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Anisotropic dielectric susceptibility 
matrix of anisotropic medium
Wanrong Gao

In this work, we introduce the concept of anisotropic dielectric susceptibility matrix of anisotropic 
medium for both nondepolarizing and depolarizing medium. The concept provides a new way of 
analyzing light scattering properties of anisotropic media illuminated by polarized light. The explicit 
expressions for the elements of the scattering matrix are given in terms of the elements of the Fourier 
transform of the anisotropic dielectric susceptibility matrix of the medium. Finally, expressions for the 
elements of the Jones matrix of a thin layer of a deterministic anisotropic medium and the elements of 
the Mueller matrix of a depolarizing medium are given. The results obtained in this work is helpful for 
deriving information about the correlated anisotropic structures in depolarizing media from measured 
Mueller matrices. The findings in this work may also well prove stimulating to researchers working on 
new methods for analyzing light scattering properties.

The knowledge about scattering of polarized light by anisotropic media has potential applications in a broad 
range of fields such as biomedical imaging of human tissues. Several models have then been developed that can 
be employed to describe the effects of an anisotropic medium on light among which the most frequently used 
ones are the Jones matrix  formalism1–3 and the Mueller matrix  formalism4–6. It is now known that the various 
types of anisotropic structures of media represented by polarization parameters can be derived from the measured 
Jones matrix and Mueller matrix by decomposing them into a product of several component matrices each of 
which describes a simple polarization structure when only the total averaged polarization properties of medium 
are  concerned7–9. When the polarization properties at any point within a continuous anisotropic medium are 
desirable they can be obtained by solving a first-order linear differential Matrix equation for both nondepolar-
izing (deterministic) and depolarizing (random)  medium10–12. It was found that in this case the macroscopic 
polarization properties can be expressed in terms of elementary polarization parameters when differential matrix 
is approximately a constant along the light propagation  direction13,14.

It is a common belief that the random anisotropic medium can be described by a Mueller matrix with more 
than 8 degrees of freedom. To find the form of Mueller matrix of depolarizing medium, several facts about the 
interaction of light with medium have been exploited. Recognizing the fact that the most basic representation of 
an anisotropic medium is a scattering matrix (or Jones matrix) a random anisotropic medium may be modeled 
as fluctuations of the scattering matrix over some period of time or region of space. The appropriate description 
of the random media is then a statistical average of the scattering matrix over such an ensemble of the Jones 
matrices. With this idea it has been demonstrated by Kim et al.15 that the Mueller matrix of the random aniso-
tropic medium is then proportional to an average over the ensemble of the product of the Jones matrices. One 
consequence of this result is that the Mueller matrix of a scattering volume δV  at point in a random anisotropic 
medium can be obtained by averaging Mueller–Jones matrices of the neighbor points.

Another method of describing a volume of the random anisotropic medium is to introduce a target  vector16. 
The components of the target vector are defined as the complex coefficients of the expansion of the Jones matrix 
expanded in terms of the Pauli matrices. A 4 × 4 Hermitian target average coherency matrix is then reconstructed 
to describe the possible spatial correlations that exist between the fluctuations of the elements of the scattering 
matrix over some region within  medium14. With the help of this concept, it is possible to find correlated aniso-
tropic structures that are responsible for the changes of polarization properties of the incident light.

By using the coherency matrix, it has been shown that a measured Mueller matrix of a depolarizing medium 
can be expressed as a sum of four independent Mueller–Jones matrices each of which represents a deterministic 
scattering structure in a medium. The polarization properties described by the original Mueller matrix can then 
be calculated as the averaged polarization properties with the weighting factors given by the eigenvalues of the 
corresponding coherency  matrix14. Here it is worth noting that this fact reveals again that the Mueller matrix 
of a depolarizing medium can be expressed in terms of an average of up to four equivalent Mueller matrices of 
equivalent nondepolarizing media.
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This important result has been used to identify the presence of a dominating scattering matrix or average 
scattering matrix of the medium, to remove the experimental errors contained in the measured Mueller matrix 
by subtracting a Mueller matrices corresponding to the negative eigenvalues of the coherency matrix, to identity 
a physically realizable Mueller matrix by calculating the corresponding covariance matrix and then testing to 
see whether all eigenvalues are nonnegative, and to classify objects by employing the fact that the elements of a 
Mueller matrix can be expressed as sums of correlation coefficients of elements of scattering matrix. For example, 
the ratios of the eigenvalues are indicators of the anisotropy of the particles in the cloud and the eigenvectors are 
more indicative of any preferential alignment of the scattering  particles16.

Notice that for continuous anisotropic medium its polarization properties may vary with position. So it is 
appropriate to use the differential Mueller matrix to describe its polarization  properties12. Forms of differential 
Mueller matrix of deterministic and random media have been derived by several  groups17–23. The physical mean-
ings of the polarization parameters contained in the differential matrix have also been  proposed19–23. In addition, 
coupling effects between polarization parameters have been identified and an anisotropic spatial correlation 
function of anisotropic random medium has been proposed to explain this  phenomenon24,25.

Relations between properties of the scattered light and structural parameters of a medium are bases for 
many imaging techniques like various forms of optical tomographic  microscopy26. For isotropic media or in the 
isotropic approximation, it has been shown that the scattered field in the far zone is proportional to the Fourier 
transform of the dielectric susceptibility of the medium for deterministic  medium26,27 or the spectral electrical 
power at the detector is proportional to the Fourier transform of the spatial correlation function of the dielectric 
susceptibility (or refractive index)26,28.

However, as mentioned above, the real medium is anisotropic. It is then desirable to find a concept that 
characterizes light scattering by this type of media. In this work, to the best of our knowledge, for the first time 
the concept of anisotropic dielectric susceptibility matrix is defined of anisotropic medium for both nondepolar-
izing and depolarizing medium. This anisotropic dielectric susceptibility matrix is then related to the elementary 
polarization parameters of a nondepolarizing medium. In addition, the relationships that exist between the ele-
ments of Mueller matrix and the anisotropic spatial correlations functions of tissue refractive index is derived 
by using the defined anisotropic dielectric susceptibility matrix of the medium.

Anisotropic dielectric susceptibility matrix of the medium
Now we define the dielectric susceptibility matrix of anisotropic medium. To this end, we generalize the for-
mula describing light scattering from an isotropic statistically homogeneous medium to anisotropic random 
 medium26,27. First of all, for anisotropic deterministic medium illuminated by a polarized light beam propagating 
in a direction specified by a unit vector �s0 , the electric field vector at �r = r�s in the far zone of the scatterer can 
be expressed as

where k is the wavenumber in free space, a(ω) is a function of frequency, c denotes the speed of light in vacuo, 
ω is the angular frequency, �r′ is the position vector in the medium, r denotes the magnitude of the vector �r = r�s 
( �s2 = 1 ) from the reference point in the medium to the observation point, �s denotes a unit vector along the 
observation direction, �K = k(�s −�s0) is the scattering vector, 
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a(ω)ejk�s0 represents the incident electric 
field vector, where the superscript T denotes the transpose, and V  denotes the illuminated volume.

In Eq. (1) we have defined the anisotropic dielectric susceptibility matrix H of the medium the elements of 
which are defined by

where ñi(i = 1, 2) denotes the complex refractive index along the two coordinate axes, and * denotes the complex 
conjugate. Here for brevity we have omitted the variables in the functions ηij and ñi.

Equation (1) provides a new base for analyzing light scattering properties of anisotropic media. Note that 
when coordinate axes are along the two principle axes of the medium (for example, i, j = x, y ) the anisotropic 
dielectric susceptibility matrix is of the diagonal form. It is worth noting that for the isotropic media, Eq. (1) 
reduces to the familiar result of the scalar isotropic scattering  theory26,27.

Equation (1) shows that for anisotropic deterministic medium the electric field vector at �r = r�s in the far zone 
of the scatterer is determined by the Fourier transform of the anisotropic dielectric susceptibility matrix of the 
medium. Note that this result is based the first Born approximation to the scattered light and is a generalization 
of the light scattering properties of the isotropic  media26,27.

Equation (1) can formally be rewritten as

A comparison of Eq. (3) with Eq. (1) shows that the Jones matrix (or scattering matrix) of the medium is 
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Equation (4) is the key result in this work. It provides explicit expressions for the elements of the scattering 
matrix of the anisotropic medium in the form of Fourier transform of the elements of the anisotropic dielectric 
susceptibility matrix.

Note that for deterministic medium the Jones matrix of the medium of the thickness �z can be expressed 
explicitly in terms of the elementary polarization  parameters11:

where

where ϕ is the phase retardation per unit thickness. Note that Eq. (5) is valid when the differential Jones matrix 
can be regarded as a constant over the illuminated volume of the medium.

Note that Eqs. (4) and (5) are expressions of the Jones matrix for the same medium and their right-hand sides 
must be equal. Thus a combination of Eq. (4) with Eq. (5) allows us to clearly relate the anisotropic dielectric 
susceptibility matrix of the medium to elementary polarization parameters. This fact may be used to model the 
sources of the elementary polarization parameters in terms of the anisotropic refractive indices (see Eq. (2)). 
For example, to determine the contributions of the complex refractive index to the values of the polarization 
parameters. In addition, it also allows us to determine the polarization properties of medium from the measured 
scattering matrix of the thin layer of medium.

Equation (5) reveals that the anisotropic refractive index ñi(i = 1, 2) used in Eq. (2) for defining the aniso-
tropic dielectric susceptibility matrix should be complex numbers that contain all the polarization properties of 
the medium such as the circular birefringence and dichroism.

For depolarizing (or random) medium Eq. (2) should be

where �· · · � denotes the ensemble average. In this case, 
〈
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 is the spatial correlation function of the anisotropic 
refractive index ñi(i = 1, 2) . Equation (4) can be regarded as a realization of the ensemble representing a medium 
exhibiting spatial, or temporal fluctuations over the area illuminated by the incident light with some probability. 
Equation (4) then reveals that the realization of the Jones matrix of the depolarizing medium is proportional to 
the Fourier transform of the realization of the anisotropic dielectric susceptibility matrix of the medium.

Relating elements of macroscopic Mueller matrix to correlations of elements 
of Jones matrices
Now we consider an application of relation (4) to obtain expressions for macroscopic Mueller matrix of a thin 
layer of medium beneath the sample surface. It has been demonstrated that when an ensemble of Jones matrices 
is used to represent a random linear medium, the effects of an ensemble of Jones matrices are equivalent to the 
Mueller  matrix15. The elements mµν(�z) of the Mueller matrix M(�z) can be expressed  as15:

where 〈〉e denotes average over the ensemble, † denotes the Hermitian adjoint, Tr[] represents the trace of the 
matrix, J(e) is a typical element of the ensemble of a 2 × 2 Jones matrix of the thin slab, σ (µ) ( µ = 0, 1, 2, 3 ) are 
the four linearly independent 2 × 2 Pauli matrices
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Noting that Eq. (9) shows that the elements of the macroscopic Mueller matrix of the thin layer are determined 
by an ensemble average of the product of two Jones matrices of the same medium. Specifically, as can be seen 
from Eqs. (11)–(26), the elements of the macroscopic Mueller matrix of a thin slice are sums of combinations of 
the products of two elements of the Jones matrix.

Assuming that

where ni
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 are the principal indices of refraction and αi
(
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)

 are the principal extinction coefficients, 
〈ni〉 and 〈ni〉 is the mean values of ni and αi , respectively; δni(i = 1, 2) are the varying parts of the refractive 
indices with �δni� = 0(i = 1, 2) , and δαi(i = 1, 2) are the variations of the principal absorption coefficients with 
�δαi� = 0
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 , respectively. Note that, in general, the parameters ni(i = 1, 2) and αi(i = 1, 2) are functions 
of the position �r within the medium.

On substituting Eqs. (2) and (4) into Eqs. (11)–(26) and assuming that the fluctuations of the complex aniso-
tropic refractive indices ñi(i = 1, 2) are very small compared with their mean values, the terms can be neglected 
that are expressed as products in terms of δni(i = 1, 2) and δαi(i = 1, 2) with the exponents of δni(i = 1, 2) and 
δαi(i = 1, 2) total being larger than 4. After very long and straightforward calculations we then obtain a cor-
relation matrix CS of the medium generated by its anisotropic dielectric susceptibility matrix (see Eq. (1)) each 
element of which is a sum of the correlations between the fluctuations of the refractive indices and absorption 
coefficients of the complex refractive indices ñi(i = 1, 2).
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Expressions for differential Mueller matrix of a thin layer of medium
Now we consider the expressions for differential Mueller matrix m of medium. For a thin slab of medium of thick-
ness �z → 0 , its differential Mueller matrix m can be approximated as a constant. In this case, its macroscopic 
Mueller matrix M(�z) can be expressed as

where I is the identity matrix and m can be expressed as a sum of two  terms19

where mnondep contains the elementary polarization properties (per unit length) of the medium, and the elements 
of matrix mdep are the depolarizing properties of the medium. The form of mnondep was derived by Azzam and 
is given  by12

where α is the isotropic absorption, β is the linear dichroism along the x–y laboratory axes per unit distance, γ 
is the linear dichroism along the ± 45° axes per unit distance, and δ is the circular dichroism, η is linear birefrin-
gence along the x–y laboratory axes per unit distance, ν is the linear birefringence along the ± 45° axes per unit 
distance, and μ is the circular birefringence. Several forms of mdep have been derived based on different  facts20–25.

Equation (28) can then be expressed as

where � is a coefficient and C̃S is the Fourier transform of a correlation matrix CS defined by Eq. (4). From 
Eq. (31) we also have

Equation (32) shows that the differential polarization parameters are directly related to the spatial Fourier 
transform of the anisotropic spatial correlation function of the refractive index of the medium.

Note that our result is a generalization of the scalar solution of the Maxwell equation of light scattering by the 
isotropic  media27. In our analysis, by introducing the anisotropic dielectric susceptibility matrix of the medium, 
it is possible to directly relate the differential polarization parameters to the anisotropic structures of media.

An example
As an example of the possible applications of Eq. (31), we now try to calculate the elements of the macro-
scopic Mueller matrix of a thin slice of medium and compare them with the expressions for the elements of 
the depolarizing part of the differential Mueller matrix of random continuous anisotropic medium derived by 
 Devlaminck21,22.

Starting from the differential equation of random differential Mueller matrix and assuming that the random 
fluctuations of the differential polarization parameters are with a short correlation distance and are with Gauss-
ian white noise-like, it has been shown that the z-independent depolarizing differential Mueller matrix can be 
expressed  as22:

where µi ( i = 0, 1, . . . , 6 ) are mean values of the elementary polarization properties of pi(z) , σij(i, j = 0, 1, · · · , 6 ) 
are entries of the covariance matrix of the centered Gaussian white noses pi(z) , σ 2

i = σii is the variance of the 
 process22:

Note that for simplicity, the elementary polarization parameters (α, η, ν, μ, β, γ, δ) have been denoted by µi 
( i = 0, 1, . . . , 6 ). Equations (34) and (35) show that the correlations between the fluctuations of the elementary 
polarization properties contribute to both the mean values of the nondepolarizing properties and the depolar-
izing polarization properties (or the uncertainties of polarization properties). They also show that only for 
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deterministic media or there is no spatial correlation between the fluctuations of the elementary optical properties 
the mean values of the nondepolarizing properties take the values of the elementary parameters.

It is worth noting that the spatial correlations come from the correlations of the processes associated with 
complementary optical properties that contribute to the depolarizing properties. For example, the uncertainty 
of the linear birefringence along the x–y laboratory axes arises from the spatial correlations between the fluctua-
tions of birefringence along the 45° ( 〈σ2σ3〉 ) and circular directions as well as the spatial correlations between 
the fluctuations of attenuation along the 45° and circular directions ( 〈σ5σ6〉 ), respectively.

Now we show that for a thin layer of the medium Eqs. (34) and (35) can be derived from our results. As an 
example, we only consider the case in which the absorbance of the medium is small and can be neglected. In 
this case, Eq. (5) then simplifies to

where

By using Eqs. (11–26) and (36) we can obtain the expressions for the elements of the macroscopic Mueller 
matrix M(�z) of the thin layer. For example, m23 can be expressed as

A comparison of Eq. (39) with the corresponding elements of the differential Mueller matrices mnondep and 
mdep in Eqs. (34) and (35) reveals that for a thin slice of the medium, like its differential Mueller matrix, the 
elements of the macroscopic Mueller matrix can also be expressed as a sum of terms being linear to their mean 
values and the terms being linear to the correlations of two fluctuations.

This result suggests that a combination of relations Eqs. (4), (5), (9), (11)–(26) and (31) allows us to predict 
the values of the elements of macroscopic Mueller matrix M(�z) of the thin layer with given polarization prop-
erties. They can also be employed to find polarization phenomena from measured Mueller matrix which are 
significant in the medium under test.

Discussions
The main result of this work is the definition of the anisotropic dielectric susceptibility matrix H of the medium 
(Eqs. (1), (4)), and thus generalize the well-known isotropic scattering formula (Eqs. (24), (25) in chapter 13 in 
ref.27) to light scattering by anisotropic media. Many possible applications are expected. First, this concept makes 
it possible to relate the electric vector of the light scattered by anisotropic media to their anisotropic dielectric 
susceptibility. Second, it can be used to calculate the scattering matrix for nondepolarizing media. For a depolar-
izing medium it can be employed to find the Mueller matrices of the thin layer of the media. Third, a combination 
Eqs. (4), (7) and (11)–(26) allows us to find the correlated anisotropic structures from the measured macroscopic 
Mueller matrices. Finally, the various form of Fourier transform relations between the Jones matrix of and the 
anisotropic dielectric susceptibility matrix of the medium allow us to simulate the polarization properties of a 
modeled tissue with given values of polarization parameters.

Conclusions
In this work, a theoretical model is proposed that can relate the optically anisotropic structures of a generally 
depolarizing medium to its Mueller matrix. We generalize the formula that describes light scattering from an 
isotropic statistically homogeneous tissues to anisotropic random medium by defining an anisotropic spatial 
correlation of the anisotropic complex refractive index and the anisotropic dielectric susceptibility matrix of the 
medium. The fact that the Mueller matrix of a medium contains all the polarimetric information that is possible 
to get from the medium suggests that our theory can be used to derive the model of medium with required polari-
zation properties, to simulate the light scattering of incident polarized light by a thin slab of the given anisotropic 
media at a depth beneath the surface or at the sample surface, and to interpret the measured Mueller matrix by 
relating the measured polarization parameters to the three-dimensional anisotropic structures of the medium.
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