
Process Optimization for Catalytic Oxidation of Dibenzothiophene
over UiO-66-NH2 by Using a Response Surface Methodology
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ABSTRACT: This research investigates the catalytic performance of a metal−organic
framework (MOF) with a functionalized ligandUiO-66-NH2in the oxidative desulfuriza-
tion of dibenzothiophene (DBT) in n-dodecane as a model fuel mixture (MFM). The
solvothermally prepared catalyst was characterized by XRD, FTIR, 1H NMR, SEM, TGA, and
MP-AES analyses. A response surface methodology was employed for the experiment design
and variable optimization using central composite design (CCD). The effects of reaction
conditions on DBT removal efficiency, including temperature (X1), oxidant agent over sulfur
(O/S) mass ratio (X2), and catalyst over sulfur (C/S) mass ratio (X3), were assessed. Optimal
process conditions for sulfur removal were obtained when the temperature, O/S mass ratio,
and C/S mass ratio were 72.6 °C, 1.62 mg/mg, and 12.1 mg/mg, respectively. Under these
conditions, 89.7% of DBT was removed from the reaction mixture with a composite
desirability score of 0.938. From the results, the temperature has the most significant effect on
the oxidative desulfurization reaction. The model F values gave evidence that the quadratic
model was well-fitted. The reusability of the MOF catalyst in the ODS reaction was tested and demonstrated a gradual loss of
activity over four runs.

1. INTRODUCTION

Currently, the implementation by most countries of strict
regulations for fossil fuels for environmental protection
purposes has prompted a growing interest in investigations
to improve deep desulfurization methodologies.1−3 Hydro-
desulfurization (HDS) is one of the most efficient methods in
removing sulfur compounds;4,5 nonetheless, it is less effective
for removing planar sulfur-containing compounds, e.g.,
benzothiophene and dibenzothiophene. It requires large
reactors and highly active catalysts with severe operating
conditions, including high temperature and hydrogen
pressure.6,7 Hence, alternative approaches are required to
achieve deep desulfurization, including selective adsorption,
alkylative desulfurization, biodesulfurization, and oxidative
desulfurization (ODS).8 ODS is a green and promising process
for removing planar sulfur compounds that can be carried out
under ambient conditions while avoiding the use of hydrogen.9

In an ODS reaction, when sulfur-containing compounds are
oxidized, the sulfur removal efficiency of the catalysts is
enhanced.10,11 ODS converts sulfur compounds into high-
polarity sulfoxides and sulfones that can be extracted by a polar
solvent afterward. ODS reactions can be operated under mild
operating conditions in the liquid phase.
Various oxidizing agents such as tert-butyl hydroperoxide,

hydrogen peroxide, and oxygen have been addressed in prior
studies.12−14 However, hydrogen peroxide is the more

favorable agent because of its commercial availability,
selectivity, and environmental issues.15−18 Employing an
appropriate catalyst improves the activity of oxidants in the
ODS process, of which metal−organic frameworks (MOFs)
are good candidates that contain structurally rigid inorganic
secondary building units (SBUs) and flexible and tunable
organic linkers.19−22 Among the hybrid MOFs, UiO-66(Zr)
derivatives are impressively contributing to both scientific and
industrial applications. It has been outlined that pristine UiO-
66 can achieve more than 90% oxidative sulfur conversion in a
short reaction time;23−25 moreover, other functional groups
(−NH2, −OH) could also significantly influence the chemical
activity and it has been mentioned that they can provide a
strong affinity for sulfur oxidation.26−29

Presently, various MOFs have been recognized for ODS
reactions, while there have been only a few reports on using
amino-functionalized UiO-66. The performance of UiO-66-
NH2 was investigated for thiophene removal from n-octane at
40 °C with a certain amount of an MOF,30 dibenzothiophene
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removal from n-octane at 70%°C with an H2O2/sulfur ratio of
4,31 and DBT and 4,6-dimethyldibenzothiophene removal at
60 °C with an H2O2/sulfur ratio of 6 and 0.184 mmol of
catalyst.32 Thus, far, there have been no reports on statistical
optimization of operation conditions and MOF amounts.
In this study, amino-functionalized (−NH2) UiO-66(Zr)

was synthesized by a solvothermal method for the ODS
reaction. The characterization of samples was carried out by
different techniques, including XRD, FTIR, 1H NMR, SEM,
TGA, and MP-AES. The effect of the reaction conditions and
the performance of UiO-66-NH2 in DBT oxidative removal
were systematically investigated, leading to the development of
optimal operational conditions. To understand the importance
of process parameterstemperature, oxidant amount, and
catalyst dosagea quadratic statistical model was developed
from which optimal conditions were derived by employing a
response surface methodology (RSM).

2. EXPERIMENTAL SECTION

2.1. Materials. Zirconium(IV) chloride (ZrCl4, 98%,
Acros), 2-aminoterephthalic acid (99%, Acros), hydrochloric
acid (HCl, 36%, Honeywell), N,N-dimethylformamide (DMF,
99.5%, Fisher), ethanol (C2H5OH, 99.9%, Honeywell),
acetonitrile (99.9%, Honeywell), n-dodecane (99%, Alfa
Aesar), hydrogen peroxide (H2O2, 30%, Alfa Aesar), and
dibenzothiophene (98%, Acros) were used as received.
2.2. Synthesis of UiO-66-NH2. The UiO-66-NH2 MOF

was prepared as previously reported.33 Briefly, 1 g of ZrCl4 and
1.07 g of 2-aminoterephthalic acid (NH2-BDC) were dissolved
in a mixture of 120 mL of N,N-dimethylformamide (DMF)
and 8 mL of concentrated HCl with sonication for 30 min. The
obtained solution was placed in an oven at 80 °C for 24 h.
After it was cooled to room temperature, the product was
washed three times with DMF and three times with ethanol to
remove all residual solvent. Then the sample was dried by
heating to 80 °C under vacuum until a pressure of 600 mbar
was reached. The synthesis procedure is depicted in Figure 1.

2.3. Characterization Methods. X-ray powder diffraction
(XRD) patterns were measured on a Rigaku Ultima IV or
Panalytic Powder3 diffractometer with a 1D strip detector and
Cu Kα radiation (λ = 0,154 nm), a beam voltage of 45 kV, and
a beam current of 40 mA. Patterns were collected in the range
5° < 2θ < 50° with a 0.05° step size at a scanning rate of 1°/
min. The functional moieties of the samples were characterized
by Fourier transform infrared spectroscopy (Thermo Scientific
Nicolet iS50 FTIR Spectrometric Analyzer) in the wavelength
range of 400−4000 cm−1. Scanning electron microscopy
(SEM) images and surface elemental compositions of selected
materials using EDS were obtained on a Zeiss FEG-SEM Ultra-
55 instrument. The thermal stability of materials was tested by
a simultaneous thermal analyzer (Mettler-Toledo TGA 1) in
the temperature range 25−800 °C and at a heating rate of 10
°C min−1. Microwave plasma atomic emission spectroscopy
(MP-AES) with an Agilent 4200 microwave plasma atomic
emission spectrometer was used to determine the purity of a
sample and elemental ratios. Proton NMR spectroscopy of
digested MOF samples was carried out on a 500 MHz Agilent
DD2 instrument. The NMR spectrometer was equipped with a
5 mm 1D PFG probe head at 25 °C sample temperature. NMR
analysis was used to determine the bulk purity of a MOF by
digesting 1−2 mg of a sample in 5−10 drops of NaOD,
sonicating the mixture until the sample was well dispersed, and
then adding an appropriate amount of D2O (650 uL).

2.4. Oxidative Desulfurization Process. Catalytic
oxidative desulfurization of dibenzothiophene was carried out
in a 6 dram reactor. For the polar phase 6 mL of acetonitrile
and for the fuel phase (MFM) 6 mL of a solution of n-
dodecane with 1000 ppm of dibenzothiophene were placed in
a reactor, and by following the design of the experiment, the
desired amount of the MOF as a catalyst was placed in the
reactor. The glass batch reactor was equipped with a
thermometer, magnetic stirrer, and an oil bath for temperature
control. Upon heating of the reactor (20−100 °C), a specified
amount of hydrogen peroxide was added at atmospheric
pressure. The ODS reaction started after stirring the solution

Figure 1. Schematic of the solvothermal synthesis of UiO-66-NH2 (created with BioRender.com).
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(600 rpm) to decrease the limitation of mass transfer.
According to the experiment design, the effects of three
main variables, including reaction temperature, the mass ratio
of oxidant to the total amount of sulfur, and MOF dosage,
were examined. After completion of the reaction (150 min),
samples from the fuel phase were taken and finally analyzed by
a Shimadzu QP2010 plus gas chromatograph−mass spectrom-
eter to obtain the DBT conversion. In this study, sulfones and
sulfoxides were not analyzed. Equation 1 presents the
calculation of efficiency of dibenzothiophene removal as the
response of the design of experiments

= −C C Csulfur removal (%) ( )/t0 0 (1)

where C0 and Ct refer to initial and final DBT (sulfur)
concentrations in MFM, respectively.
2.5. Response Surface Methodology. To examine the

effect of the designated variables on the output response, a
central composite design (CCD) with a quadratic model was
employed.34 In this method, independent variables are coded
at five levels: the central point is represented by 0, −1 and +1
are factorial points, and finally, +α and −α levels refer to axial
points. An analysis of variance (ANOVA) was applied to
statistically analyze the measured factors and their responses.35

The coefficient of determination (R2) was used to measure the
variation between experimental and predicted responses in the
quadratic model. The statistical significance of the proposed
model was investigated by p and F values. The actual values of
coded levels and the range of factors are given in Table 1. The

mathematical equation of the quadratic model is expressed in

eq 2

∑ ∑ ∑β β β ε= + + +
= = =

Y X X X
i

i i
i j

ij i j0
1

3

1

3

1

3

(2)

where Xi and Xj are the coded values of variables, Y is output
response, β0, βi, and βij indicate polynomial coefficients for the
constant, linear and, interaction terms, respectively, and ε is the
random error of the model. The actual number of experiments
(N) is determined be eq 3

= + +N k n2 2k
0 (3)

where k is the number of independent factors, 2k is the number
of experiments for the factorial points, 2k is the number of
experiments for the axial points, and n0 is the number of
repetitions for the central points. On the basis of the CCD
method, 17 test runs were performed for ODS reaction
optimization. The CCD model was conducted using Design-
Expert version 12 software.

3. RESULTS AND DISCUSSION

3.1. Characterization. As illustrated in Figure 2a, XRD
was used to evaluate the structure, crystallinity, and phase
purity of UiO-66-NH2. The diffraction of this sample depicted
the XRD patterns of the as-synthesized UiO-66-NH2, which
were identical to those of the reported XRD patterns and
confirmed that UiO-66-NH2 had been successfully pre-
pared.36,37 As shown in Figure 2a, the zirconium−benzene
carboxylate units form an orthorombic crystal lattice with
Immm space group, and the major diffraction peaks were
characterized using a database (ICDD-JCPDS: 964132916).
Also, it was confirmed that the sample does not have any
byproducts.
FT-IR bands of the sample are presented in Figure 2b. For

UiO-66-NH2, the IR band at 1658 cm−1 was assigned to the
CO vibrations, indicating that DMF resides in the pores.
The characteristic bands of O−C−O asymmetric stretching (at
1571 cm−1) and symmetric stretching of terephthalic acid
(1387 cm−1) were also observed. In addition, spectral bands at
1491, 766, and 662 cm−1 were attributed to the vibration of
CC bonds of aromatic rings, and −OH and C−H vibrations
in H2BDC, respectively. Meanwhile, the peak at 1438 cm−1

could be ascribed to the N−H bending and C−N stretching
vibrations.38,39 Moreover, the IR spectrum of the sample

Table 1. Independent Test Variables at Five Levels Used for
Central Composite Design

coded variable level

factor unit code (-αa) (−1) (0) (+1) (+αa)

temp °C X1 20 36.21 60 83.78 100
O/S ratio X2 0.5 1.61 3.25 4.89 6
C/S ratio X3 0.5 3.44 7.75 12.06 15

aα = 1.68.

Figure 2. XRD powder pattern (a) and FT-IR spectrum (b) of UiO-66-NH2.
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demonstrated one small absorption peak at 3631 cm−1; this
peak was ascribed to the −NH2 group.

40

From the SEM picture (Figure 3), the UiO-66-NH2 samples
were shown to exhibit a uniform octagonal morphology. On
the basis of the images, the particle sizes generally converged at
around 260 nm.
Figure 4 presents an 1H NMR analysis for the synthesized

UiO-66-NH2 after digestion in an NaOD/D2O solution. The

spectrum of UiO-66-NH2 presents signals at 6.84, 6.90, and
7.35 ppm that were assigned to the benzene ring structure of
the amino terephthalic acid in the MOF.41

A thermogravimetric analysis (TGA) curve of UiO-66-NH2
is shown in Figure 5. The TGA curve demonstrated a three-
step weight loss. The initial mass loss at 45−130 °C was
assigned to the removal of ethanol and water; the second mass
loss was from removal of DMF coordinated to Zr−O. The
third step in weight loss after 500 °C was due to
dehydroxylation of the zirconium oxo clusters and framework
decomposition.42 A quantitative analysis (MP-AES) of UiO-
66-NH2 showed that the zirconium composition was 25.1% of
the MOF.

3.2. Statistical Analysis. Experiments were carried out
according to the specified experimental design based on a
central composite design procedure. The designated parame-
ters, including the reaction temperature, the oxidant to sulfur
mass ratio (O/S), and the catalyst to sulfur mass ratio (C/S),
were studied at the designated reaction time. Accordingly,
independent factors, predicted values, and experimental
responses are given in Table 2. The equation in terms of
actual factors as a quadratic model is obtained as shown in eq
4:

= − + + + −

+ − − −

−

X X X X X

X X X X X X

X

DBT removal (wt %)

25.99 2.56 11.13 2.30 0.09

0.006 0.25 0.017 0.52

0.10

1 2 3 1 2

1 3 2 3 1
2

2
2

3
2

(4)

The fitness of the quadratic model was evaluated by the
coefficient of determination (R2), and its multiple regression
model was investigated by an F test. An analysis of variance
(ANOVA) was performed for the fitted quadratic polynomial
model of DBT removal. As demonstrated in Table 3, the
model F value of 7.79 implies that there is only a 0.65% chance
that such a large F value could occur due to noise. Also, the
model P value of less than 0.05 showed that the model is
statistically significant. The F value for the lack of fit (6.46)
means that it is not significant relative to the pure error. There
is a 13.96% chance that a lack of fit F value this large could
occur due to noise; thus, it is not significant. A nonsignificant
lack of fit means the model is correctly fitted to the data and
corroborated by the coefficient of determination value (R2 =
0.914), indicating that the predicted mathematical model was
well-fitted to the experimental data.
A comparison of the observed and predicted responses is

illustrated in Figure 6; the plot depicts the reliability of the
model, which implies that the DBT removal correlation has
high accuracy within the investigated range of variables (eq 4).
Figure 7 proves the reliability of the predicted model by

normal percent probability plot of the residuals. The straight
line of the graph obviously demonstrates that the residuals
show a normal distribution.
This research was conducted to determine the effect of

individual parameters and their interactions by using the
benefit of the design of experiment (DOE). The significance of
each of the three independent parameters (temperature, O/S
mass ratio, and C/S mass ratio) on DBT removal efficiency

Figure 3. Typical SEM images of UiO-66-NH2.

Figure 4. 1H NMR spectrum of the prepared UiO-66-NH2.
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was specified by indicating the 3D surface plots and response
contours (Figures 8 and 9). Figure 8 depicts response surface
plots between the oxidation temperature reaction and the
oxidant to sulfur mass ratio on the ODS of dibenzothiophene,
which demonstrates that both factors have noticeable effects

on the removal efficiency of DBT. It was observed that at a
certain temperature, as the oxidant/sulfur mass ratio increases
to 1.7, first the dibenzothiophene ODS efficiency is enhanced
and afterward is decreased by oxidant/sulfur ratio ≥8 and
higher. However, the dibenzothiophene oxidation yield

Figure 5. TGA curve of pristine UiO-66-NH2 (N2 atmosphere, heating rate 10 °C/min).

Table 2. Central Composite Design Arrangement and Predicted and Experimental Responses

DBT removal efficiency (%)

run no. point type X1 (°C) X2 (mg/mg) X3 (mg/mg) predicted experimental

1 center 60.00 3.25 7.75 87.41 89.02
2 axial 36.22 4.89 3.44 73.44 73.14
3 axial 83.78 4.89 12.06 77.97 77.81
4 factorial 60.00 0.50 7.75 82.62 78.86
5 axial 83.78 1.61 12.06 87.58 92.63
6 factorial 100.00 3.25 7.75 70.29 67.60
7 axial 83.78 1.61 3.44 79.83 79.31
8 factorial 60.00 3.25 0.50 79.80 77.27
9 center 60.00 3.25 7.75 87.41 85.18
10 axial 36.22 4.89 12.06 71.74 77.03
11 factorial 60.00 6.00 7.75 84.40 81.43
12 axial 36.22 1.61 3.44 61.71 66.62
13 axial 83.78 4.89 3.44 77.24 81.26
14 center 60.00 3.25 7.75 87.41 89.18
15 factorial 20.00 3.25 7.75 49.81 45.77
16 factorial 60.00 3.25 15.00 84.89 80.70
17 axial 36.22 1.61 12.06 67.03 67.77

Table 3. ANOVA for Polynomial Model of Dibenzothiophene Oxidation Yielda

source sum of squares degree of freedom mean square F value P value

A: temp (°C) 506.24 1 506.24 20.16 0.0028
B: O/S (mg/mg) 3.84 1 3.84 0.1527 0.7076
C: C/S (mg/mg) 31.27 1 31.27 1.25 0.3013
AB 102.53 1 102.53 4.08 0.0831
AC 2.92 1 2.92 0.1162 0.7432
BC 24.64 1 24.64 0.9809 0.3550
A2 1054.84 1 1054.84 42.00 0.0003
B2 21.46 1 21.46 0.8543 0.3861
C2 36.09 1 36.09 1.44 0.2696
model 1760.22 9 195.58 7.79 0.0065
lack of fit 165.56 5 33.11 6.46 0.1396
error 10.26 2 5.13

aR2 = 91.37%; adjusted R2 = 89.27%.
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increased in the presence of greater amounts of oxidants;43,44

greater amounts of oxidants generate water molecules due to
decomposition, which may occupy the MOF surface area and
diminish the adsorption of dibenzothiophene on active sites. In
addition, economic and environmental issues to decrease the
utilization of oxidants should always be considered. Thus, the
model calculated the optimal amount O/S = 1.62 mg/mg for
the ODS reaction.
Increasing the temperature of the reaction from 60 to 72 °C

induces an enhanced dibenzothiophene oxidation yield for a
certain oxidant/sulfur mass ratio; however, temperature
increases above 72 °C reduced the dibenzothiophene oxidation
efficiency. As the oxidative desulfurization reaction is
endothermic,45 temperature enhancement is favors the
dibenzothiophene removal process rate as well as increases
the molecular movement of reaction components. On the

other hand, increasing the temperature leads to oxygen
peroxide decomposition; consequently, as the oxidant
concentration is decreased, the ODS reaction rate is reduced.46

Therefore, the optimal temperature can be considered to be 72
°C.
Figure 9 demonstrates the binary interaction of reaction

temperature and C/S ratio. Obviously, at C/S ratios of 0.5−12
and temperatures of 60−72 °C, the maximum efficiency of
dibenzothiophene ODS was attained that is pertinent to nearly
complete removal, indicating that a catalyst/sulfur (C/S) ratio
of 12 increased the concentration of MOF active sites at a
proper level, which led to a greater dibenzothiophene oxidation
yield. However, excess amounts of the MOF lead to
agglomeration and active site reduction, limit the surface
area with the absorbate, and negatively affect the mass transfer
of reactants, and finally the efficiency of MOF catalytic activity
for the oxidation process is decreased.47

3.3. Determination of Optimal Conditions. The central
composite design technique has been employed to determine
the optimal conditions of UiO-66-NH2 MOF preparation for
the oxidative dibenzothiophene removal to be maximized from
MFM. Table 4 displays the optimal conditions for maximum
DBT removal with a desirability value of 0.938 for the
determined values of the three independent factors.
Table 5 shows the effect of UiO-66-NH2 on oxidative

desulfurization performance with and without catalyst. It was
studied by keeping the O/S ratio 1.6, stirrer speed constant at
600 rpm, 6 mL of model fuel, 6 mL of acetonitrile, 1000 ppm
of DBT, for 150 min at 36.2, 60.0, 72.6, and 83.8 °C
temperatures. In the case of without catalyst (just extraction
effect), the sulfur removal was about 43%, 55%, 56% and 56%
less than reaction condition in the presence of the catalyst.

3.4. Proposed Mechanism. Figure 10 shows a plausible
mechanism for the dibenzothiophene catalytic oxidative
reaction. Metal cluster units of the UiO-66-NH2 structure
[Zr6O4(OH)4] are connected to 12 rings of amino terephthalic
acid; accordingly, the MOF is able to strengthen the
electrophilicity property of the oxidant with high electron-
withdrawing capability and a reduced number of Zrδ+ sites.
These active sites are able to increase the electrophilicity of the
H2O2 in sulfur removal.17 In the first step of the mechanism,
the Zr−OH sites were protonated and then dehydrated to
form unsaturated Zr sites. The unsaturated Zr sites serving as
Lewis acids react with oxygen peroxide to generate
peroxometallic Zr complexes in an oxidation reaction.15 Zr
ions on the MOF surface coordinated with the sulfur adsorb
on the Lewis acid sites,24 where their existence has been
proven in UiO-66 and its derivatives in previous studies.15,48,49

It has also been reported that UiO-66-NH2 has many more
Lewis acid sites in comparison to UiO-66.49 The reaction
between a Zr−O ion and an oxygen of the peroxide leads to
hydroxyl radicals formation; accordingly, •OH radicals have
high oxidizability and electrophilicity as active oxygen species.
During the electrophilic oxidation, two protons of the
dibenzothiophene sulfur atom shift when the atom nucleophili-
cally attacks the oxidative agent, and then a sulfoxide
intermediate forms when the oxygen atom is transferred to
the planar sulfur molecule. The generated sulfoxide forms a
hydrogen bond with the active sites of ZrOH, decreasing the
electronic density of the sulfur atom in the sulfoxide and thus
activating it for the next nucleophilic attack by the oxidizing
agent, finally leading to sulfone formation.15,50 The ODS
reaction can also occur without catalyst, but with less removal

Figure 6. experimental and predicted removal yield of dibenzothio-
phene.

Figure 7. Normal percent probability versus Studentized residuals
plot for the model.
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efficiency. The benefit of the UiO-66-NH2 MOF as a catalyst
not only is due to the high activation of peroxide hydrogen
inner bonds through the formation of O•−

2 and
•OH radicals

but also the MOF mechanical stability for reuse in the ODS
reaction results in a higher sulfur removal efficiency.51

When oxygen peroxide is employed as an oxidation agent,
the catalytic activity of UiO-66-NH2 depends on its ability to

decompose H2O2 into O•−
2 and •OH radicals (oxygen

species).52 The UiO-66 structure includes open metal nodes
occupied by hydroxide or water as a terminal ligand to form
Zr−OH and Zr−OH2. Introduction of an amino group
(−NH2) as an electron-donating group in the terephthalic
acid linker can enhance the decomposition of hydrogen
peroxide, thus initiating the proton donation to Zr sites.26

Furthermore, the adsorption of sulfur compounds is affiliated

Figure 8. Response surface three-dimensional (a) and two-dimensional contour plots (b) indicating the effect of the reaction temperature versus
oxidant/sulfur mass ratio on the dibenzothiophene oxidation efficiency. X3 = 12 mg of MOF/mg of sulfur.

Figure 9. Response surface three-dimensional (a) and two-dimensional contour plots (b) indicating the effect of the reaction temperature versus
catalyst/sulfur mass ratio on the dibenzothiophene oxidation efficiency. X2 = 1.6 mg of oxidant/mg of sulfur.

Table 4. Predicted Value Obtained for DBT Removal under
Optimum Conditions

independent factor

dibenzothiophene removal
efficiency (%)

desirability
(%)

A: temp (°C) 72.6 89.7 93.8
B: O/S ratio 1.62
C: C/S ratio 11.03

Table 5. DBT Removal with and without UiO-66-NH2 in
the Presence of H2O2

DBT removal at different temperatures (%)

36.2 °C 60.0 °C 72.6 °C 83.8 °C

UiO-66-NH2 (13.5 mg) 68.2 87.0 89.7 89.6
no catalyst 25.1 32.1 33.7 33.6

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.1c05965
ACS Omega 2022, 7, 16288−16297

16294

https://pubs.acs.org/doi/10.1021/acsomega.1c05965?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05965?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05965?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05965?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05965?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05965?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05965?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05965?fig=fig9&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.1c05965?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


with the H atom bonding. Dibenzothiophene with electron
pairs around the sulfur atom is a H acceptor; consequently, an
amino group in UiO-66 as a H-donor species improves the
adsorption performance.26,53

3.5. Reusability of Spent Metal Organic Framework.
Catalyst reusability is a desirable property with regard to
industrial utilization and economic evaluation. The regener-
ation of UiO-66-NH2 catalysts was examined by performing
four multiple DBT removal experiments at 72.6 °C under the
optimal conditions. After each experiment, the MOF was
separated from the oil phase and recovered by centrifugation.
To eliminate the remaining sulfur, the used MOF was washed
three times with acetonitrile and then dried at 100 °C in an
oven for 12 h; the MOF was then utilized in a subsequent
DBT removal reaction. Figure 11 illustrates the dibenzothio-
phene ODS yield, which was maintained at the initial level with
a slight decreasing trend (about 8.5%) after four sequential
cycles, decreasing from 90.08% to 82.45%. The gradual
decrease in the MOF performance for the fourth cycle might
be due to the fouling of MOF pores and decreasing number of
active sites. Within the oxidative catalytic reaction, the
formation of sulfone and sulfoxide may lead to MOF catalytic
deactivation during π-complexation, so that washing and
heating through the recovery process is not convenient to
simply remove the poisonous agents.54

4. CONCLUSION
Functionalized UiO-66(Zr) was successfully synthesized
through ligand substitution by a solvothermal methodology.
The structure and phase purity of the MOF catalyst were
confirmed by multiple characterization techniques. The effect

of the reaction conditions on dibenzothiophene ODS was
examined, including the reaction temperature, oxidation agent/
sulfur mass ratio, and catalyst/sulfur mass ratio, using the
RSM-CCD technique. According to the values of the design
point of desulfurization yields, the experimental results were
fitted at an acceptable level to the predicted data with an
appropriate R2 value (about 5% error). The sulfur removal
efficiency could reach 89.7% for 72.6 °C, an O/S ratio of 1.62,
and a C/S ratio of 11.03 for DBT MFM (1000 ppm of S
content), which was guaranteed by a desirability value of 0.938.
According to the results, the temperature has the greatest effect
on DBT removal; however, it seems that thermal decom-
position of oxygen peroxide led to increasing oxidant usage and
decreasing DBT removal at temperatures higher than 72.6 °C.
Additionally, the DBT removal efficiency of the regenerated
catalyst demonstrated that the employed MOF has acceptable
reusability and retains its activity after four runs with about an
8.5% drop in the conversion of DBT.
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