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Abstract

Background

There are many types of hand tumors, and it is often difficult for imaging diagnosticians to

make a correct diagnosis, which can easily lead to misdiagnosis and delay in treatment.

Thus in this paper, we propose a deep neural network for diagnose on MR Images of tumors

of the hand in order to better define preoperative diagnosis and standardize surgical

treatment.

Methods

We collected MRI figures of 221 patients with hand tumors from one medical center from

2016 to 2019, invited medical experts to annotate the images to form the annotation data

set. Then the original image is preprocessed to get the image data set. The data set is ran-

domly divided into ten parts, nine for training and one for test. Next, the data set is input into

the neural network system for testing. Finally, average the results of ten experiments as an

estimate of the accuracy of the algorithm.

Results

This research uses 221 images as dataset and the system shows an average confidence

level of 71.6% in segmentation of hand tumors. The segmented tumor regions are validated

through ground truth analysis and manual analysis by a radiologist.

Conclusions

With the recent advances in convolutional neural networks, vast improvements have been

made for image segmentation, mainly based on the skip-connection-linked encoder decoder

deep architectures. Therefore, in this paper, we propose an automatic segmentation

method based on DeepLab v3+ and achieved a good diagnostic accuracy rate.
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1. Introduction

In medical treatment, a radiograph of the hand is mandatory for all lesions. Tumors of the

hand comprise a vast array of lesions involving skin, soft tissue and bone. Several major types

of hand tumor are benign, and malignant tumors are also appeared in specific area with its

specific character. 69.2% -95% of tumors of the hand do not involve cutaneous malignancy are

benign [1, 2]. Some benign growths may not need excision. Ganglions, giant cell tumors, gran-

ulomas, Lipoma, and hemangiomas are the top five tumors with the highest incidence rate.

The patient’s history, physical examination, radiography and laboratory examinations are

essential factors for diagnosis of hand tumors. Radiograph is capable of detecting and charac-

terizing hand tumors. Size, localization and characteristic signal are significant in radiography

diagnosis.

Magnetic resonance imaging (MRI) would be an excellent choice, as it clearly demonstrates

the anatomical structure and tumor characteristics [3–5] (Fig 1). It can allow doctors to gener-

ate a clinically differential diagnosis based on the distinguishing features of hand tumors [6, 7].

Failure to diagnose glomus tumors of the hand on MRI is associated with smaller tumor size,

atypical glomus tumor pathology and atypical location [8]. Small tumor size and atypical loca-

tion cause difficulties in clinical diagnosis of hand tumors [2, 9]. The differential diagnosis of

hand tumors is challenging and important for clinician to select the proper treatment [10–12].

Recurrence of tumor in the hand affects nerve and tendon function, leading to hand deformi-

ties. This not only causes inconvenience to the patient’s life and work, but also affects his

image and social activities [13, 14]. The preoperative diagnosis is very important. Artificial

intelligence can provide a reference for clinicians. This will reduce the country’s medical

expenses, reduce the financial burden of patients, and most importantly, give patients a good

prognostic function [15, 16].

Medical image analysis develops various methods to solve medical images and their applica-

tion in clinical care. Among these methods and applications, automatic image segmentation

plays an important role in treatment planning, disease diagnose, and pathology learning strate-

gies [17–20].

In recent years, deep learning-based algorithms, especially Convolutional Neural Network

(CNN), have promoted significant advances in medical image analysis [21]. The foremost

appeal of CNN is its ability to learn increasingly complicated features from the input data. For

instances, architectures of CNN such as, Alex Krizhevsky network(AlexNet), launched the cur-

rent deep learning boom by winning the 2012 ILSVRC competition by a huge margin [22, 23].

With the successful use of CNNs for image recognition, Simonyan et al. proposed a simple and

effective design principle for CNN architectures. Their architecture named as VGG, it popular-

izes the idea of using smaller filter kernels and deeper networks (up to 19 layers for VGG19,

compared to 7 for AlexNet) [24]. At the same time, GoogLeNet won the 2014 ILSVRC compe-

tition and is also known as Inception-V1 [25]. GoogLeNet also popularizes the idea of not

using fully-connected layers at the end, but rather global average pooling, significantly reduc-

ing the number of model parameters. To address the problem faced during training of deeper

nets. In 2015, He et al. proposed ResNet in which they exploited the idea of bypass pathways

used in highway networks [26], (having 20 and 8 times more depth than AlexNet and VGG,

respectively) won the 2015-ILSVRC championship. Even with increased depth, ResNet exhib-

ited lower computational complexity than VGG [24]. Deep learning methods are increasingly

used to improve clinical practice, and the list of examples is long, growing daily. In image seg-

mentation, a common feature in almost all state-of-the-art methods is the encoder-decoder

architecture with skip connections [17]. The encoder module captures high-level semantic

information using down sampling and convolution operations; the decoder module gradually
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recovers spatial information using techniques such as deconvolution or upsampling, while

skip connections are utilized to pass the low-level texture and location information.

In this research, CNN based system for tumor segmentation is proposed. Since, most of the

DeepLab v3+ based segmentation focus on non-medical applications, this paper provides an

insight into the possibility of using DeepLab v3+ in medical imaging as well [27, 28]. The seg-

mented tumor regions are validated through ground truth analysis and analyzation process

was done by different radiologist.

Fig 1. Operation flow chart of DeepHandTumor. In the training stage, firstly, we divide the data set into a training set and a

validation set. Then crop the input image to a uniform size and convert the annotation image into a grayscale image, input them into

the model together; For inference stage, input the picture into the model and get the diagnosis result.

https://doi.org/10.1371/journal.pone.0237606.g001
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Finally, since not all pixels are of equivalent difficulty in segmentation, we introduce a

weighted cross-entropy loss to assist the network to pay more attention to the segmentation

targets.

2. Materials

2.1 Description of the dataset

In this study, we collected MRI from 221 different patients of hand tumor. In this research,

MRI hand tumor dataset was used. These MRI images were collected from The First Affiliated

Hospital, Zhejiang University, from 2016 to 2019. This particular dataset consisted of labels,

patient IDs, image data and tumor boarder coordinates along with T1- weighted axial, sagittal

and coronal planes. It consisted of 221 MRIs from 221 patients with five kinds of hand tumors;

namely Deep HT (deep hand tumor), including include the ganglion (87 cases), giant cell

tumor of tendon sheath(54 cases), lipoma(44 cases), hemangioma(26 cases) and schwannoma

(10 cases), which were also the top five tumor with the highest incidence rate (Fig 2(a)–2(i)).

Considering the size of datasets was small and the inability to conduct clinical trials, in order

to obtain reliable experimental results, we used cross-validation methods for experiments.

2.2 Data preparation

We had noticed that Deeplab v3+ had reached state of the art in VOC2012, Cityscapes,

ADE20K and other public datasets, but the segmentation targets in these datasets were mostly

pedestrians, streets, houses, which accounted for a large proportion in the image, and the fre-

quency of segmentation targets was not so much different. The dataset of medical images was

quite different from the standard datasets. Direct use of existing models did not yield satisfac-

tory results.

The machine we used was Philips Achieva 1.5T (Netherlands). All kinds of MRI imagines

are chosen for this study, including sagittal and coronal planes, T1 axial, T2 axial and contrast-

enhanced MRI. Medical images like MRI almost have a feature of low-contrast and high-noise.

We used contrast limited adaptive histogram equalization (CLAHE) to process the original

MRI first. CLAHE was wildly applied in the variant medical image given that it could improve

contrast while limited the amplification of noise.

We naturally resized all images to a fixed size 513 × 513 (padding small images, cropping

large images randomly), uniformly sized images could be used for fast batch training. Resizing

would not affect the training results, because image segmentation was a task of classifying

pixel, and had nothing to do with the size and ratio of the image.

Finally, we transcoded the 16-bit color annotation masks to 8-bit grayscale annotation

masks, used for model training (Fig 3).

2.3 Data augmentation

We chose data augmentation according to the characteristics of our data. When shooting hand

tumor MRI, patients’ hands would not be scanned upside down, their fingertips were always

facing up, thus the flip of the image should be horizontal. In the meantime, patients might

swing a little bit when scanned, so a random small angle rotation was needed. Different types

of tumors had different shapes and did not have an affine transformation relationship, so we

also elastically deformed the data. Considering that brightness and contrast were optimized in

CLAHE, our augmentation mainly included random deformation like slight rotation, horizon-

tal flip and elastically deform. Under the premise of retaining the complete hand, the original
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image was equally scaled, after the above steps we obtained 900 training set and 80 validation

set.

2.4 Dividing the dataset

Firstly, we randomly divided the dataset into ten parts, using nine of them in turn as the train-

ing set and one as the test set. Next, we augmented the training set and conducted experiments.

Fig 2. (a) soft tissue chondroma in T1WI coronal section; (b) soft tissue chondroma in T1WI sagittal section; (c) soft tissue chondroma in T2WI

coronal section; (d) soft tissue chondroma in T2WI transverse section; (e) angioleiomyoma in T1WI coronal section; (f) angioleiomyoma in T1WI

transverse section; (g) angioleiomyoma in T2WI coronal section; (h) angioleiomyoma in T2WI sagittal section; (i) angioleiomyoma in T2WI transverse

section.

https://doi.org/10.1371/journal.pone.0237606.g002

PLOS ONE A tool for MR diagnose of hand tumors

PLOS ONE | https://doi.org/10.1371/journal.pone.0237606 August 14, 2020 5 / 13

https://doi.org/10.1371/journal.pone.0237606.g002
https://doi.org/10.1371/journal.pone.0237606


Finally, we averaged the results of ten experiments as an estimate of the accuracy of the

algorithm.

3 Methods

3.1 Patient and public involvement

In this study, the MRI images of patients with different hand tumor were collected from The

First Affiliated Hospital, Zhejiang University, from 2016 to 2019, all patients were accepted fol-

low-up in our outpatient clinic. The choice of the required image should meet the requirement

that the tumor image is a hand tumor, single or multiple, and the final pathological result is a

benign tumor. While the MRI image of patients with previous hand trauma history, hand

deformity, hand infection, hand soft tissue or bone defect, or multiple tumors in which the

pathological type of the tumor is confirmed as different types of tumors, or the pathological

type of the hand tumor is malignant tumor, will be excluded. Then, after preprocessing, the

image data set was randomly divided into training set and test set. Ethical approval was given

by the medical ethics committee of the First Affiliated Hospital, College of Medicine, Zhejiang

University, written informed consent was obtained for each patient, and authors had access to

information that could identify individual participants during or after data collection.

3.2 Framework of the data flow

As we mentioned earlier, hand tumor segmentation requires a clearer boundary than tradi-

tional segmentation tasks.

A systematic overview for the proposed methods is plotted in the Fig 4. Firstly, we invited

two experienced radiologists who didn’t know the results of the MRI images to label the tumor

images we provided using the software “labelme”, got the annotation files, and unified the

annotation results from different radiologists to form the final labeled datasets. Secondly, we

used the pre-processing script to preprocess the annotation files, and generated grayscale

Fig 3. The enhanced image with tumor and the label mask.

https://doi.org/10.1371/journal.pone.0237606.g003
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annotation masks. Then, we packaged the training sets and tested sets to generate TFRecord

files. Thirdly, we inputted the TFRecord files into the pre-training model, and the loss function

was used to iteratively train to obtain the automatic segmentation model. After the model

training was completed, the tumor image was predicted by the prediction script, or the tumor

image was subjected to batch segmentation prediction using the verification script.

3.3 Deep neural network model

DeepLab v3+ propose a novel encoder-decoder structure [28] (Fig 5). The Encoder module

gradually reduces the resolution of the feature map and captures high-level semantic informa-

tion; the Decoder module gradually recovers spatial information using techniques such as

deconvolution or upsampling.

First, we inputted image into the improved Xception network extraction feature to get the

low-level coding feature map [29].

In the encoder module, DeepLabv3+ used multiple parallel expansion convolutions (i.e.,

Atrous Spatial Pyramid Pooling(ASPP)) to generate feature maps with multi-scale informa-

tion, and concatenated the feature maps to obtain the high-level coding feature map [30].

In the decoder module, firstly, we performed 4-fold bilinear upsampling on the high-level

coding feature map, secondly we concatenated the upsampled feature map with the low-level

Fig 4. A system overview for the data flow. TFrecords format dataset is more convenient for model reading, using improved

loss functions and pre-trained models, we can train more accurate Hand Tumor Model.

https://doi.org/10.1371/journal.pone.0237606.g004
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coding feature map from the encoder module, thirdly we passed the concatenated feature map

to a 3×3 convolution to refine feature, finally we used 4 times bilinear upsampling on the

refined feature map to obtain a predicted image. The predicted result of the network output

was the softmax value at the pixel level, that was, the value of each pixel was

p1ðxÞ; p2ðxÞ; :::; pKðxÞð Þ; pk xð Þ ¼
expðakðxÞÞ
XK

i¼1

expðaiðxÞÞ
;

Indicating the probability that the pixel point x in the predicted image belonged to the tar-

get category i.

The target of finding a tumor was in principle binary, saying each pixel was either tumor or

not. The cross-entropy loss function for all pixels in the perspective of classification was rea-

sonable. Our label for tumor showed that the area of tumor and background were out of pro-

portion. Only a small part of pixels was hand tumor where others are all background. Thus

original cross entropy would guide the model tend to predict every pixel as background while

getting little more loss. We used weighted cross entropy loss, where wl(x) corresponded to the

weight of different labels (background or tumor), l(x) was the label type of pixel point x.

Fig 5. Network structure of Deeplab v3+.

https://doi.org/10.1371/journal.pone.0237606.g005
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The expression of the loss function was as follows

LðxÞ ¼
Xbatchsize

j¼1

X

x

wlðxÞ
ðxÞlogðplðxÞ ðxÞÞ

4 Experimental results

The segmentation quality is measured by the mean intersection-over-union (mIoU) score, the

pixel accuracy and the mean accuracy over all classes.

Firstly, we directly used the existing Deeplab v3+ model to conduct experiments on the

tumor data set, which achieved only 37.7% accuracy. This experiment proves that our previous

inferences are correct, the dataset of medical images was quite different from the standard

datasets. Direct use of existing models did not yield satisfactory results.

To show the effectiveness of our approach, we conducted a five-fold crossover experiment

on the data set. Every experiment we get 496 training set and 123 validation set. The results of

the five cross-validation experiments are shown in the Table 1. The figure shows the change

curve of loss function in an experiment (Fig 6).

Table 1. The results of fivecrossvalidation experiments, due to the randomness of the optimization process, there

is an error of about 0.1 in the experimental results.

Cross-validation experiment mIoU

First Fold 0.698

Second Fold 0.708

Third Fold 0.691

Forth Fold 0.687

Fifth Fold 0.716

https://doi.org/10.1371/journal.pone.0237606.t001

Fig 6. Change curve of loss function in a cross-validation experiment.

https://doi.org/10.1371/journal.pone.0237606.g006
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In this work, we implemented our model’s training, evaluation, error analysis, and visuali-

zation pipeline using TensorFlow, which is a popular deep learning framework, and then com-

piled using cuDNN computational kernels. We used stochastic gradient descent with

momentum to optimize the loss of function. We set the initial learning rate to 0.0001, learning

rate decay factor to 0.0005, and decay step size to 2,000. Instead of using a fixed number of

steps, we trained our model until the mean average precision of the training set converged,

and then evaluated the model using the validation set. We used three NVIDIA Tesla P4 GPU

for all experiments.

5 Discussion & conclusions

The patient’s history, physical examination, radiography and laboratory examinations are

essential factors for diagnosis of hand tumors. The hand is a complex anatomic region, includ-

ing bone, joints and soft tissues with muscles, vessels, and nerves. Plain x-ray is sensitive to dis-

tinguish bony tissue, CT scan is sensitive to finer bony tissue, ultrasound and MRI is sensitive

to soft-tissue. Magnetic resonance imaging without bone artifacts, can be directly used for

multi-directional (transverse, coronal, sagittal or any angle) section, showing the anatomy and

lesions of soft tissue tumors. Its "flowing effect" can display vascular structures without angio-

graphic contrast agents, so it shows uniqueness in the "no damage" of blood vessels, and the

mutual identification of tumors, tendons and their vascular structures [31–33].

Image segmentation has an almost 50 years long history, several traditional machine learn-

ing methods have been made for MRI segmentation and tissue classification problems [34–

37].

MRI segmentation using deep learning approaches, typically CNNs, is now penetrating the

whole field of applications. For instances, Fully Convolutional Networks(FCN) is a milestone

in semantic segmentation [38]. It first proposes the idea of pixel-level classification of images,

and converts the fully connected layers in traditional CNN into convolutional layers, which

can accept input images of any size. U-Net continues the idea of full convolutional layer, and

introduces the encoder-decoder structure [39]. In addition, based on the ideas of ResNet,

there are skip connections between encoder module and decoder module. A similar approach

is used by V-Net proposed an extension to the U-Net, it is a three-dimensional version of U-

net with volumetric convolutions and skip connections as in ResNet [40].

The prospective of Deep learning for tumor segmentation is at preliminary investigation

stage and poorly studied. The primary challenges for medical image segmentation mainly lie

in three aspects, (1) Complex boundary interactions, (2) Large appearance variation, (3) Low

tissue contrast (Encoder-Decoder segmentation).

But we believe that the automatic segmentation technology has a bright future. Currently,

this technology can be applied in the following aspects.

1. Assisting inexperienced doctor diagnosis

Medical image segmentation is an important step in medical diagnosis and treatment. Only

when the lesion is completely marked, the doctor can make a correct medical diagnosis

based on the characteristics of the lesion and the patient information. In the real world,

manual labeling not only takes a lot of time and effort, but also requires professional level

medical knowledge as the basis, which poses a challenge to doctors with less experience.

When the automatic segmentation technology is mature, we can package the algorithm

into computer software. By connecting with the hospital case database, the lesions are auto-

matically segmented during diagnosis and treatment, providing a reference for doctors to

better reduce the rate of misdiagnosis.

At this stage, the algorithm has the recognition level of professional doctors, our model
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accuracy rate is up to 71.6% (mIOU) In the future, as the data set increases, the accuracy of

the model will be further improved.

2. Patient self-medication

At this stage, the distribution of medical resources in various localities is uneven, and high-

quality medical resources are concentrated in first-tier cities such as Beijing and Shanghai.

At the same time, rural areas are relatively backward compared to urban medical condi-

tions. When encountering major diseases such as cancer, people cannot seek medical treat-

ment nearby. The treatment of cancer is an urgent task, and delaying the precious

treatment time may lead to the spread of tumors and malignant lesions. Therefore, leting

people self-diagnosis in the presence of discomfort, timely judgment of the physical condi-

tion, plays a vital role in the treatment of tumor diseases. Our algorithm can be packaged

into a mobile app for people to download and install. When the user is unwell, he can use

the mobile phone application to scan the MRI image to make a preliminary judgment on

his own physical condition, so as to achieve early treatment and early recovery.

This is conducive to the treatment of patients, reducing the cost of medical expenses in the

country and reducing the economic burden on patients.

However, there are still some shortcomings in our study, such as the small variety of hand

tumors included, the insufficient sample size, and the relatively homogeneous number of par-

ticipating medical centers. This is inevitable at the initial stage of the research, but in the future,

we hope that based on the existing data and research results, we can realize the development of

a multicenter, multi-category image recognition and diagnosis system for hand tumors, and

we hope to inspire other researchers about similar healthy topic to promote the contribution

of medicine to society and human health.

Supporting information

S1 Algorithm. The code and related information for the algorithm used is already open

source at this website: https://github.com/AllenLau9679/DeepTumor.

(TXT)
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