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Chimeric antigen receptor T cell (CAR-T) therapy for the treatment of hematologic tumors
has achieved remarkable success, with five CAR-T therapies approved by the United
States Food and Drug Administration. However, the efficacy of CAR-T therapy against
solid tumors is not satisfactory. There are three existing hurdles in CAR-T cells for solid
tumors. First, the lack of a universal CAR to recognize antigens at the site of solid tumors
and the compact tumor structure make it difficult for CAR-T cells to locate in solid tumors.
Second, soluble inhibitors and suppressive immune cells in the tumor microenvironment
can inhibit or even inactivate T cells. Third, low survival and proliferation rates of CAR-T
cells in vivo significantly influence the therapeutic effect. As an emerging method,
nanotechnology has a great potential to enhance cell proliferation, activate T cells, and
restarting the immune response. In this review, we discuss how nanotechnology can
modify CAR-T cells through variable methods to improve the therapeutic effect of
solid tumors.
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INTRODUCTION

CAR-T therapy has made remarkable achievements in the research and clinical treatment of cancer,
especially in the treatment of B cell malignancies (1–3). Unlike conventional surgery, radiotherapy,
chemotherapy, immune checkpoint blocking therapies, targeted drug therapy, and CAR-T cell
therapies offer more therapeutic options for patients with previously refractory tumors (4–8). To
date, the United States Food and Drug Administration has approved five CAR-T therapies, namely,
-Kymriah, Yescarta, Tecartus, Breyanzi and Abecma, -for hematologic malignancies (9). However,
CAR-T cell therapy has not achieved satisfactory results in the treatment of solid tumors, such as
colon, kidney, and ovarian cancers, for which the best clinical trial outcome is stable disease (10–14).

To improve the efficacy of CAR-T therapy in solid tumors, CAR-T cells must overcome three
obstacles. First, the lack of tumor-specific antigens, dense stroma and aberrant vasculature at the
tumor site prevent CAR-T cells from efficiently targeting the solid tumor site (15). Second, the
tumor immune microenvironment and immunosuppressive mechanisms reduce the antitumor
org March 2022 | Volume 13 | Article 8497591
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activity of CAR-T cells in solid tumors. Finally, because of the
initial differentiation state of selected T cells, the cumbersome
production process of CAR-T cells , and the tumor
microenvironment (TME) with low oxygen, acidity and
nutrition, the survival and proliferation rates of CAR- T cells
in vivo were low.

Nanotechnology has multiple features that allow it to address the
challenges of CAR T cell therapy in treating solid tumors. With
optimal size, high surface area to volume ratio, a variety of shapes
and components, as well as surface modification and charge,
nanoparticles have a wide range of applications in tumor therapy
(16–20). Nanoparticles employed in clinical treatments can be
targeted to the site of the lesion with less accumulation in healthy
tissue, stronger drug permeability, and retention, and can be rapidly
biodegraded and eliminated without pharmacological and
Frontiers in Immunology | www.frontiersin.org 2
toxicological activities (21–23). Therefore, a number of researchers
are exploring the use of nanoparticles in combination with CAR-T
therapy to improve the efficacy of CAR-T therapy in solid tumors.
Herein, we briefly introduce the three major challenges of CAR T
cells in solid tumor therapy, and summarize how to combine
nanoparticles with CAR T cells from different perspectives to
solve the challenges in solid tumor therapy (Figure 1).
CURRENT ROADBLOCKS IN CAR-T CELL
FOR SOLID TUMORS

Numerous clinical trials of CAR-T cell therapy for solid tumors
have been carried out, and a meta-analysis of the efficacy of
CAR-T therapy in solid tumors showed an overall response rate
FIGURE 1 | The mechanisms of Nanotechnology affect CAR-T function. Summary of strategies that are discussed in detail in this review.
March 2022 | Volume 13 | Article 849759

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Mi et al. Nanotechnology Modify CAR-T Cells
of 9%, although various therapeutic strategies have been
implemented (24). There are three major factors that influence
CAR-T therapy, as described below.

Targeting and Infiltrating
CAR T cells are designed to select tumor-associated antigens
(TAA) due to the lack of tumor-specific antigens (TSA). In a
large number of clinical trials CAR T cell targeting tumor-
associated antigens have been found cause damage to normal
tissue with low expression of tumor-associated antigens during
the process of recognizing and killing tumor cells, which is
referred to as the off-target effect (25). Moreover, the reasons
behind the success of CAR T cells in the treatment of
hematologic tumors is that they can migrate in blood, lymph
nodes, and bone marrow to interact with cancer cells (26). By
dynamic imaging microscopy on fresh tumor slices from nine
patients, Donnadieu et al. (27) investigated T cells with reduced
motility in the stroma of human lung tumors, which hinted
towards T cells facing difficulties in entering into the tumor due
to the presence of obstacles. This makes it easy to understand
that there are several other reasons why CAR T cells have
difficulty entering solid tumor. Tumor-associated fibroblasts
(TAFS) and abnormal vasculature at the tumor site result in
compact tumor tissue and a dense extracellular matrix
(ECM), which prevent CAR T cell to enter the solid tumor
microenvironment (28, 29). The experiments conducted by
Peschel et al. (30) confirm the lack of adoptively transferred T
cells accumulation in solid tumors, while the infused HER2-
specific T cells spread out in the breast cancer patient’s bone
marrow. In addition, chemokines can induce T cell migration
along the direction of increasing chemokine concentration.
However, some solid tumors inhibit chemokine secretion and
CAR T cells lack receptors that match chemokines secreted by
solid tumors (31, 32), such that chemokine receptors on T cells
mismatch with tumor secreted chemokines (33–35). Moreover,
the low expression of adhesion molecules including ICAM-1 and
2, VCAM-1 and CD34 in tumor endothelial cells (EC) inhibit the
effector T-cell from adhering to the EC and being transported to
the tumor (36).

Tumor Immunosuppression
Immunosuppression of the solid tumor microenvironment is
another significant challenge for CAR-T therapy. The causes of
tumor cells escaping the anti-tumor immune response are
complex, including the presence of immunosuppressive cells,
the presence of immunosuppressive cytokines and the absence of
immune activating factors. The presence of immunosuppressive
cells such as dendritic cells (DCs), myeloid-derived suppressor
cells (MDSCs), regulatory cells (Tregs), and M2 macrophages in
solid tumors sites, which secrete suppressive cytokines-such as
transforming the growth factor-b (TGF-b), adenosine,
interleukin-10 (IL-10), and vascular endothelial growth factor
(VEGF) extracellularly-, suppresses the immune system and
reduces the anti-tumor activity of CAR-T (37–40). Moreover,
the immune checkpoint molecules PD-1 and CTLA4, when
combined with the corresponding ligands, inhibit the killing
effect of T cells on the tumor and the activation of T cells (41, 42).
Frontiers in Immunology | www.frontiersin.org 3
Survival and Proliferation
CAR T cells are targeted to the tumor site by a chimeric receptor
mediated expressed on the T cell surface, and eliminate cancer
cells through cell killing (43). Studies have shown that the long-
term survival and proliferation of CAR T cells capable of
maintaining normal function in vivo played a decisive role in
the therapeutic effect (44). However, the expansion of the CAR T
cells during the treatment of solid tumors is low in vivo. For
example, Michael et al. detected a large number of CAR T cells in
ovarian cancer patients after 2 days of transfusing in vitro gene-
edited T cells back into the body, but the increase only lasted for
about 1 month, and quickly declined to be virtually undetectable
in the majority of patients (13). Even with large doses of CAR T
cells, the presence of CAR T cells in the circulatory system was
not detected (45). Moreover, clinical data showed that longer
CAR-T cell persistence indicates longer delays, in the
development of disease progression (46). The factors that
influence the survival of CAR T cells in patients are complex,
including the differentiation and functional status of CAR T cells,
CAR target affinity, CAR immunogenicity, tedious time-
consuming production process, immunosuppressive and
hypoxic tumor microenvironment (47–49). Various
nanotechnology strategies may improve CAR T cell persistence
and expansion in vivo, which would endow CAR-T therapy with
superior antitumor activity in the treatment of solid tumors.
APPLICATION OF NANOTECHNOLOGY IN
CAR-T THERAPY IN SOLID TUMORS

Nanotechnology to Aid CAR T Cell Target
and Accumulate in Solid Tumors
To overcome the off-target effect caused by tumor-associated
antigens, one group designed circular bispecific aptamers to help
T cells recognize and bind to tumor cells. The aptamer can
simultaneously bind naïve T cells and tumor cells, and then
specifically activate T cells in the cell-cell junction complex. This
strategy helps T cells pinpoint the tumor site and kill cancer cells.
Thus, the targeted treatment of all kinds of cancer is possibly
realized by the use of specific anticancer aptamers (50).

In an effort to arm CAR T cells to collapse physical barriers
caused by angiogenesis, a dense extracellular matrix and stroma
in tumor sites, researchers have proposed numerous of NP-based
strategies (51, 52). By combing photothermal therapy with the
adoptive transfer of CAR T cells, Gu et al. succeeded in
promoting the accumulation and enhancing the conventional
CAR-T therapy against solid tumors. The indocyanine green
(ICG), a near-infrared (NIR) dye, is wrapped in poly(lactic-co-
glycolic) acid (PLGA) nanoparticles. Once exposed to NIR light
irradiation, ICG is used as the photothermal agent released into
solid tumor (53–55). Mild hyperthermia of the tumor disrupts its
compact structure, reduces interstitial fluid pressure (IFP),
increases blood perfusion, and releases tumor-specific antigens
that could significantly stimulate CAR T cells. After about 20
days, tumor growth was significantly inhibited, and no tumor
cells were detected in about one-third of the treated mice (56).
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Other researchers fabricated indocyanine green nanoparticles
(INPs) conjugated CAR T cells via the biorthogonal reaction.
After mild photothermal intervention, tumor vessels expanded,
blood perfusion increased, the ECM ablated and the tumor
tissues became loose. Thus, INPs engineered CAR-T
biohybrids accumulated and infiltrated extensively in the
tumor, remodeled the TME, restarted the immune response,
and boosted the efficacy of CAR-T immunotherapy. This
microenvironment photothermal-remodeling strategy provides
a promising prospect for CAR-T therapy in solid tumors (57).

Nanotechnology to Remold
Tumor Microenvironment to
Stimulate CAR T Cells
To reset immunosuppression of cancer environment and
promote the activation of CAR T cells, Zhao and colleagues
effectively combined the use of the nanozymes method. They
synthesized a tumor-targeting HA@Cu2−xS-PEG (PHCN)
nanozyme with photothermal and catalytic properties. After
irradiation by a near-infrared laser, the tumor extracellular
matrix is damaged by converting light energy into local heat
(58–60). Moreover, the reactive oxygen species by nanocatalyzed
tumor therapy increased the secretion levels of key cytokines,
such as the interferon and tumor necrosis factor as well as
tumor-specific antigens, thus activating the corresponding
CAR T cells at the tumor site (61).

To surmount the obstacle of hostile microenvironment,
researchers tend to combine CAR-T therapy with the use of
cytokines and/or antibodies. However, one problem is that CAR
T cells and cytokines/antibodies disperse preventing their
accumulation in the tumor sites (62, 63). Therefore, Xie et al.
used a pH-sensitive benzoic−imine bond and inverse electron
demand Diels−Alder cycloaddition to link magnetic nanoclusters
(NCs) and the PD-1 antibody (aP) together to form NC-Ap. The
constructed NC-aP binds to effector T cells due to their PD-
1expression. Magnetic resonance imaging (MRI) guided T cells
and aP to enrich in solid tumors through magnetization. Because
of the acidic tumor microenvironment, the aP is released after the
benzoic−imine bond, and then hydrolyzed. Consequently, the
adoptively transferred T cells and aP synergistically inhibit solid
tumor growth with a few side effects (64).

One of immunosuppressive molecules that inhibits the immune
function of CD4+ and CD8+ T cells is adenosine. On the surface of
activated T cells, the A2a adenosine receptor (A2aR) expressed and
trigged adenosine to accumulate outside the cell, which suppressed
T-cell proliferation and inhibited IFN–g secretion (65, 66). Thus,
using nanotechnology to efficiently transport SCH-58261 (SCH), a
small molecule inhibitor of A2aR, to CAR T cells in tumors is a
promising method. According to their report, Wang et al. used
CAR-T therapy and SCH–loaded cross-linked multilamellar
liposomes (cMLV) together, which significantly inhibited the
tumor growth and improved the survival of treatment groups,
the tumor infiltration rate of T-cells, as well as the expression level
of IFN–g in vivo. Through rescuing tumor-residing T-cell
hypofunction, this method augments CAR T-cell efficacy in solid
tumors (67).
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The presence of immunosuppressive molecules- such as
CTLA-4 and PD-L1 is another important cause of tumor
immunosuppression. They enable tumor cells to escape
surveillance by inhibiting the activation of immune cells,
namely the “immune escape” (68, 69). To reset the suppressive
solid tumor microenvironment, inhibitors targeting checkpoint
molecules (such as CTLA-4, PD-1 and PD-L1) and CAR-T
therapy were used in combination (70, 71). The disadvantages
of using immune-checkpoint inhibitors (ICIs) include the
emergence of a series of new immune-related adverse events
and systemic toxicities (72). Stephan et al. designed a liposomal
drug-loaded nanoparticle and decorated it with the tumor-
targeting peptide iRGD. In addition, PI-3065, a PI3K kinase
inhibitor that disrupts the function of immune-suppressive
regulatory T cell subsets and myeloid-derived suppressor cell
(40), and 7DW8-5, an immunostimulant-invariant natural killer
T cell (iNKT) agonist was placed in the liposome (73, 74). They
demonstrated that this new target nanoparticle alters the tumor
immunosuppression and evidently enhances the anti-tumor
activity of CAR T cells (75).

Nanotechnology to Aid CAR T Cells
Survive and Proliferate
The number of tumor-infiltrating lymphocytes is positively
related with clinical outcomes of CAR-T therapies (36, 76, 77).
T cells obtained from patients are limited, such that amplification
in vitro may be an effective solution. In the body, the expansion
of T cells requires the assistance of antigen-presenting cells
(APC), which cannot be achieved in vitro. In light of this
problem, Mooney et al. utilized mesoporous silica to create
micro-rods and added in the APC-secreting factor interleukin-
2, which extends the lifespan of T cells. They also coated the
high-aspect ratio mesoporous silica micro-rods (MSRs) with
supported lipid bilayers (SLBs) and a variety of antibodies that
activate T cells, mimicking APC’s cell membrane. In cell culture,
these rods randomly and automatically form a scaffold structure
that allows T cells to move around and expand freely. Results
showed that APC-mimetic scaffolds generate more CAR T cells
and maintain good killing efficacy compared to conventional
expansion systems (78).

The lack of proliferation signals in TME results in a low
survival rate of CAR T cells. As emerging therapies,
nanoparticulate RNA vaccines deliver liposomal antigen-
encoding RNA (RNA-LPX) to activate T cells in cancer
patients (79). Recently, Sahin et al. combined CAR-T with the
nanoparticulate RNA vaccine to achieve the regulated
proliferation of CAR-T cell expansion depending on RNA-LPX
dose. The mechanism involves that antigen delivery to antigen-
presenting cells in the spleen, lymph nodes, and bone marrow by
intravenous injection, followed by the initiation of a toll-like
receptor-dependent type-I IFN-driven immune-stimulatory
program (80). Moreover, Chan et al. used the tailored
nanoemulsion (Clec9A-TNE) vaccine to effectively solve the
problem of limited antigen presentation, promote the
proliferation of CAR T cells in vivo, and augment the efficacy
of solid tumor therapy (81).
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Conventional manufacturing of CAR-T cells includes several
elaborate procedures such as isolation, modification and
expansion, resulting a few effective redirected T cells that can
be used. Meanwhile, virus transfection and electroporation are
commonly used to help T-cells express targeted chimeric antigen
receptors (CARs) or T cell receptors. In turn, these methods
have drawbacks as they are time-consuming, have a small
application scale (82, 83). Stephan et al. designed a new genetic
programming named “hit-and run”, which transports mRNA
nanocarriers into cells through simple mixing and transient
expression of the target gene. The mRNA nanocarrier has
three prominent advantages: (i) lyophilized mRNA NPs can be
used for each application that has no effect on its properties and
efficacy. (ii) NP uptake and transfection efficiency did not differ
whether T cells proliferated or not. (iii) Lymphocyte-targeted
mRNA nanocarriers can edit the genome of CAR-T-cells without
influencing on their function. The paramount of this method is
that it can simply produce CAR T cells at a clinical scale within a
short time and without complex handling procedures in
vitro (84).

Another novel method was developed to program numerous
circulating T cells and effectively remove cancer cells in situ. On
the surface of the biodegradable poly (b-aminoester)-based
nanoparticles, anti-CD3e f(ab′)2 fragments are coupled with it
to target T cells. Inside of the nanoparticles, the poly(beta-
aminoester) (PBAE) polymer is assembled with microtubule-
associated sequences (MTAS) and nuclear localization signals
(NLS), which facilitates the gene transfer in the nucleus of the T
cells. To maintain CAR expression in T cells, the CD19 CAR
plasmid was flanked by the piggyBac transposase gene through a
cut-and-paste mechanism. These stable polymer nanoparticles
allow simple manufacture and storage, which provides a
practical, economical and widely available pathway for CAR-T
therapy (85).

The immunosuppression and hypoxia in the solid tumor
microenvironment result in the weaking CAR T cells
infiltration and proliferation. One research group constructed
an injectable hydrogel-encapsulated porous immune-microchip
system (i-G/MC) with oxygen reservoirs to intratumorally
deliver CAR T cells. In the injectable i-G/MC system, IL-15-
loaded alginate microspheres were made into thin immune-MCs
(i-MCs), which were connected with HEMOXCell (Hemo; an
oxygen carrier)-loaded alginate, and the alginate forms a gel layer
by self-assembly (86). The i-MCs were highly porous and
interconnected, which facilitates CAR T cell transport. Hemo,
a marine extracellular hemoglobin, has a strong oxygen storage
capacity and binds up to 156 oxygen molecules (per Hemo
molecule). After the i-G/MC was injected into the solid tumor,
the hydrogel (gel) layer degraded quickly, Hemo delivered
oxygen to TME, as well as CAR T cells, and decreased the
expression level of HIF-1a. Results showed that the immune-
niche improves hypoxia TEM and promotes survival and
infiltration of CAR T cells in solid tumors.

To avoid the side effects of systemically-administered
supporting cytokines like interleukins, protein nanogels (NGs)
with interleukin (IL)-15 super-agonist were designed. The NGs
Frontiers in Immunology | www.frontiersin.org 5
recognized the specific cell surface antigen and subsequently
released the drug at the sites of antigen encounter, for instance,
the tumor microenvironment. Most importantly, the NG
delivery enhanced the cell proliferation level 16-fold in tumors
and administered eight-fold higher doses of cytokine without
toxicity (87).
CONCLUSION

In preclinical studies, researchers have proposed a number of
strategies to improve CAR T cell function through the use of
nanotechnology. However, there are still some fundamental
issues to be addressed in the clinical application of CAR T
therapy. For example, the carcinogenicity, reproductive toxicity
and persistence of magnetic nanoclusters are still unknown and
therefore it cannot be used in clinical therapy. The use of near
infrared laser will cause damage to human skin, short-term use
will appear skin swelling phenomenon, long-term may affect
human reproductive function and induce cancer. The safety,
immunogenicity and toxicity of nano-vaccines have yet to be
verified. Will nano-derivative biodegrades induce non-specific
immune responses? Due to the specificity of tumor-associated
antigens, the preparation cycle of tailored nanoemulsion vaccine
is time consuming and involves high cost….

These questions from clinical studies may seem
disappointing, but many studies have highlighted the potential
of nanotechnology in combination with CAR T therapies for
solid cancers, which giving us great hope for CAR T cells.
Currently, there are about 40 CAR-T targets in clinical trials in
solid tumors, which has significantly outnumbered
hematological tumors. Different from CD19, which is often
used as a target for CAR-T therapy in hematologic tumors, the
main targets of CART development in solid tumors include
Mesothelin, GD2, HER2, GPC3, Claudin18.2(CLDN18.2) and so
on. Most CAR-T studies in solid tumors have low response rates
in the 0-25% range (88). Recently, the EMA granted prime
eligibility to CAR T - cell product candidate CT041, which
against the claudin18.2 protein (CLDN18.2) for the treatment
of gastric/gastroesophageal junction cancer. Results from a phase
I clinical trial published in 2019 show a total objective response
rate of 33% in a small group of patients with advanced gastric or
pancreatic cancers, with no serious side effects (89). This means
that CT041 is expected to become the world’s first approved solid
tumor CAR T product, thus achieving zero breakthrough in solid
tumor treatment.
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