractography in lesioned brains (i.e.,
with gliosis and liquefative necrosis) is not as well validated as trac-
tography in brains without neurological disorders. In fact, lack of va-
lidation is a limitation that still applies to many other techniques, in-
cluding functional MRI in the context of aging and cerebrovascular risk
factors (such as hypertension, diabetes and hypercholesterolemia) due
to changes in cardiac output, atherosclerosis, microangiopathic burden,
and hemodynamic coupling.

Every neuroimaging method has its limitations and CLSM results
should be interpreted with caution in the context of the shortcomings of

tractography. We believe that special attention should be placed to
maximize the sensitivity and specificity of fiber tracking, which, at the
time of this review, includes avoiding tracking in areas of gliosis and
liquefactive necrosis (i.e. within the stroke lesion), use of probabilistic
tractography and gray matter seeding in areas of residual (non-le-
sioned) cortex. It is also worth noting that, in spite of methodological
constraints, the confirmation of a statistical association between an
imaging marker and a clinical symptom is an important confirmation of
the biophysical relevance and of the utility of the tool.

Based on the aforesaid, there are objective advantages to in-
corporating a connectome approach to the study of behavior and
function, since CLSM can identify connections crucial for behavior in-
dependently of structural presumptions. The structural connectome per
se has limitations worth considering. First, directionality of fiber bun-
dles cannot be inferred from DTI. Second, short-range fibers can be
difficult to detect, and it is especially difficult to determine water dif-
fusion directionality in areas of dense fiber crossing or complex fiber
trajectories. Furthermore, because the statistical relationship between
structure and function in CLSM is based on link weights (e.g. fiber count
or connection probability), this approach ignores the integrity of in-
direct (i.e., beyond pair-wise) connections. For instance, if the white
matter fibers connecting A and B are disrupted but there is sparing of
the connections between A and C, and B and C, one could hypothesize
that there are indirect connections between A and B that could still
support function. Measuring connectome dynamics by analyzing the
shortest direct and indirect pathways between regions of interest can
provide valuable information about the overall integrity of the network
in supporting behavior (Misic et al., 2015).

5. Conclusions

Lesion symptom mapping is a very powerful approach in furthering
our understanding of the neurobiological basis of behavior and can
reveal a more direct relationship between structure and function than
activation techniques. The emergence of VLSM initially eliminated the
need to predefine regions of interest or classify patients into groups

Fig. 2. The methodological steps involved in the calculation of the connectome share similarities with VLSM. First, the necrotic/gliotic image is defined on T1 or T2 weighted images as
shown in Panel A. Again, here we see a 3D render of an individual patient's brain with a lesion. Subsequently, an iterative segmentation and cost-function normalization approach is
employed to define probabilistic maps of gray (Panel B, top row) and white matter (Panel B, middle row). The transformation matrix between T1 to MNI space is used to transfer an
anatomical atlas to T1-weighted space and segment the probabilistic gray matter into regions of interest (Panel C, bottom row). Panel C also shows the 3D renders of segmentation into
regions of interest (left and right lateral views with different colors for different regions). Tractography is performed in diffusion space, so the white matter mask and the segmented gray
matter maps are transferred to B0 space (Panel C) and tractography is used to assess the number of streamlines linking each possible pairs of regions. Care is taken to ensure that
tractography is performed being guided by the white matter probabilistic map, excluding the lesion site. The bottom row of Panel C shows a fiber density image in orange. Finally, a 2D
matrix is generated where each entry represents the connection weight between the region in the row and column. The top matrix in Panel D shows the connectome, which is then
arranged anatomically (Panel D, bottom matrix) to demonstrate the difference in the number of fibers in the left hemisphere (left upper matrix quadrant) versus the right hemisphere
(right lower matrix quadrant).
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based on arbitrary cutoff scores. It also enabled an objective and
quantifiable way to statistically evaluate the relationship between brain
structure and behavioral function. However, brain damage may extend
well beyond the area of apparent gray matter injury, and behavioral
impairment may come about from changes to the white matter tracts
that provide the scaffolding for brain function. CLSM is a whole-brain
approach that seeks to establish a statistical relationship between the
strength of connections between all brain regions of the brain (as de-
fined by a standard brain atlas or by discrete units as small as a voxel)
and the array of behavioral performance seen in patients with brain
injury. CLSM can therefore provide valuable complementary informa-
tion based on lesion-symptom mapping less constrained by cortical
injury.
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