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Electroencephalography (EEG) has emerged as a powerful tool for quantitatively studying

the brain that enables natural and mobile experiments. Recent advances in EEG have

allowed for the use of dry electrodes that do not require a conductive medium between

the recording electrode and the scalp. The overall goal of this research was to gain an

understanding of the overall usability and signal quality of dry EEG headsets compared

to traditional gel-based systems in an unconstrained environment. EEG was used to

collect Mobile Brain-body Imaging (MoBI) data from 432 people as they experienced an

art exhibit in a public museum. The subjects were instrumented with either one of four dry

electrode EEG systems or a conventional gel electrode EEG system. Each of the systems

was evaluated based on the signal quality and usability in a real-world setting. First, we

describe the various artifacts that were characteristic of each of the systems. Second,

we report on each system’s usability and their limitations in a mobile setting. Third, to

evaluate signal quality for task discrimination and characterization, we employed a data

driven clustering approach on the data from 134 of the 432 subjects (those with reliable

location tracking information and usable EEG data) to evaluate the power spectral density

(PSD) content of the EEG recordings. The experiment consisted of a baseline condition in

which the subjects sat quietly facing a white wall for 1min. Subsequently, the participants

were encouraged to explore the exhibit for as long as they wished (piece-viewing). No

constraints were placed upon the individual in relation to action, time, or navigation of

the exhibit. In this freely-behaving approach, the EEG systems varied in their capacity

to record characteristic modulations in the EEG data, with the gel-based system more

clearly capturing stereotypical alpha and beta-band modulations.
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INTRODUCTION

Technological advances in Mobile Brain-body Imaging (MoBI)
technology now allow the study of natural cognition and action
in real-world complex environments. In this type of deployment,
MoBI systems require synchronous recordings of brain activity,
environment capture technology (such as cameras that make
recordings context-aware), and recording of internal or external
events influencing cognition and action (Gramann et al., 2014b).
MoBI technology is expected to overcome technical constraints
arising from limitations of traditional brain/body imaging
modalities that restrict subjects to limited or no movement
during cognitive or motor tasks. This restriction may contradict
the very goal of such studies, which seek to elucidate the
underlying neural activity “in action and in context” involved in
natural human cognition or movement. Furthermore, cognitive
processes are often based on the surrounding environment and
our own physical body (Wilson, 2002). This has implications
in both perceptual and motor processing, and may affect, for
example, the way we perceive a viewed art piece or prepare
to execute a goal-oriented movement. Thus, it is imperative
to deploy both hardware and software that allow for the
simultaneous, reliable, and user-friendly recording of brain
activity and body movements during mobile applications.

A primary challenge in implementing MoBI protocols is the
development of wearable neurotechnology that allows for high-
quality recordings of brain responses and other physiological and
environmental signals associated with human experiences and
behaviors in natural complex settings. Over the last several years,
the development of “mobile friendly” neuroimaging modalities,
such as EEG and functional near-infrared spectroscopy (fNIRS),
has advanced our understanding of neurocognitive processes
during perceptual (Makeig et al., 2009; Gramann et al., 2014a;
Jungnickel and Gramann, 2016) and motor tasks, such as
locomotion on a treadmill (Gwin et al., 2011; Presacco et al.,
2011, 2012; Wagner et al., 2014; Bulea et al., 2015), transition
between movement states (i.e., movement intent) (Bulea et al.,
2014), expressive movement (Cruz-Garza et al., 2014), andmulti-
terrain over-ground locomotion (Brantley et al., 2016).Moreover,
these technologies provide a sensitive and reliable index to assess
brain activity involved in skill acquisition, task performance, and
during the development of expertise in complex tasks (Ayaz
et al., 2013). Recently, the use of these systems has uncovered
brain dynamics during aesthetic experiences in a real-world
environment (Kontson et al., 2015; Kovacevic et al., 2015). New
applications of these MoBI systems are being discovered on a
regular basis. However, eachmodality brings with it technological
challenges that potentially threaten the integrity of the data
collected in these real-world settings. For example, locomotion
and external environmental factors may adversely affect EEG
data recorded under a MoBI protocol. Additionally, the usability
and fit of various headsets may influence the quality of the data
collected under these MoBI conditions.

Until recently, EEG recordings were limited to systems
that require a conductive medium to be inserted between the
recording electrode and the individual’s scalp (e.g., saline, gels,
etc.). These systems are somewhat cumbersome and laborious

in their set-up, and leave the subject with gelatinous residue
in their hair (Ferree et al., 2001). Continuous use of gel on
the skin might also result in allergic reactions or infections
(Griss et al., 2002). Recent advancements in electrode technology
have led to the development of dry electrode systems, which
may allow for (1) reduced set-up time, (2) greater subject
mobility, and (3) signal quality equivalent to that of the gel-
based systems (Zander et al., 2011; Guger et al., 2012; Liao
et al., 2012; Mihajlović et al., 2015; Oliveira et al., 2016). EEG
is susceptible to signal contamination from non-physiological
and physiological sources, including power-line interference,
electrode pops, ocular motions (e.g., eye blink, saccades, and
fixations), muscle activation, and cardiac activities (Mahajan and
Morshed, 2015). Dry EEG systems may be more susceptible to
these artifactual phenomena due to an overall increased interface
impedance and potential loss of a stable contact between the scalp
and the recording electrode (Guger et al., 2012; Laszlo et al.,
2014).

Previous studies have evaluated dry and gel based systems for
signal acquisition and quality (Chi et al., 2012; Oliveira et al.,
2016; Wang et al., 2016), comfort, head size adaptability and
stability of electrode-scalp electrical connection during cognitive
tasks (Hairston et al., 2014). Chi et al. used sensor correlation
between the wet and the dry signals, power spectral density
(PSD), and signal to noise ratio (SNR) for the comparison among
the wet and dry electrodes and concluded that although the dry
systems suffer from signal degradation, they were feasible for
basic brain-computer interface (BCI) applications (Chi et al.,
2012). Oliveira et al. also proposed a metric to benchmark the
suitability of upcoming EEG technologies which were based
on a comparison of the signal-to-noise ratio, EEG amplitude
variance, and event related potentials (ERPs) between wet and
dry EEG systems (Oliveira et al., 2016). Contrary to what Chi
et al. reported (Chi et al., 2012), Oliveira et al. concluded that the
dry EEG systems may need substantial improvement in order to
match the quality of wet systems (Oliveira et al., 2016). Another
recent study from Wang et al. compared power spectra and
time-frequency maps (spectrograms) between the two systems
to evaluate the feasibility of novel semi-dry electrodes (Wang
et al., 2016). Although these novel system designs show promise
in a controlled laboratory setting, few studies have shown the
feasibility of individuals using these systems in a dynamic, real-
world environment (Gargiulo et al., 2008; Liao et al., 2012; Lin
et al., 2013; Yeung et al., 2015).

In this study, EEG recordings were collected from 432
individuals as they experienced an art exhibit in a museum. The
subjects were instrumented with one of four dry electrode EEG
systems, or a conventional gel electrode EEG system. Each of the
systems was evaluated based on the signal quality and usability
in a real-world setting. A description of each system is provided,
with details on the electrode montage, electrode type, and
technical specifications. First, we report on the typical artifacts
identified with each system type, and the probable cause(s) of
each artifact. Second, we evaluated the spectral content of EEG
recordings during art viewing and a control condition across the
dry electrode systems and the conventional gel electrode system
using a data driven clustering approach. Third, we examined
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patterns in spectral content across the EEG headsets to compare
between task conditions.

The overall goals of this research are to gain an understanding
of the overall usability and signal quality of dry EEG headsets in
an unconstrained environment. The usability and signal quality
of the systems are described in terms of the expected artifacts to
find in the experimental setup, the limitations of the systems, and
in the analysis of PSD patterns taken from the different headsets.
Furthermore, this study may provide a guideline for future non-
laboratory studies using mobile brain imaging technologies.

MATERIALS AND METHODS

Participants
The experimental protocol and anonymous informed consent
were approved by the University of Houston’s Institutional
Review Board (IRB) to minimize the disruption of the museum
environment and protect the privacy of the participants. Adults
volunteers provided anonymous informed verbal consent prior
to participating in the experiment. Children between the
ages of 6 and 18 years old provided anonymous assent to
participate in the experiment, whereas their parent/guardian,
provided anonymous informed verbal consent to have their child
participate. Written informed consent/parental consent was not
obtained because the IRB Committee waived the requirement
to obtain a signed consent form for the participants as the only
record linking the subject and the research would be the consent
document. Thus, the principal risk would be potential harm
resulting from a breach of confidentiality.

The experiments were conducted weekly at The Menil
Collection (Houston, TX) over the course of a 4-month period.
Visitors to the museum, ages 6 years and older, were invited to
view Dario Robleto’s installation at The Menil Collection, The
Boundary of Life is Quietly Crossed,while wearing aMoBI system.
All participants provided verbal consent to participate in the
study andwere asked to refrain from touching the headset. A total
of 432 (134 with reliable location tracking information and usable
EEG data) museum visitors participated as on-site volunteers for
this experiment. The demographic distribution of the volunteers
was comparable to the demographics in the population of the
Houston Metropolitan area, Texas (Supplementary Figure 1).

Experimental Set-Up
The volunteers were instrumented with one of four dry electrode
EEG caps: Mindo-32 Trilobite (M32; National Chiao Tung
University Brain Research Center1), Mindo-4S JellyFish (M4S;
National Chiao Tung University Brain Research Center2),
Neuroelectrics Starstim (SS; Neuroelectrics3), and Brain Products

1M32; National Chiao Tung University Brain Research Center, T. Mindo-32

Trilobite [Online]. Available online at: http://mindo.com.tw/en/goods.php?act=

view&no=17 (Accessed June 30th 2017).
2M4S; National Chiao Tung University Brain Research Center, T. Mindo-4S

Jellyfish [Online]. Available online at: http://mindo.com.tw/en/goods.php?act=

view&no=4 (Accessed June 30th 2017).
3SS; Neuroelectrics, B., Spain Starstim 8 [Online]. Available online at: http://www.

neuroelectrics.com/products/starstim/starstim-8/ (Accessed June 30th 2017).

actiCAP Xpress (BPD; Brain Products GmbH)4. In addition,
separate volunteers were recruited to participate in the
experiment while wearing a traditional gel-based EEG cap:
ActiCAP active electrodes with BrainAmp DC amplifier (BPG;
Brain Products GmbH5). The dry electrode systems were loaned
by the companies that manufactured them: two devices for M4S,
four devices for M32, one device for SS, two devices for BPD,
and one BPG system. The devices arrived at the experiment
location at different times. Their cumulative usage is shown in
Figure 1. Table 1 outlines the technical specifications of each of
the systems.

Experimental Tasks
After equipment set-up and prior to entering the exhibit, the
participants were asked to sit facing a white wall with their eyes
open for 1min. Following the 1min baseline, participants were
encouraged to explore the exhibit for as long as they wished.
Therefore, no constraints were placed upon the individual in
relation to action, time, or navigation of the exhibit. The
installation was contained in a 20× 25 ft (6.1× 7.6m) roomwith
two pieces in the center of the room and additional multi-media
installations along the surrounding walls. The exhibit explored
the history of the first recordings of the human heart beat
and brain activity through a series of sculptures, installations,
sound compositions, and a book. Following completion of the
exhibit viewing, participants were asked to voluntarily complete
a questionnaire summarizing their demographic information
and outlining their preferred pieces in the installation regarding
aesthetic appeal and emotional stimulation. Additional details,
including more details of the exhibit and results of the
questionnaire, can be found in (Kontson et al., 2015).

Permission was obtained from the artist to publish images
of his work in this article. All other works are shown with
permission from the Artists Rights Society and The Menil
Collection.

Location Tracking
One of three methods was used to track each individual’s
exploration of the art installation: manual annotation,
annotation directly within the EEG files, and/or radio frequency
identification (RFID). In the first method, the participants were
manually tracked using a stopwatch that was synchronized with
the beginning of the EEG recording. Their location and time
of arrival was recorded each time a new art piece was being
observed. In the second method, annotations were manually
inserted into the EEG recording software to indicate the
participant’s location; this type of tracking was specific to the
gel system. The third method utilized hand-held, wireless RFID
readers that the participants used to scan RFID tags placed at
various locations around the room. The time stamps associated
with each location were recorded and saved for post-processing.

4BPD; Brain Products GmbH, G., Germany Brain Products actiCAP Xpress

[Online]. Available online at: http://www.brainproducts.com/actiCAPXpress

(Accessed June 30th 2017).
5BPG; Brain Products GmbH, G., Germany Brain Products BrainAmp DC

[Online]. Available online at: http://www.brainproducts.com/productdetails.php?

id=2 (Accessed June 30th 2017).
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FIGURE 1 | Image of each EEG system and their respective electrode montage. The chart shows the cumulative usage (stacked timeline) of each system over the

course of 22 consecutive weekly experimental sessions. The arrows with headset names indicate the session number in which each device was introduced into the

experiment. The total number of recordings with each headset is shown under the diagram of the electrode montage for each devices (N = number of subjects).

A location tracking method based on Bluetooth triangulation
was explored as a fourth option for tracking. Unfortunately,
due to poor spatial resolution, this method was unusable for
data segmentation. Thus, only data with tracking information
provided by the first three methods were used for analysis, which
accounts for one half of the acquired data (192 subjects). A layout
of the installation with examples of the art work at each location
is shown in Supplementary Figure 2. Among these 192 subjects,
the data from 58 subjects was excluded due to corrupted data files,
resulting in a total of 134 subjects retained for analysis.

Summary of EEG Systems
The following sections provide a detailed description of the
systems used in this study (shown in Figure 1. Image of each
EEG system and their respective electrode montage. The chart
shows the cumulative usage (stacked timeline) of each system
over the course of 22 consecutive weekly experimental sessions.
The arrows with headset names indicate the session number in
which each device was introduced into the experiment. The total
number of recordings with each headset is shown under the
diagram of the electrode montage for each devices (N = number
of subjects). All the dry electrode systems were loaned by the
respective companies. The Brain Products ActiCAP with MOVE
systemwas owned by theUniversity of Houston.Table 1 provides
an outline of the general technical specifications of each system.

Mindo Trilobite (M32)
Mindo Trilobite is a 32-channel dry EEG system (Mindo,
National Chiao Tung University Brain Research Center, Taiwan)
that utilizes dry spring-loaded electrodes with foam-based

sensors (Liao et al., 2011). EEG data are online referenced
on the subject’s earlobe. The headset is made of a plastic
shell and has manual size adjustment mechanisms allowing
for superior/inferior adjustment and circumferential adjustment
around the head. The electrodes are organized according
to the extended 10–20 international system. The individual
electrodes are quickly attachable/detachable by a simple snapping
mechanism. The device communicates wirelessly via Bluetooth
to a tablet (MeMO Pad and Slate, ASUSTeK Computer Inc.)
that is carried by the individual. Each tablet has a proprietary
application installed for specific use with the Mindo devices. In
these experiments, the data resolution was set to a maximum
of 24 bits with a sampling rate of 256Hz and saved as .cnt
format. The data were automatically saved to the tablet and were
recovered for analysis after the completion of each session.

Mindo 4S JellyFish (M4S)
The Mindo 4S JellyFish is a 4-channel dry EEG system (Mindo,
National Chiao Tung University Brain Research Center, Taiwan).
The reference and ground electrodes were placed on the side of
neck using disposable adhesive electrodes. The headset is made
of a plastic shell with a rubber band for adjustment around the
head. The electrodes employ the same snapping mechanisms
as in the Trilobite, allowing for rapid removal and replacement
of individual electrodes. The 4S JellyFish electrode arrangement
matches the four front-most electrodes of the 10-5 system
(Oostenveld and Praamstra, 2001), the high resolution version
of the international 10–20 nomenclature system, with an extra
electrode on the outside for signal grounding. The system utilizes
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TABLE 1 | Technical specifications of the EEG systems used in this study.

Parameter Mindo-4S (M4S) Neuroelectrics actiCAP Mindo-32 Brain Products

Starstim (SS) XpressV-Amp (BPD) Trilobite (M32) BrainAmp DC (BPG)

Number of subjects 12 (118) 33 (50) 28 (57) 43 (186) 18 (20)

Electrode type Dry Dry/Gel Dry Dry Gel

Number of channels 4 8 16 32 32

Sampling rate (Fs) (Hz) 256 500 512 256 1,000

Ref/Gnd location Mastoid Neck/Mastoid Earlobes Earlobes Earlobes

Bandwidth (Hz) 0.23–13k DC−250 DC−500 0.23–13k DC-1000

Input noise (µVRMS) 1.25 1.0 1.0 1.25 1.0

CMRR (dB) 110 115 100 110 110

I/P Impedance (M�) 3 1,000 100 3 10

Resolution (µV) 0.29 0.05 0.05 0.29 0.1

Input range (mV) ±2,400 ±410 ±410 ±2,400 ±3.28

Resolution (ADC) 24 24 24 24 16

Communication Bluetooth Bluetooth Direct connection via USB to tablet/PC Bluetooth Direct to PC

In the “number of subjects” entry, the total number of subjects that used this device is shown in parentheses, while the number of subjects retained for analysis is shown to the left of

the parentheses.

the same Bluetooth connection and graphical user interface as
the Mindo Trilobite to transmit data to and store data on the
portable tablet device. The same parameters were utilized for the
4S JellyFish as the Trilobite, with the exception of the number
of channels: the data resolution was set to a maximum of 24 bits
with a sampling rate of 256-Hz and saved as .cnt format.

Neuroelectrics Starstim (SS)
Starstim is an 8-channel dry and gel, hybrid EEG and
transcranial current stimulator (tCS) system from Neuroelectrics
(Neuroelectrics, Barcelona, Spain). For the current study, only
the recording feature of this system was used; no stimulation was
applied to study participants. Although this system can be used
both dry and with gel, the rigid Ag/AgCl dry electrodes were
used exclusively in this study. The system is also fitted with a 3-
axis accelerometer for recording of head acceleration. The scalp
electrodes are labeled in accordance with the extended 10–20
international system. EEG data are online referenced directly on
the subject’s neck. The head cap is made of a flexible neoprene cap
with a detachable battery and electrode-housing box. The device
is wirelessly connected using Bluetooth 2.1 to tablets or PCs on
which the software provided by the company is installed. For this
experiment, the data were collected at a sampling rate of 256-Hz
and wirelessly collected using a Microsoft Surface Pro (Microsoft
Corporation, Richmond, WA).

Brain Products actiCAP Xpress (BPD)
Brain Products actiCAP Xpress is a 16-channel dry EEG
system (actiCAP system, Brain Products Xpress, Germany). The
electrodes are worn in a flexible rubber cap and can easily be
removed and replaced by fitting the electrodes within holes
in the cap corresponding to the extended 10–20 international
electrode nomenclature system. The dry sensors, known as Quick
Bits, are flat T-shaped and round mushroom shaped electrodes
for direct skin and scalp contact. The round shape of the

mushroom-headed sensors allows for contact with the scalp
without requiring the electrodes to be perpendicular to the head,
while the T-shaped sensors allow direct skin contact with a high
surface area for hairless and frontopolar positions. For these
experiments, EEG data were online referenced on the subject’s
earlobe and the data were collected at a sampling rate of 512-Hz.
The open-source 2015 version of the software OpenViBE (Renard
et al., 2010) was used for development of an experiment-specific
application. The EEG cap was wire-connected to a Microsoft
Surface Pro (Microsoft Corporation, Richmond, WA) and the
data were stored directly on the device during the experiment.

Brain Products actiCAP with BrainAmp DC (BPG)
Brain Products actiCAP gel is an active gel-based EEG system
(actiCap system, Brain Products GmbH, Germany) that can be
used with 32, 64, or 128 channels. A total of 32 electrodes were
utilized for this study. The electrodes were labeled in accordance
with the extended 10–20 international system (Jurcak et al.,
2007). EEG data were online referenced to channel FCz. In
addition, two channels from the posterior peripheral channels
(PO7 and PO8) were used to collect electrooculography (EOG)
from below and on the temple of the right eye. All data
were collected wirelessly at a sampling rate of 1,000-Hz. The
BrainVision Analyzer software was used for all data collection,
including manual tracking annotations.

Data Analysis
All data analysis was performed offline using MATLAB (The
Mathworks Inc., Natick, MA). Raw EEG signals were manually
segmented into windows of data from baseline and piece viewing
(segmented by specific art piece) using the participant tracking
methods outlined in the Location Tracking section.

Pre-processing and Artifact Removal
The data were high-pass filtered at 1Hz to remove signal drift
and low pass filtered at 50-Hz to avoid contamination from
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line-noise (60Hz) using a 4th order zero-phase Butterworth filter.
Initial visual inspection of the data revealed the presence of
significant signal contamination from non-stereotypical, non-
physiological artifacts. Although dry systems are becoming more
present in the market and scientific literature, their overall signal
characteristics, especially in non-laboratory settings, remains
widely unexplored. Thus, for initial artifact characterization, it
was necessary to manually identify and remove these segments
of data. Five distinct, non-stereotypical and non-physiological
artifact types were identified within the data sets: (1) poor
electrode contact, (2) poor signal digitization due to low signal
amplitude relative to amplifier resolution, (3) electrode pops, (4)
data loss during wireless transmission, and (5) no signal (relative
to the reference). Each of these artifact types is shown in Figure 2

and a detailed description of their characteristics is described in
section Identification of non-physiological Artifacts.

Following the removal of the non-EEG artifacts, Artifact
Subspace Reconstruction (ASR) (Mullen et al., 2013) was applied
to further remove artifactual components from the data. ASR
is an automated artifact rejection method available through
EEGLAB (Delorme and Makeig, 2004). The algorithm uses a
sliding window to identify segments of EEG data corrupted with
artifacts. The algorithm first identifies regions of clean EEG
data. Within each sliding window, principal components, which
exceed a pre-defined threshold in terms of standard deviations,
are identified as corrupted channels or segments of data. The
corrupted data is reconstructed from neighboring channels using
a mixing matrix, computed from the covariance matrix of the
clean data, based on the volume conduction principle. For
this study, as in the companion study (Kontson et al., 2015),
a window length of 0.5 s and a threshold of three standard
deviations were used. Given the potential for eye movement-
induced increases in power of relevant EEG frequency bands,
the ability of ASR to remove eye movement artifacts and other
artifacts was previously compared to Independent Component
Analysis (Kilicarslan et al., 2016). Results indicated that ASR
performed similarly to ICA when identifying and correcting eye
movements. The data were then re-referenced using the common
average reference (CAR) (Delorme and Makeig, 2004; Garipelli
et al., 2013).

Data Segmentation
The denoised EEG data were partitioned manually into two
conditions: (1) rest or baseline and (2) viewing of the artwork
(piece viewing). The piece-viewing partition was based on
the location tracking methods described in section Location
Tracking. The staff ’s manual annotations with start and end time
for viewing a particular piece by a subject within the museum
exhibit, or the RFID activation times were used for the same
purpose. The segmented data were further partitioned by sliding
a window of 4 s with a 2 s overlap across each condition. Data
segments with artifactual components, as described in section
Identification of non-physiological Artifacts, were removed from
further analysis.

Power Spectral Density (PSD)
The PSD for each data window was calculated using the
Thompson’s multi-taper PSD estimate: pmtm.m in Matlab

(Mathworks, Natick MA) v. 2015b, where the tapers are the
discrete prolate spheroidal sequences, time-halfbandwidth = 4,
number of points = 512 (Thomson, 1982; Percival and Walden,
1993). The PSDs were obtained for each 4 s segment using
256 (downsampled) frequency bins between 1 and 50Hz. The
PSDs were normalized by dividing each 4 s PSD by its total
power. The electrodes retained for analysis were based on the
commonality across headsets. Electrodes Fp1 and Fp2 were
common to BPG, BPD, M32, M4S. Electrodes F3, F4, C3, C4, P3,
and P4 were common to BPG, BPD, M32, SS. Finally, electrode
O1 was common to BPD, BPG, and M32. Overall, nine common
electrodes were retained for further analysis based on the 10–
20 standard for EEG channel locations: Fp1, Fp2, F3, F4, C3,
C4, P3, P4, and O1. Figure 1 shows the electrode montage for
each devices and Table 2 contains more information about the
electrodes and number of EEG data segments analyzed for each
headset.

Kernel K-means Clustering
In this analysis, we sought not only to identify the usability
of each system, but also the dominant spectral patterns within
the EEG signals. We assessed the similarity of the frequency
domain content of common electrodes using a data-driven
unsupervised clustering approach. First, kernel K-means was
implemented to find clusters of PSDs with similar characteristics
across headsets and conditions (i.e., rest and piece viewing).
The kernel function is a non-linear transformation that maps
the input data into a higher dimensional Hilbert space to find
better separability between data samples (Zhang and Rudnicky,
2002). The clustering was performed on 11 common electrodes
separately: Fp1, Fp2, F3, F4, C3, C4, P3, P4, and O1. For each
electrode analyzed, the 256 frequency bins were standardized by
subtracting the mean and dividing by the standard deviation.
The normalized spectra were used to construct the input matrix
XNxP where N is the data samples (see Table 2), and P = 256
standardized features.

Selecting the proper kernel function is critical in this
clustering method. Several kernel functions were explored for
this purpose: the linear kernel, polynomial kernel of degrees 2
and 3, and the Gaussian kernel with σ = [4, 12, 14, 20, 22, 24, 26,
28, 36, 44, 52, 60]. Furthermore, the number of selected clusters
can influence the overall results. We employed a technique that
allows reliable selection of the number of k clusters within
the data by identifying the dominant eigenvectors of the non-
linearly projected representation of the data, square symmetric
Kernel matrix (Girolami, 2002). We computed the eigenvalue
decomposition of the kernel matrix

KNxN = UΛUT ,

where the columns of U are the individual eigenvectors, ui, and
Λ is a diagonal matrix containing the associated eigenvalues λi.
Now, we can write

1TNK1N = 1TN

{

N
∑

i=1

λiuiu
T
i

}

=

N
∑

i=1

λi

{

1TNui

}2
.

We identified the k number of clusters by selecting the k

dominant terms in the summation λi

{

1TNui
}2

(Girolami, 2002).
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FIGURE 2 | (Left) Data collection and pre-processing pipeline. Visual inspection was performed on all the partitioned data to find and reject bad epochs. The findings

were used to create a set of guidelines (gray dashed boxes) to automatically remove bad epochs. (Right, A–D) Examples of the four most recurring gross artifacts

encountered through visual inspection. The red dashed sections show artifactual segments of EEG data and the blue dashed sections show normal EEG data.

Electrodes Fp1, Fp2, C3, C4, and P4 showed k = 5 dominant
terms in the eigenvalue decomposition, suggesting that the
optimal number of clusters is ∼5. Electrodes F3, F4, and P3
and O1 yielded k = 4 dominant terms. For consistency, k =

5 was chosen for the Kernel K-means algorithm to find five
cluster centers. The overall highest performing kernel function
(i.e., the function that produced the most well-distributed
distribution of similarity values in the kernel matrix) was the
Gaussian kernel with σ = (20, 22, 26) in all cases. The
cluster assignment was initialized randomly 200 times, and the
initialization configuration that produced the least within-cluster

variance was selected as the best result in each case (Shawe-Taylor
and Cristianini, 2004).

RESULTS

Subject Demographics
Supplementary Figure 1 shows the age and gender distribution
of study participants as compared to the city of Houston’s
population distribution. The distribution of the participants
follows the distribution of the Houston population with the
exception of ages 6–10 years old. Ages below six were
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TABLE 2 | Number of samples N, after removing corrupted signals, corresponding to each electrode, and headset analyzed.

BPG BPD M32 M4S SS Total (N) Kernel σ k dominant eigenvalues k selected

Fp1 3,085 845 1,327 460 — 5,717 Gauss 26 5 5

Fp2 3,085 845 1,349 460 — 5,739 Gauss 26 5 5

F3 3,085 832 1,349 — 1,415 6,681 Gauss 22 4 5

F4 3,085 841 1,349 — 1,404 6,679 Gauss 20 4 5

C3 3,085 845 1,349 — 1,415 6,694 Gauss 20 5 5

C4 3,085 845 1,343 — 1,380 6,653 Gauss 20 5 5

P3 3,085 845 1,349 — 1,415 6,694 Gauss 26 4 5

P4 3,085 845 1,349 — 1,372 6,651 Gauss 20 5 5

Total number of PSD segments 3,085 845 1,349 460 1,415

The value σ in the Gaussian Kernel corresponds to the best performing σ for each case. All clusters were performed by selecting k = 5 cluster centers to find.

“—” Indicates the headset did not contain that electrode. Gaussian kernel: K
(

x, x′
)

= exp(−
‖x−x′‖

2

2σ2 ), where
∥

∥x − x′
∥

∥

2
is the squared Euclidean distance between the two feature

vectors, σ is a scaling parameter.

not eligible to participate due to poor fitting of headsets
and inclusion/exclusion criteria approved by the IRB. The
distribution of males and females who participated in the
experiment was approximately evenly matched. Among the total
number of participants, a total of 192 participants (95 male and
97 female) had annotated tracking data available for analysis.
A location heatmap was created to visualize the patterns of
movement within the installation space and the pieces that
were viewed the most across all 192 subjects with tracking data
(Supplementary Figure 2). The EEG data from 134 subjects was
retained for further analysis due to data corruption in 58 subjects.

Usability of Each EEG System
The M32 headset was composed of a rigid plastic shell with
simple manual adjustment mechanisms (small wheels that were
adjusted by the fingers). This allowed for effortless placement
on the subjects’ head by simply donning it like a helmet, and
adjusting the fit as necessary. However, one of the challenges
faced with using the M32 system was the inability to maintain
electrode contact due to poor fit on varying head sizes, and an
inability to lock the adjustment mechanism. This resulted in
gradual loosening of the fit over the period of usage and in many
cases, constant electrode pops and amplifier saturation. The M32
headset was best suited for a rounder head shape; head shapes
that were more ovular suffered from poor electrode contact on
the lateral sides of the scalp (left: F7–P7; right: F8–P8) and on the
left and right sides of longitudinal fissure (left: F3–P3; right: F4–
P4). This is likely due to the fact that the adjustment mechanism
only allowed for the increase and decrease of the radius of the cap
and not for adjustment of the length and width independently.
On the other hand, subjects with flat scalps suffered with poor
contact on the superior surface only, likely occurring from a lack
of adjustment on this axis. Differences in human head size and
shape must be considered when designing an EEG system for
the general population. As in Hairston et al. (2014), we found
that stretchable EEG caps are desirable for optimal electrode
placement and electrode contact. Custom 3D printed headsets
may also help minimize poor fitting.

The M4S was composed of a hard plastic shell on which the
electrodes were attached. Adjustment was accomplished using
a flexible elastic band that could be loosened and tightened to
accommodate the head size/shape of each subject, while still
allowing for constant contact throughout the experiment. This
system was certainly one of the most simple to adjust for subjects
across ages, head shapes/sizes, and hair lengths. The electrodes
were simply aligned to the anterior aspect of the scalp (forehead)
and the elastic rubber strap was tightened into place.

The M32 and M4S systems suffered from a common issue
that often resulted in poor signal quality and data loss: the
electrodes were snapped into place using a standard 4-mm snap
interface. Although this simplified the removal and replacement
of individual electrodes, the snap could be easily undone when
even small amounts of lateral pressure were applied to the
electrode. In particular, when donning the system, users with long
or thick hair could easily cause the electrodes to unsnap. In some
cases, the subject might adjust the cap during the experiment,
causing the electrodes to pop loose. This was less problematic
with theM4S system; however, both were susceptible to this issue.

The 8-channel SS system employed a neoprene fabric cap that
covers the entire head of the subject and is secured into place
with a Velcro strap under the chin. The neoprene cap enabled
simple and flexible donning/doffing and accommodated varying
head sizes/shapes with a single cap. One of the drawbacks of
this material is low permeability to air, resulting in excessive heat
build-up under the cap and sweating by the subject. This can lead
to electrodes shorting if sweat causes bridging. The spike style
electrodes allowed for easy contact adjustment once the cap was
secured into place. This resulted in better recording quality with
low instances of electrode pop or poor contact. In some cases,
subjects complained of discomfort with the spiky electrodes when
used for extended periods of time. However, the number of
instances and extent of discomfort were not documented and are
thus not reported in further detail.

The BPD system utilizes a thin flexible rubber cap with rings
for mounting metal dry electrodes for contact with the scalp.
Due to the cap’s flexibility, the placement and adjustment of the
cap was simple and relatively quick. The electrodes themselves
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had long dome-shaped tips that helped to maintain contact
when the electrode shifted to varying angles with respect to
the scalp. The length of the tip could be easily adjusted by
switching the tips for ones of the correct size. This feature helped
to significantly improve comfort and initial fit; however, it was
later observed that the dome shaped tips were highly susceptible
to movement, resulting in significant system-related artifacts.
The electrodes were individually wired to a splitter-box that
was directly connected to a portable amplifier via a long ribbon
cable. This allowed for a direction connection with the amplifier,
however, it introduced the challenge of cablemanagement behind
the cap. The previous systems were all wired to a single point
connected directly to the cap, reducing the need to consider
pulling on the electrodes by the cables. The BPD system required
conscious effort to ensure that electrodes were not free to move
or be pulled, resulting in signal contamination by high amplitude
artifacts. Nonetheless, when properly managed, the BPD system
was simple to use and comfortable for the user over extended
periods of time.

Identification of Non-physiological
Artifacts
After visual inspection of the data, it was determined that
the presence of significant signal contamination from various
artifacts warranted the manual identification, characterization,
and removal of contaminated epochs from the data. Five
distinct non-physiological artifact types were identified within
the data sets: (1) electrode pops, (2) poor electrode contact,
(3) digitization error resulting from low signal amplitude
relative to the amplifier resolution, (4) data loss during wireless
transmission, and (5) no signal (relative to the reference). Each
of these artifact types is shown in Figure 2. These types of
artifacts were identified using a thresholding technique based
on manual identification of the artifacts in each system. The
uniqueness of each system presented significant challenges when
using an automated algorithm, and thus manual identification
was selected as the preferred method for initial characterization
of artifacts during data acquisition in natural complex settings.

After the artifacts were manually identified and characterized
(Figure 2), we implemented an automatic gross artifact rejection
scheme based on a threshold approach. An upper threshold of
300 µV was determined to be adequate for removal of high
amplitude artifacts. In contrast to amplitude-based thresholding,
higher order statistics (e.g., standard deviation, kurtosis) are
commonly used in EEG experiments to select artifactual epochs
of data to be removed, as proposed in Delorme et al. (2007).
However, in our freely-moving environment with dry EEG
electrodes, many of the sections of the data were highly
contaminated with large-amplitude artifacts. These artifacts
significantly distort the statistical properties of the data, making
it challenging to obtain a true estimate of the higher order
moments of the data. Thus, a threshold-based technique could
be used across all systems since all reasonable EEG could be
expected to occur below the given amplitude value. Specifically,
an upper bound of 300 µV was used to remove high amplitude
bursts. Brain-related EEG data has not been reported to reach

300 µV in amplitude. Typically, in experiments with little to no
movement, the threshold amplitude is set at ∼100 µV (Uriguen
and Garcia-Zapirain, 2015). It is important to consider that dry
EEG systems may require a higher amplitude threshold given
the high impedance interface between the scalp and electrode;
however, even in the case of dry EEG systems, 300 µV signals are
likely to be artifactual regardless of the system used. This initial
artifact identification method was employed to identify high
amplitude bursts originating from non-physiological sources.
As shown in Figure 2C, eye blinks can be clearly observed
within the signal having amplitudes of ∼100 µV, while the non-
physiological bursts significantly exceed the 300 µV amplitude
threshold. This is further illustrated in Figure 2D, where a single-
channel electrode pop has an amplitude reaching∼400µV, while
the normal EEG signal is in the range of 1–100 µV.

A lower amplitude threshold was used to identify flat lines,
digitization errors, and wireless data transmission errors. The
lower threshold was set to 10 times the resolution of each system
resulting in a system specific value for each headset: (1) M32: 3
µV, (2) M4S: 3 µV, (3) SS: 0.5 µV, and (4) BPD: 0.5 µV. The
segment of data was removed if the amplitude exceeded the upper
threshold, or the amplitude did not exceed the lower threshold in
20% of the recording. To ensure that contaminated epochs were
fully removed from the data, 0.5 s before and after the labeled
region were removed with the artifact. A final visual inspection
was performed to remove epochs of wireless data transmission
loss.

Poor Electrode Contact
Poor electrode contact presented as a similar artifact to electrode
pops; however, the artifact was deemed to be poor contact if
continuous segments of data suffered from repeated pops (shown
in Figure 2C). It can be seen that the square shaped artifacts
are on the order of volts. The magnified portion of the signal
in the balloon shows actual signal containing an eye blink
(∼100 µV). Poor electrode contact was observed primarily in
the M32 and BPD systems. In M32, poor contact was attributed
to the rigid form factor, resulting in poor fit of the system. This
was primarily due to head sizes exceeding the size of the rigid-
body recording system, variable roundness, and local concaves
in the head shapes. When a headset did not fit appropriately,
the pressure may not be distributed over the scalp as intended,
resulting in discomfort for the subject and displaced electrode
locations (Hairston et al., 2014).

In BPD, poor electrode contact was observed when the dome
shape electrodes would shift, causing the electrode to go in
and out of contact as the subject moved around the space. In
both systems, the artifact could be visually identified as large
square waves that saturated at the peak, and repeatedly oscillated
between low amplitudes and the maximum value. Of note, when
the BPD system saturated, the output was orders of magnitude
larger than the normal acceptable EEG signal.

Digitization Error
The digitization error was an artifact that was observed to be
specific to theM32 andM4S systems. This error presented as very
low amplitude signals that had square-like waves. It was observed
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that the difference between values was near to the resolution
of the analog-to-digital converter (ADC). Furthermore, the
amplitude remained low throughout the entire trial. A close-up
examination revealed that the signal is not in fact EEG (shown in
Figures 2, 4A).

Electrode Pops
Electrode pops are historically well-documented artifacts that
result from an instantaneous change in the scalp-interface
potential, resulting in large amplitude (relative to the artifact-free
EEG signal) bursts within the signal (Barlow, 1985). Although
common in EEG, the presentation of these bursts, or pops, vary
between headsets, depending on the electrode type, cause of
the pop, and amplifier characteristics. Each of the headsets was
examined for electrode pops and epochs exceeding the upper
threshold were removed from the data. Electrode pops were
identified as single events that were not connected to other such
events directly (i.e., single bursts that start low, go high, and
return to normal EEG amplitudes). This artifact was observed in
all headset types.

Data Loss during Wireless Transmission
Wireless transmission of data via Bluetooth or radio frequency
can result in data loss if the connection between the transmitter
and receiver is interrupted. In the case of this experiment,
data loss during wireless transmission was observed when the
subject was too far from the point of data reception, or if the
transmission pathway was physically obstructed, either by the
subjects’ own body, or by other museum goers. This type of
artifact was characterized by sudden and sustained reduction of
amplitude across all channels. The last value was observed to be
held until wireless transmission resumed. Figure 2B shows an
example of this type of artifact, and how it was observed across
all channels in the data. This type of artifact was observed rarely,
but predominantly in the BPG wireless system.

Flat lines (i.e., No Signal)
This type of artifact was simply described as flat lines, or no
signal, in one ormore channels; however, it was not considered an
artifact if this occurred in all channels, but was instead identified
as a failed recording. For this artifact type, the channel contained
no data resulting from one of two primary reasons: (1) the
electrode was not in contact with the scalp, or (2) the electrode
had become disconnected and was not recording data. In the
first case, improper connection resulted from a poor fitting cap
(meaning the electrodes were not in contact with the scalp) or
shifting of the cap during movement (causing the electrodes
to lose signal during the experiment). In the second case, no
signal would occur when the electrodes would become physically
disconnected from the cap. This was unique to M32 and M4S,
in which the electrodes would disconnect from the 4mm snap
connector due to the plug-in design of the electrodes, where the
plug-in interface was facing the subjects’ head.

Comparison among different headsets for channel and data
rejection is represented in Figure 3. The channel rejection
rate, from our criteria defined in section Identification of
non-physiological Artifacts and Figure 2, was lowest for the

-gel-based system BPG. For Figure 3A, windows of data where
the recordings surpassed the upper threshold are associated
with poor electrode contact (C) and electrode pops (D).
Lower threshold rejection is associated with digitization error
(A) for M4S and M32. For BPD and BPG, the amplitude
resolution prevented digitization errors, but the channels were
removed based on a one-fits-all scheme. In Figure 3B we
analyze the data from the channels that were not removed
based on the criteria. The windows of removed data in
Figure 3B correspond to temporary poor electrode (C) contact
and wireless transmission loss (B). BPD (0.57%) and BPG (0.2%)
resulted in the least data rejection after removing artifactual
channels.

Clustering Results: Analysis of Power
Spectra
The clustering analysis was performed as a method to evaluate
the dominant spectral patterns within the EEG signals and to
assess the similarity of the frequency domain content of common
electrodes across the headsets. The kernel clustering analysis
revealed five clusters of spectral patterns across all headsets for
each of the electrodes in the sample analyzed. In general, the
individual clusters showed typical spectral patterns, including
PSDs with strong alpha (8–12Hz) peaks, high beta (12–30Hz)
activations, and noise characteristics. We now describe gender,
age, and piece-viewing specifics spectral patterns uncovered by
the kernel clustering analysis.

The spectral clustering for electrodes Fp1 (Figure 4) and
Fp2 (Supplementary Materials) revealed a typical 1/f curve in
the clusters that contain a majority of PSDs associated with
headsets BPG, BPD, and M4S. The PSDs from M4S and BPD
are grouped in the same cluster, with a 1/f shape in the curve.
BPG was the dominant contributor to three clusters: Figure 4B,
clusters 1, 2, and 4. Cluster 4 showed a high beta power increase,
corresponding to a majority of the BPG-PSDs coming from
“Piece-viewing” conditions. Cluster 1 shows a slight bump in
the beta band also corresponding to a majority of BPG-PSDs
coming from “Piece-viewing” conditions, and cluster 2 captures
BPG-PSDs with a smooth 1/f curve with comparable number
of samples coming from “Rest” and “Piece-viewing conditions.”
There is a clear majority of M32 PSDs in cluster 5, indicating that
the PSDs from the data taken using this particular headset was
different than the other headsets: the PSDs in this cluster show a
concave down characteristic curve.

The clustering results from electrodes F3, F4, C3, C4, P3, and
P4 showed similar results in terms of the composition of the
clusters. Each cluster had a clear majority from one particular
headset type, with two clusters corresponding to two major PSD
shapes from BPG. Figure 5 shows the results for electrode F4.
The results for electrodes F3, C3, C4, P3, and P4 are shown in
the Supplementary Materials. In Figure 5, cluster 1 and 5 have
a majority of BPG PSDs: both clusters show a 1/f curve, with
cluster 1 containing a slight bump in the beta band. Cluster 2
contains a majority of the PSDs coming from M32, showing a
concave down curve. Cluster 3 contains a clear majority of PSDs
from SS, with the overall shape of them having a shape that rises
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FIGURE 3 | Channel and data rejection statistics for all the headsets. (A) Channel rejection rate across subjects during baseline and piece-viewing. The orange bars

indicate the channel rejection rate due to the channel surpassing the upper threshold for 20% of the session, while the blue bars show the rejection rate based on the

channel not surpassing the lower threshold for 80% of the session. (B) Data rejection rate across subjects during baseline and piece-viewing, after artefactual channel

removal. (C) EEG channel rejection rate based on the amplitude thresholding criteria. Red: Ground. Blue: Reference. For BPG, the electrodes removed around the

reference correspond to lower-threshold rejections, although those channels did not exhibit digitization errors.

and plateaus after ∼5Hz. Cluster 4 contains a majority of PSDs
from BPD showing a 1/f curve, with similar-shape PSDs from SS
and M32. The parietal electrodes, P3 and P4, yielded comparable
results, with one of the BPG-majority clusters showing a more
pronounced alpha peak corresponding with more PSDs from the
“Rest” condition than the BPG-majority cluster with a smooth 1/f
curve.

The clustering on the occipital electrode O1 produced clusters
pertaining to a headset-related majority. Figure 6 shows the
clustering results for O1, as it was the only occipital electrode
shared by at least three headsets. In Figure 6, clusters 1, 2, 5
showed a majority of PSDs taken from BPG: cluster 2 shows a
smooth 1/f curve with the PSDs coming primarily from “Piece-
viewing” conditions; cluster 1 shows a clear peak in the alpha
band with PSDs comingmostly from “Piece-viewing” conditions;
and cluster 5 shows a 1/f curve with bumps in the alpha band
together with the headsets BPD and M32 with PSDs coming
primarily from the “Rest” condition. BPD had a clear majority
of PSDs in one cluster in which it’s PSDs show a 1/f and
come mainly from the “Rest” condition. However, the other
contributing headsets, BPG (14%) and M32 (29%), show a
strong peak in the alpha band. Finally, one cluster contains
a majority of PSDs coming from M32, with a concave down
shape.

DISCUSSION

In this study, we conducted a large-scale real-world experiment
at the Menil Collection museum in Houston, Texas and acquired
EEG data from 432 subjects using both dry and wet systems.
Among these subjects, a total of 134 subjects had reliable
tracking information and usable EEG data and were retained for
analysis. We observed the distribution of the participants to be
aligned with the population in Houston, where the experiments
were conducted (Supplementary Figure 1). Trajectories of the
participants were also visualized to identify the most viewed
art pieces (Supplementary Figure 2). In addition, various types
of distinct EEG artifacts that were commonly shown in the
dry EEG headsets were identified, characterized, and described.
Furthermore, kernel clustering was performed to characterize the
EEG spectral patterns, to identify any differences among different
EEG systems, and to assess differences in the features between
baseline vs. piece-viewing and male vs. female.

In this freely-behaving approach, the EEG systems varied
in their capacity to record characteristic modulations in the
EEG data. The gel-based system clearly captured modulations
in alpha and beta bands. We observed that high-beta power
PSDs from pre-frontal and frontal electrodes came at a higher
proportion from piece-viewing conditions than the baseline
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FIGURE 4 | Results of kernel k-means clustering for electrode Fp1 (Gaussian kernel; σ = 26). (A) Three-dimensional visualization of the final clusters from kernel

k-means. Each point in the scatter plot corresponds to the total normalized power (area under the PSD) in the delta, alpha, and gamma bands for a single 4 s window.

(B) The pie charts show the contribution of each headset type to the PSD clusters. To the right, the last pie chart shows the overall distribution of the PSDs for each

headset type. (C) The mean of the PSDs for each headset type is shown below each cluster’s pie chart, along with the 5th and 95th percentiles as shaded regions.

The PSDs from headset M32-A were excluded from visualization because they contain a prominent peak at 30Hz from unknown source, not representative of the

PSDs from headsets M32-B, M32-C, and M32-D. (C) Distribution of gender and condition information for the PDSs grouped in each cluster. *Indicates most

aesthetically pleasing and **indicates most emotionally stimulating as reported in the questionnaire.

condition, and high-alpha power PSDs in central, parietal and
occipital electrodes came at a higher proportion from the
baseline condition. Although the patterns are also present in
the dry-electrode systems (Figures 4B, 5B, 6B), the effects were
suppressed and inconsistent (e.g., Figure 6B Cluster 3).

Kernel K-Means Clusters
The clustering algorithms used on the normalized PSDs from the
headsets analyzed resulted in five distinct clusters for electrode
locations Fp1, Fp2, F3, F4, C3, C4, P3, P4, and O1. In most cases,
the clusters contained a headset-specific majority, indicating
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FIGURE 5 | Gaussian kernel (σ = 22) k-means results for the parietal electrode F4. (A) Three-dimensional visualization of the final clusters from kernel k-means. Each

point in the scatter plot corresponds to the total normalized power (area under the PSD) in the delta, alpha, and gamma bands for a single 4-s window. (B) The pie

charts show the contribution of each headset type to the PSD clusters. To the right, the last pie chart shows the overall distribution of the PSDs for each headset type.

(C) The mean of the PSDs for each headset type is shown below each cluster’s pie chart, along with the 5th and 95th percentiles as shaded regions. The PSDs from

headset M32-A were excluded from visualization because they contain a prominent peak at 30Hz, not representative of the PSDs from headsets M32-B, M32-C, and

M32-D. (C) Distribution of gender and condition information for the PDSs grouped in each cluster. *Indicates most aesthetically pleasing and **indicates most

emotionally stimulating as reported in the questionnaire.

that the overall shape of the PSDs depended on the system
used, typically with two clusters pertaining to distinct PSD
shapes from BPG. BPG was the only gel-based system used in
this experiment, possibly accounting for the dominance of this
headset in capturing data with consistent distinct PSD shapes.
The four dry systems showed varying degrees of alpha and beta
peak detection, which were clearly captured by BPG.

Data Variability Due to EEG Systems Used
These results indicate that the signal characteristics are
dependent on the EEG system used. In addition, it was often
the case that the dry electrode systems being clustered often with
other dry electrode systems, excluding the gel electrode system.
For this real-world EEG data collection, the recording system
influenced the quality of the data collected. The systems used in
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FIGURE 6 | Gaussian kernel (σ = 20) k-means results for the parietal electrode O1. (A) Three-dimensional visualization of the final clusters from kernel k-means. Each

point in the scatter plot corresponds to the total normalized power (area under the PSD) in the delta, alpha, and gamma bands for a single 4 s window. (B) The pie

charts show the contribution of each headset type to the PSD clusters. To the right, the last pie chart shows the overall distribution of the PSDs for each headset type.

(C) The mean of the PSDs for each headset type is shown below each cluster’s pie chart, along with the 5th and 95th percentiles as shaded regions. The PSDs from

headset M32-A were excluded from visualization because they contain a prominent peak at 30Hz, not representative of the PSDs from headsets M32-B, M32-C and

M32-D. (C) Distribution of gender and condition information for the PDSs grouped in each cluster. *Indicates most aesthetically pleasing and **indicates most

emotionally stimulating as reported in the questionnaire.

this experiment varied in their capacity to record characteristic
modulations in the EEG data, in particular for alpha and beta
power. A recent study by Melnik et al. found that the subjects
(32%) and the systems (9%) used for recording EEG data largely
contributed to the total variance in the data (Melnik et al., 2017).
This result comes from the comparison of three dry and one

gel-based EEG systems on four subjects in short standard EEG
tasks based on event-related potentials and steady-state visually
evoked potentials.

In our experiment, the systems used were a significant source
of variance in the data across hundreds of subjects in a freely-
moving and richly stimulating environment. The high variance

Frontiers in Human Neuroscience | www.frontiersin.org 14 November 2017 | Volume 11 | Article 527

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Cruz-Garza et al. Mobile EEG in Museum Setting

originating from the systems is likely due to significant variability
in cap shape, electrode design, and amplifier characteristics.
First, each system fits slightly different, causing certain channels
to maintain better contact than others, while some may never
reach the scalp (as in the rigid design of M32). Second, the
electrode tips varied substantially in shape andmaterial. TheM32
electrodes used a combination of flat electrodes (frontal) and
spring contact probes (M4S utilizes the same flat electrodes as
the frontal channels in M32). The BPD system utilized a dome
tipped electrodes to helpmaintain contact as the electrode rotates
with respect to the scalp, while SS employs hard spiky electrodes
to help penetrate through hair and maintain contact with the
scalp. Lopez-Gordo et al. reviewed the various types of electrodes
and observed significant differences between electrodes types in
interface impedance, signal amplitude, and noise from external
sources (e.g., motion, magnetic interference) (Lopez-Gordo et al.,
2014). Thus, the signal quality assessment is highly influenced by
these conditions. However, in our study, we do not seek to find
the optimal configuration, but instead seek to assess the usability
of these systems in an unconstrained setting.

Interpretation of PSD Clusters
For the pre-frontal (Fp1, Fp2), frontal (F3, F4), and central (C3,
C4) electrode locations, there were clear beta-band peaks with
a preceding alpha-band valley in the BPG-PSDs grouped for the
piece-viewingmajority clusters (Figure 7). The beta peak was less
prominent in the central electrode locations compared to pre-
frontal and frontal. The beta band has been used in concentration
tasks for experiments done outside the laboratory for massive
EEG data collection (Umilta et al., 2012) as an indicator for
concentration level of the subject or group of subjects. In the
electrodes located over the parietal (P3, P4) and occipital (O1)
regions, the BPG-PSDs with highest alpha-band power were
grouped together in baseline-majority clusters (Figure 7). The
high alpha peaks in the baseline condition, looking at a blank
wall, may result from relaxation and lack of stimulating visual
input in the subjects.

These observations of alpha suppression with beta peaks in
PSDs coming from piece-viewing tasks in pre-frontal and frontal
electrode locations, as well as alpha suppression in posterior
electrodes, are consistent with the observations in the companion
report (Kontson et al., 2015) in which high levels of connectivity
were found between occipital and frontal scalp regions as the
subjects experienced and evaluated the artistic stimuli in the
room.

The contrary effects to our beta-band observations have
also been reported in the literature. Umilta et al. reported no
significant beta-band power changes as subjects observed abstract
paintings on a computer screen (Umilta et al., 2012). The
cognitive processes associated with the aesthetic and emotional
experience of hundreds of subjects in natural settings (e.g.,
museums, galleries, artist studios) is naturally expected to
be different. For each individual, there will be a multitude
of processes (or internal states) and brain regions involved
in the aesthetic experience (Dietrich and Kanso, 2010) and
understanding of the artwork exposed. The analysis exposed
here does not attempt to inquire into the particularities of each
subjects’ aesthetic experience. Rather, we grouped the data into

natural clusters that revealed overall PSD properties and how
they relate to “baseline” vs. “piece-viewing” tasks, gender, or
recording system used. Instead, we point the reader to Kontson
et al. (2015), where a subset of EEG data (specifically from BPG)
was analyzed in detail.

Usability and Future Implications
This section provides a qualitative analysis of the usability of each
system as perceived by the researchers.

Donning/Doffing and Fit of EEG Cap
A previous study testing the usability of different commercially
available EEG systems in which subjects moved freely in a rich-
stimulation environment (Hairston et al., 2014) found that the
form factor and manufacturing materials provide different levels
of comfort and electrode location due to different head shapes
and forms. We found that it is difficult to accommodate varying
head shapes and sizes using EEG systems with hard shells. For
extended periods of time, this could be ameliorated with custom
3D printed hard-shells that fit the user’s head anatomy while
maintaining the headset in place.

Application Interface, Data Recording, and Portability
Each of the systems varied in how the data were recorded,
including wireless transmission or direct connection to a PC
or tablet. This feature played a direct role in the reliability of
the recordings and the degree of portability that each system
possessed. The M32 and M4S systems interfaced directly with
an android application that came pre-loaded on a small tablet
that was provided by the company (MeMO Pad, ASUSTeK
Computer Inc.). The devices were synchronized with the tablet
via Bluetooth and all recording settings were established directly
through the application interface. Depending on the subject’s
preferences, the tablet was either carried throughout the duration
of the experiment, or placed on a small table near the entrance
of the room. The wireless connection allowed the system to be
portable, requiring the user to occupy only one hand with the
tablet or to be completely hands-free if chosen (in the case of
the tablet remaining on the table). One drawback of this system
was unreliability of the user interface: the tablet application was
observed to crash unexpectedly, stopping data recording for
the remainder of the subject’s session. However, the interface
itself was easy to use and provided the user immediate visual
representation of the signal.

The SS system was a highly portable system that
communicated directly from a module on the cap to a
wireless USB dongle that was plugged into a tablet (with USB
connections) or PC. In this experiment, the Microsoft Surface
Pro 3 tablet (Microsoft, Inc.) was used to allow for increased
portability. The data were transmitted wirelessly and recorded
on the Neuroelectrics Instrument Controller (NIC) software.
NIC was observed to be very stable and did not result in data
loss due to crashing or software failure. Similar to the M32 and
M4S systems, all recording settings, including initiation and
termination of the trial, were established through the software.

The BPD system was the least portable of the systems

requiring a direct connection between the amplifier and host
recording system (either PC or tablet with USB connection).
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FIGURE 7 | Comparison of PSDs from two BPG-majority clusters. Each row shows the median with the 20th and 80th percentiles of the PSDs from BPG grouped

together in the BPG-largest clusters. (Left) PSDs from BPG in cluster 1. The inset shows the proportion of Baseline (B) and Piece-viewing (PV) PSDs in that cluster.

An asterisk (*) indicates that there is a statistically significant difference with a confidence level of 99% between the cluster proportion of B vs. PV and the total sample

proportion B (0.21) vs. PV (0.79) collected for BPG in the experiment. (Right) PSDs from BPG in cluster 2.

To maximize portability, the amplifier of the BPD system
was connected to a Microsoft Surface Pro 3 tablet (Microsoft,
Inc.) and the data were recorded on a custom application
using the open-source BCI software, OpenViBE (Renard et al.,
2010). It should be noted that this system is also capable
of interfacing directly with the manufacturer’s data collection
software, BrainVision Analyzer. As a result of the cabling between
the electrodes/amplifier and amplifier/tablet, the subjects were
asked to wear a small backpack in which they stored the tablet for
the duration of the experiment. One issue encountered with both
the BPD and SS systems was the limited amount of time that the
Surface Pro could be used for collecting data. Constant use over

extended periods of time resulted in rapid battery depletion and
excessive heat build-up, often causing the tablets to shut down
in the middle of data. However, this was a challenge associated
with the recording device (Surface Pro) and does not directly
reflect the performance of the EEG systems. Thus, similar studies
conduct in the future should account for these problems.

LIMITATIONS OF THE STUDY

The EEG systems were obtained on loan from the respective
companies, thus they were used as they arrived to the experiment
location (Figure 1). As a result, there was an uneven number of
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datasets for each of the headsets. The real-world experimental
setting, in which museum-goers as volunteers, resulted in the
laboratory staff procuring limited set-up time to prepare the
subject with the EEG system. An additional limitation of
this study was the variability in the EEG headsets, including
shape, electrode material/shape, data transmission method, and
amplifier properties. However, in this study, we sought to identify
patterns within the data that are expected to exist in all EEG
signals (e.g., 1/f power spectrum, changes in alpha rhythms,
etc.). Additionally, we did not seek to identify an optimal
configuration of any of these features, but rather report on the
overall performance of these commercial systems.

Preliminary analyses did not show a clear segmentation of the
clustered PSDs based on age, gender, occupation, race/ethnicity
or gender. We decided to illustrate the distribution of gender
within each cluster (Figures 4C, 5C, 6C), but age, occupation,
race/ethnicity were not covered in this report. Additionally, the
results of the questionnaire given at the end of the exhibit
visit (e.g., most aesthetically pleasing piece, most emotionally
stimulating piece) were not addressed in this report.

AUTHOR CONTRIBUTIONS

JB, JGC-G, SN, KK, and MM contributed in collecting data
at Menil Collection. JB, JGC-G, and SN contributed equally
analyzing the data, interpreting the results, and writing the

manuscript. DR contributed the use of his artwork and
facilitating the study at the Menil Collection. JLC-V conceived
and directed the research, and edited the manuscript.

FUNDING

This work was partially supported by a cross-cutting seed grant
from the Cullen College of Engineering at the University of
Houston and the National Science Foundation Award NCS-FO
1533691.

ACKNOWLEDGMENTS

The authors would like to thank all the members from the
Laboratory for Non-Invasive Brain Machine Interfaces at the
University of Houston for their assistance in the acquisition of
data at theMenil Collection. The authors would also like to thank
Sohan Gadkari and Dakota Grusak for their assistance in the data
analysis, and Curator Michelle White for facilitating the study at
the Menil Collection museum.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnhum.
2017.00527/full#supplementary-material

REFERENCES

Ayaz, H., Onaral, B., Izzetoglu, K., Shewokis, P.,McKendrick, R., and Parasuraman,

R. (2013). Continuous monitoring of brain dynamics with functional near

infrared spectroscopy as a tool for neuroergonomic research: empirical

examples and a technological development. Front. Hum. Neurosci. 7:871.

doi: 10.3389/fnhum.2013.00871

Barlow, J. S. (1985). Methods of analysis of nonstationary EEGs, with emphasis

on segmentation techniques: a comparative review. J. Clin. Neurophysiol. 2,

267–304. doi: 10.1097/00004691-198507000-00005

Brantley, J. A., Luu, T. P., Ozdemir, R., Zhu, F., Winslow, A. T., Huang,

H., et al. (2016). “Noninvasive EEG correlates of overground and stair

walking,” in 2016 IEEE 38th Annual International Conference of the Engineering

in Medicine and Biology Society (EMBC) (Orlando, FL: IEEE), 5729–5732.

doi: 10.1109/EMBC.2016.7592028

Bulea, T. C., Kim, J., Damiano, D. L., Stanley, C. J., and Park, H.-S. (2014). “User-

driven control increases cortical activity during treadmill walking: an EEG

study,” in 2014 IEEE 36th Annual International Conference of the Engineering

in Medicine and Biology Society (EMBC) (Chicago, IL: IEEE), 2111–2114.

doi: 10.1109/EMBC.2014.6944033

Bulea, T. C., Kim, J., Damiano, D. L., Stanley, C. J., and Park, H.-S.

(2015). Prefrontal, posterior parietal and sensorimotor network activity

underlying speed control during walking. Front. Hum. Neurosci. 9:247.

doi: 10.3389/fnhum.2015.00247

Chi, Y. M., Wang, Y.-T., Wang, Y., Maier, C., Jung, T.-P., and Cauwenberghs,

G. (2012). Dry and noncontact EEG sensors for mobile brain–

computer interfaces. IEEE Trans. Neural Syst. Rehabil. Eng. 20, 228–235.

doi: 10.1109/TNSRE.2011.2174652

Cruz-Garza, J. G., Hernandez, Z. R., Nepaul, S., Bradley, K. K., and Contreras-

Vidal, J. L. (2014). Neural decoding of expressive human movement

from scalp electroencephalography (EEG). Front. Hum. Neurosci. 8:188.

doi: 10.3389/fnhum.2014.00188

Delorme, A., and Makeig, S. (2004). EEGLAB: an open source toolbox for analysis

of single-trial EEG dynamics including independent component analysis. J.

Neurosci. Methods 134, 9–21. doi: 10.1016/j.jneumeth.2003.10.009

Delorme, A., Sejnowski, T., and Makeig, S. (2007). Enhanced detection of artifacts

in EEG data using higher-order statistics and independent component analysis.

Neuroimage 34, 1443–1449. doi: 10.1016/j.neuroimage.2006.11.004

Dietrich, A., and Kanso, R. (2010). A review of EEG, ERP, and neuroimaging

studies of creativity and insight. Psychol. Bull. 136, 822. doi: 10.1037/a0019749

Ferree, T. C., Luu, P., Russell, G. S., and Tucker, D. M. (2001). Scalp electrode

impedance, infection risk, and EEG data quality. Clin. Neurophysiol. 112,

536–544. doi: 10.1016/S1388-2457(00)00533-2

Gargiulo, G., Bifulco, P., Calvo, R. A., Cesarelli, M., Jin, C., and van Schaik, A.

(2008). “A mobile EEG system with dry electrodes,” in Biomedical Circuits

and Systems Conference, 2008. BioCAS 2008 (Baltimore, MD: IEEE), 273–276.

doi: 10.1109/BIOCAS.2008.4696927

Garipelli, G., Chavarriaga, R., and Millán Jdel, J. (2013). Single trial analysis of

slow cortical potentials: a study on anticipation related potentials. J. Neural Eng.

10:036014. doi: 10.1088/1741-2560/10/3/036014

Girolami, M. (2002). Mercer kernel-based clustering in feature space. IEEE Trans.

Neural Netw. 13, 780–784. doi: 10.1109/TNN.2002.1000150

Gramann, K., Ferris, D. P., Gwin, J., and Makeig, S. (2014a). Imaging

natural cognition in action. Int. J. Psychophysiol. 91, 22–29.

doi: 10.1016/j.ijpsycho.2013.09.003

Gramann, K., Jung, T.-P., Ferris, D. P., Lin, C.-T., and Makeig, S. (2014b). Toward

a new cognitive neuroscience: modeling natural brain dynamics. Front. Hum.

Neurosci. 8:444. doi: 10.3389/fnhum.2014.00444

Griss, P., Tolvanen-Laakso, H. K., Merilainen, P., and Stemme, G. (2002).

Characterization of micromachined spiked biopotential electrodes. IEEE Trans.

Biomed. Eng. 49, 597–604. doi: 10.1109/TBME.2002.1001974

Guger, C., Krausz, G., Allison, B. Z., and Edlinger, G. (2012). Comparison of dry

and gel based electrodes for P300 brain–computer interfaces. Front. Neurosci.

6:60. doi: 10.3389/fnins.2012.00060

Gwin, J. T., Gramann, K., Makeig, S., and Ferris, D. P. (2011). Electrocortical

activity is coupled to gait cycle phase during treadmill walking. Neuroimage 54,

1289–1296. doi: 10.1016/j.neuroimage.2010.08.066

Hairston,W. D., Whitaker, K.W., Ries, A. J., Vettel, J. M., Bradford, J. C., Kerick, S.

E., et al. (2014). Usability of four commercially-oriented EEG systems. J. Neural

Eng. 11:046018. doi: 10.1088/1741-2560/11/4/046018

Frontiers in Human Neuroscience | www.frontiersin.org 17 November 2017 | Volume 11 | Article 527

https://www.frontiersin.org/articles/10.3389/fnhum.2017.00527/full#supplementary-material
https://doi.org/10.3389/fnhum.2013.00871
https://doi.org/10.1097/00004691-198507000-00005
https://doi.org/10.1109/EMBC.2016.7592028
https://doi.org/10.1109/EMBC.2014.6944033
https://doi.org/10.3389/fnhum.2015.00247
https://doi.org/10.1109/TNSRE.2011.2174652
https://doi.org/10.3389/fnhum.2014.00188
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1016/j.neuroimage.2006.11.004
https://doi.org/10.1037/a0019749
https://doi.org/10.1016/S1388-2457(00)00533-2
https://doi.org/10.1109/BIOCAS.2008.4696927
https://doi.org/10.1088/1741-2560/10/3/036014
https://doi.org/10.1109/TNN.2002.1000150
https://doi.org/10.1016/j.ijpsycho.2013.09.003
https://doi.org/10.3389/fnhum.2014.00444
https://doi.org/10.1109/TBME.2002.1001974
https://doi.org/10.3389/fnins.2012.00060
https://doi.org/10.1016/j.neuroimage.2010.08.066
https://doi.org/10.1088/1741-2560/11/4/046018
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Cruz-Garza et al. Mobile EEG in Museum Setting

Jungnickel, E., and Gramann, K. (2016). Mobile Brain/Body Imaging (MoBI) of

physical interaction with dynamically moving objects. Front. Hum. Neurosci.

10:306. doi: 10.3389/fnhum.2016.00306

Jurcak, V., Tsuzuki, D., and Dan, I. (2007). 10/20, 10/10, and 10/5 systems revisited:

their validity as relative head-surface-based positioning systems. Neuroimage

34, 1600–1611. doi: 10.1016/j.neuroimage.2006.09.024

Kilicarslan, A., Grossman, R. G., and Contreras-Vidal, J. L. (2016). A robust

adaptive denoising framework for real-time artifact removal in scalp

EEG measurements. J. Neural Eng. 13:026013. doi: 10.1088/1741-2560/13/2/

026013

Kontson, K. L., Megjhani, M., Brantley, J. A., Cruz-Garza, J. G., Nakagome,

S., Robleto, D., et al. (2015). Your brain on art: emergent cortical

dynamics during aesthetic experiences. Front. Hum. Neurosci. 9:626.

doi: 10.3389/fnhum.2015.00626

Kovacevic, N., Ritter, P., Tays, W., Moreno, S., and McIntosh, A. R. (2015). My

virtual dream: collective neurofeedback in an immersive art environment. PLoS

ONE 10:e0130129. doi: 10.1371/journal.pone.0130129

Laszlo, S., Ruiz-Blondet, M., Khalifian, N., Chu, F., and Jin, Z. (2014). A direct

comparison of active and passive amplification electrodes in the same amplifier

system. J. Neurosci. Methods 235, 298–307. doi: 10.1016/j.jneumeth.2014.05.012

Liao, L.-D., Chen, C.-Y., Wang, I.-J., Chen, S.-F., Li, S.-Y., Chen, B.-W., et al.

(2012). Gaming control using a wearable and wireless EEG-based brain-

computer interface device with novel dry foam-based sensors. J. Neuroeng.

Rehabil. 9:5. doi: 10.1186/1743-0003-9-5

Liao, L.-D., Wang, I.-J., Chen, S.-F., Chang, J.-Y., and Lin, C.-T. (2011). Design,

fabrication and experimental validation of a novel dry-contact sensor for

measuring electroencephalography signals without skin preparation. Sensors

11, 5819–5834. doi: 10.3390/s110605819

Lin, Y.-P., Wang, Y., and Jung, T.-P. (2013). “A mobile SSVEP-based brain-

computer interface for freely moving humans: the robustness of canonical

correlation analysis to motion artifacts,” in Engineering in Medicine and Biology

Society (EMBC), 2013 35th Annual International Conference of the IEEE (Osaka:

IEEE), 1350–1353. doi: 10.1109/EMBC.2013.6609759

Lopez-Gordo, M. A., Sanchez-Morillo, D., and Valle, F. P. (2014). Dry EEG

electrodes. Sensors 14, 12847–12870. doi: 10.3390/s140712847

Mahajan, R., and Morshed, B. I. (2015). Unsupervised eye blink artifact

denoising of EEG data with modified multiscale sample entropy, kurtosis,

and Wavelet-ICA. IEEE J. Biomed. Health Informatics 19, 158–165.

doi: 10.1109/JBHI.2014.2333010

Makeig, S., Gramann, K., Jung, T.-P., Sejnowski, T. J., and Poizner, H.

(2009). Linking brain, mind and behavior. Int. J. Psychophysiol. 73, 95–100.

doi: 10.1016/j.ijpsycho.2008.11.008

Melnik, A., Legkov, P., Izdebski, K., Kärcher, S. M., Hairston, W. D.,

Ferris, D. P., et al. (2017). Systems, subjects, sessions: to what extent

do these factors influence EEG data? Front. Hum. Neurosci. 11:150.

doi: 10.3389/fnhum.2017.00150

Mihajlović, V., Grundlehner, B., Vullers, R., and Penders, J. (2015). Wearable,

wireless EEG solutions in daily life applications: what are we missing? IEEE

J. Biomed. Health Informatics 19, 6–21. doi: 10.1109/JBHI.2014.2328317

Mullen, T., Kothe, C., Chi, Y. M., Ojeda, A., Kerth, T., Makeig, S., et al. (2013).

“Real-time modeling and 3D visualization of source dynamics and connectivity

using wearable EEG,” in Engineering in Medicine and Biology Society (EMBC),

2013 35th Annual International Conference of the IEEE (Osaka), 2184–2187.

doi: 10.1109/EMBC.2013.6609968

Oliveira, A. S., Schlink, B. R., Hairston, W. D., König, P., and Ferris, D.

P. (2016). Proposing metrics for benchmarking novel EEG technologies

towards real-world measurements. Front. Hum. Neurosci. 10:188.

doi: 10.3389/fnhum.2016.00188

Oostenveld, R., and Praamstra, P. (2001). The five percent electrode system

for high-resolution EEG and ERP measurements. Clin. Neurophysiol. 112,

713–719. doi: 10.1016/S1388-2457(00)00527-7

Percival, D., and Walden, A. (1993). Spectral Analysis for Physical Applications:

Multitaper and Conventional Univariate Techniques. New York, NY:

Cambridge University Press.

Presacco, A., Forrester, L. W., and Contreras-Vidal, J. L. (2012). Decoding

intra-limb and inter-limb kinematics during treadmill walking from scalp

electroencephalographic (EEG) signals. IEEE Trans. Neural Syst. Rehabil. Eng.

20, 212–219. doi: 10.1109/TNSRE.2012.2188304

Presacco, A., Goodman, R., Forrester, L., and Contreras-Vidal, J. L. (2011). Neural

decoding of treadmill walking from noninvasive electroencephalographic

signals. J. Neurophysiol. 106, 1875–1887. doi: 10.1152/jn.00104.2011

Renard, Y., Lotte, F., Gibert, G., Congedo, M., Maby, E., Delannoy, V., et al.

(2010). Openvibe: an open-source software platform to design, test, and use

brain–computer interfaces in real and virtual environments. Presence 19, 35–53.

doi: 10.1162/pres.19.1.35

Shawe-Taylor, J., and Cristianini, N. (2004). Kernel Methods for Pattern Analysis.

Cambridge, UK: Cambridge University Press.

Thomson, D. J. (1982). Spectrum estimation and harmonic analysis. Proc. IEEE 70,

1055–1096. doi: 10.1109/PROC.1982.12433

Umilta, M. A., Berchio, C., Sestito, M., Freedberg, D., and Gallese, V. (2012).

Abstract art and cortical motor activation: an EEG study. Front.Hum. Neurosci.

6:311. doi: 10.3389/fnhum.2012.00311

Uriguen, J. A., and Garcia-Zapirain, B. (2015). EEG artifact

removal-state-of-the-art and guidelines. J. Neural Eng. 12:031001.

doi: 10.1088/1741-2560/12/3/031001

Wagner, J., Solis-Escalante, T., Scherer, R., Neuper, C., and Muller-Putz, G. (2014).

It’s how you get there: walking down a virtual alley activates premotor and

parietal areas. Front. Hum. Neurosci. 8:93. doi: 10.3389/fnhum.2014.00093

Wang, F., Li, G., Chen, J., Duan, Y., and Zhang, D. (2016). Novel semi-dry

electrodes for brain–computer interface applications. J. Neural Eng. 13:046021.

doi: 10.1088/1741-2560/13/4/046021

Wilson,M. (2002). Six views of embodied cognition. Psychon. Bull. Rev. 9, 625–636.

doi: 10.3758/BF03196322

Yeung, A., Garudadri, H., Van Toen, C., Mercier, P., Balkan, O., Makeig, S., et al.

(2015). “Comparison of foam-based and spring-loaded dry EEG electrodes with

wet electrodes in resting and moving conditions,” in Engineering in Medicine

and Biology Society (EMBC), 2015 37th Annual International Conference of the

IEEE (Milan: IEEE), 7131–7134. doi: 10.1109/EMBC.2015.7320036

Zander, T. O., Lehne, M., Ihme, K., Jatzev, S., Correia, J., Kothe, C., et al. (2011).

A dry EEG-system for scientific research and brain–computer interfaces. Front.

Neurosci. 5:53. doi: 10.3389/fnins.2011.00053

Zhang, R., and Rudnicky, A. I. (2002). “A large scale clustering scheme

for kernel k-means,” in Pattern Recognition, 2002. Proceedings. 16th

International Conference on: IEEE (Quebec City, QC), 289–292.

doi: 10.1109/ICPR.2002.1047453

Disclaimer: The mention of commercial products, their sources, or their use in

connection with material reported herein is not to be construed as an actual or

implied endorsement of such products by the Department of Health and Human

Services.

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

The EEG systems were loaned at no cost to the University of Houston for

the duration of the experiment. The respective companies were contacted to

ensure the correct operation of the headsets. Brain Vision LLC (Morrisville,

NC) recently joined as an in-kind member of the IUCRC BRAIN University of

Houston Site (JLC-V).

Copyright © 2017 Cruz-Garza, Brantley, Nakagome, Kontson, Megjhani, Robleto

and Contreras-Vidal. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) or licensor

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Human Neuroscience | www.frontiersin.org 18 November 2017 | Volume 11 | Article 527

https://doi.org/10.3389/fnhum.2016.00306
https://doi.org/10.1016/j.neuroimage.2006.09.024
https://doi.org/10.1088/1741-2560/13/2/026013
https://doi.org/10.3389/fnhum.2015.00626
https://doi.org/10.1371/journal.pone.0130129
https://doi.org/10.1016/j.jneumeth.2014.05.012
https://doi.org/10.1186/1743-0003-9-5
https://doi.org/10.3390/s110605819
https://doi.org/10.1109/EMBC.2013.6609759
https://doi.org/10.3390/s140712847
https://doi.org/10.1109/JBHI.2014.2333010
https://doi.org/10.1016/j.ijpsycho.2008.11.008
https://doi.org/10.3389/fnhum.2017.00150
https://doi.org/10.1109/JBHI.2014.2328317
https://doi.org/10.1109/EMBC.2013.6609968
https://doi.org/10.3389/fnhum.2016.00188
https://doi.org/10.1016/S1388-2457(00)00527-7
https://doi.org/10.1109/TNSRE.2012.2188304
https://doi.org/10.1152/jn.00104.2011
https://doi.org/10.1162/pres.19.1.35
https://doi.org/10.1109/PROC.1982.12433
https://doi.org/10.3389/fnhum.2012.00311
https://doi.org/10.1088/1741-2560/12/3/031001
https://doi.org/10.3389/fnhum.2014.00093
https://doi.org/10.1088/1741-2560/13/4/046021
https://doi.org/10.3758/BF03196322
https://doi.org/10.1109/EMBC.2015.7320036
https://doi.org/10.3389/fnins.2011.00053
https://doi.org/10.1109/ICPR.2002.1047453
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles

	Deployment of Mobile EEG Technology in an Art Museum Setting: Evaluation of Signal Quality and Usability
	Introduction
	Materials and Methods
	Participants
	Experimental Set-Up
	Experimental Tasks
	Location Tracking

	Summary of EEG Systems
	Mindo Trilobite (M32)
	Mindo 4S JellyFish (M4S)
	Neuroelectrics Starstim (SS)
	Brain Products actiCAP Xpress (BPD)
	Brain Products actiCAP with BrainAmp DC (BPG)

	Data Analysis
	Pre-processing and Artifact Removal
	Data Segmentation
	Power Spectral Density (PSD)
	Kernel K-means Clustering


	Results
	Subject Demographics
	Usability of Each EEG System
	Identification of Non-physiological Artifacts
	Poor Electrode Contact
	Digitization Error
	Electrode Pops
	Data Loss during Wireless Transmission
	Flat lines (i.e., No Signal)

	Clustering Results: Analysis of Power Spectra

	Discussion
	Kernel K-Means Clusters
	Data Variability Due to EEG Systems Used
	Interpretation of PSD Clusters

	Usability and Future Implications
	Donning/Doffing and Fit of EEG Cap
	Application Interface, Data Recording, and Portability


	Limitations of the Study
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


