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ABSTRACT

Ovarian granulosa cell tumors (GCTs) are rare gynecologic
tumors in women. Due to the rarity and limited research efforts
invested, the etiology of GCTs remains poorly defined. A
landmark study has discovered the mutation of forkhead box
L2 (FOXL2) as a genetic hallmark of adult GCTs in the human.
However, our understanding of the role of cell signaling in GCT
development is far from complete. Increasing lines of evidence
highlight the importance of TGF-beta (TGFB) superfamily
signaling in the pathogenesis of GCTs. This review draws on
findings using genetically modified mouse models and human
patient specimens and cell lines to reveal SMAD3 activation as a
potentially key converging point of dysregulated TGFB super-
family signaling and genetic aberrations in GCT development. It
is anticipated that deciphering the role of TGFB superfamily
signaling cascades in ovarian tumorigenesis will help develop
new therapeutic approaches for GCTs by targeting core
signaling elements essential for tumor initiation, growth, and
progression.
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INTRODUCTION

Ovarian sex cord-stromal tumors are rare gynecologic
tumors derived from ovarian granulosa, theca, and stromal
fibroblast compartments. Ovarian granulosa cell tumors
(GCTs), the major type of sex cord-stromal tumors, account
for approximately 5% of ovarian tumors and are divided into
adult and juvenile subtypes, with the former being more
commonly diagnosed [1–3]. Our understanding of the etiology

of GCTs is far from complete. Currently, surgical intervention
is a standard treatment for early-stage GCT patients. There is
no tailored therapeutic option available for this disease.

Two decades ago, the Matzuk laboratory provided striking
genetic evidence that transforming growth factor-beta (TGFB)
superfamily proteins are involved in sex cord-stromal tumor
development in mice of both sexes by demonstrating inhibin
alpha (INHA) as a tumor suppressor specific for the gonad
using Inha knockout mice [4]. The expression and function of
inhibins/activins in ovarian tumors have been reviewed
elsewhere [5–7]. Subsequent studies using genetically modified
mouse models targeting other TGFB superfamily members and
signaling components reinforce the role of this growth factor
family in GCT development [8–12]. These studies along with
emerging evidence suggest that SMAD3 activation may be one
of the key mechanisms underlying the pathogenesis of GCTs.

TGFB SUPERFAMILY SIGNALING

TGFB superfamily signaling regulates fundamental cellular
properties, including cell growth and death, differentiation,
migration, and invasion. TGFB superfamily ligands (.30
members) contain several subfamily groups such as TGFBs,
activins, bone morphogenetic proteins (BMPs), and growth
differentiation factors (GDFs), as well as intermediate/distant
members including anti-Mullerian hormone (AMH), nodal
growth differentiation factor (NODAL), and inhibins [13, 14].
These structurally related proteins signal through transmem-
brane type II and type I receptor complexes, where type I
receptors phosphorylate and activate receptor-regulated
SMADs (R-SMADs; SMAD1/2/3/5/9) [14] (Fig. 1A). TGFBs,
activins, and NODAL commonly signal via SMAD2/3, while
BMPs impinge on SMAD1/5/9 for signal transduction. To gain
access to the gene regulatory machinery, R-SMADs form
complexes with SMAD4, known as common SMAD (Co-
SMAD), and translocate from the cytoplasm to the nucleus,
where SMADs regulate gene transcription in the presence of
additional coregulators. Besides R-SMAD and Co-SMAD, this
pathway is also subject to the negative modulation by
inhibitory SMADs (i.e., SMAD6/7) [15] (Fig. 1B). In addition
to the aforementioned canonical SMAD-dependent pathway, a
noncanonical pathway, also termed SMAD-independent or
non-SMAD pathway, can mediate cellular responses to TGFB
superfamily signals [16, 17], highlighting the diversity and
complexity of the signaling paradigm utilized by TGFB
superfamily proteins (Fig. 1B).

In this review, we will mainly discuss the involvement of
signaling related to TGFBs, activins, inhibins, and BMPs in
GCT development. However, the importance of AMH and
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potential role of NODAL in the pathogenesis of GCTs should
not be overlooked. AMH induces male Mullerian duct
regression during sex differentiation [18]. AMH has also been
found to regulate folliculogenesis, and it is a potential regulator
of granulosa cell apoptosis [19]. Moreover, AMH can be used
as a circulating marker for GCTs, with prognostic value in
clinics [20]. NODAL signaling is critical for multiple events in
vertebrate development such as left-right axis specification
[21]. In cultured rat granulosa cells, recombinant NODAL
induces apoptosis via activin A receptor type 1C (ACVR1C)
[22]. Although there are several lines of evidence suggesting a
role of NODAL in the pathogenesis of melanoma, breast
cancer, and pancreatic ductal adenocarcinoma [23–25], it
remains to be determined whether NODAL plays a role in
ovarian GCT development.

TGFB SUPERFAMILY SIGNALING IN GCT DEVELOP-
MENT: LESSONS FROM GENETICALLY MODIFIED
MOUSE MODELS

Development of sex cord-stromal tumors has been docu-
mented in a number of genetically engineered mouse models
[4, 10, 11, 26–32]. INHA is known as a tumor suppressor from
the creation of mice lacking INHA [4]. Due to the functional
antagonism of activins by inhibins [33], loss of INHA is
expected to cause unopposed activin signaling activity.
Functional evidence supporting a role of potentiated activin
signaling in gonadal tumor development stems from a study
demonstrating that activin-induced cachexia-like wasting
syndrome was prevented and gonadal tumor formation
compromised when an activin antagonist, a chimeric activin
receptor type II-murine Fc protein, was administered to Inha�/�

mice [34]. Furthermore, genetic deletion of Smad3, but not

Smad2, in Inha null background protects/mitigates gonadal
tumorigenesis in mice, where a more pronounced effect was
observed in the males versus females [8, 35]. This finding
suggests that SMAD3 plays a major role in mediating activin
signaling during gonadal tumorigenesis. The potential synergy
between SMAD2 and SMAD3 and the involvement of non-
SMAD signaling in the tumorigenic process resulting from loss
of INHA have not been examined. Within the follicular
microenvironment, oocytes orchestrate folliculogenesis partial-
ly through TGFB superfamily members [36]. Interactions
between INHA and oocyte-secreted GDF9 have been revealed
during gonadal tumorigenesis using mouse models; and a
complex interplay between TGFB superfamily members in
regulating the proliferation, differentiation, and malignant
transformation of mouse granulosa cells has been proposed
[37, 38]. Importantly, these studies indicate a potential role of
oocyte paracrine signaling in ovarian tumorigenesis.

Studies using conditional knockout mouse models have
shown that signaling mediated by BMP type 1 receptors (i.e.,
BMPR1A and BMPR1B) and BMP-responsive SMADs (i.e.,
SMAD1/5) negatively impacts GCT development. Interesting-
ly, ovaries from Smad1/5 and Bmpr1a/Bmpr1b conditional
knockout mice express high levels of TGFB downstream target
genes such as TGFB induced (Tgfbi) and matrix metal-
lopeptidase 2 (Mmp2) and/or harbor SMAD2/3 activation, in
concordance with the antagonism between TGFB and BMP
signaling pathways [10, 11, 39, 40]. Generation of Smad1/5/4
triple conditional knockout mice by the Pangas laboratory
further indicates that SMAD4-dependent TGFB/activin signal-
ing may be tumorigenic in the mouse ovary [41]. Because
canonical BMP signaling activity is attenuated in Smad1/5
conditional knockout mice, disruption of the Smad4 gene in

FIG. 1. TGFB signal transduction. A) Core elements of canonical TGFB superfamily signaling. The major ligands, type II and type I receptors, and SMADs
are listed. To our knowledge, mRNA and/or protein expression of all listed signaling elements except ACVRL1 and ACVR1C has been reported in human
GCTand/or GCT cell lines (i.e., KGN and COV434). B) The TGFB signaling paradigm. TGFB signal transduction is initiated by ligand-receptor binding and
propagated through intracellular SMAD proteins. Phosphorylated R-SMADs interact with SMAD4, resulting in nuclear accumulation of the R-SMADs-
SMAD4 complex that regulates gene transcription together with coregulators (Co-R) consisting of co-activators and corepressors. SMAD6/7 acts as
negative modulators of TGFB signaling activity. Besides the canonical SMAD-dependent signaling, TGFB signaling is also mediated via non-SMAD
pathways. SMAD-independent activation of ERK1/2, p38, and JNK is illustrated as examples. This is a simplified illustration of TGFB signaling with the
purpose of highlighting major signaling elements.
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this model is expected to further block SMAD4-dependent
TGFB/activin signaling. It is interesting to note that tumors
developed in Smad1/5/4 triple conditional knockout mice are
not metastatic but are prone to apoptosis [41]. These findings
support that TGFB signaling promotes the proliferation of
granulosa cells [42–44]. Of note, the role of BMP and TGFB/
activin signaling in cell proliferation and differentiation during
GCT development is complex, as evidenced by the fact that
Smad4 conditional knockout mice show premature granulosa
cell luteinization or defective luteal formation [45, 46].

New evidence suggests that GCTs resulting from genetic
modifications of some non-TGFB superfamily genes may also
harbor TGFB/activin signaling activation [31, 32]. A recent
elegant study by the Richards laboratory reveals that triple
deletion of forkhead box protein O1 (Foxo1), Foxo3, and
phosphatase and tensin homolog (Pten) in the mouse ovary
causes GCT formation. This mouse model mimics human
GCTs in hormone profiles (e.g., increased levels of estradiol
and inhibins). Tumor tissues from these mice are positive for
phospho-SMAD2/3, suggesting an activation of TGFB/activin
signaling [31]. Another mouse model with constitutive
activation of phosphoinositide 3-kinase (termed PIK3CA) in
the oocyte demonstrates abnormal follicle growth, ovulatory
defects, and formation of bilateral GCTs [32, 47]. Development
of GCTs in the PIK3CA mouse model is potentially caused by
altered activin signaling, where autocrine activin signaling
promotes the growth of tumor cells [32]. As supporting
evidence, inhibin beta-A and nuclear SMAD3 are highly
expressed in these GCTs [32].

To directly test the effect of TGFB signaling activation in
ovarian GCT development, we have recently generated mouse
models harboring a constitutively active TGFB receptor 1
(TGFBR1) in the ovary [48]. Constitutive activation of
TGFBR1 using anti-Mullerian hormone receptor type 2
(Amhr2)-Cre (TGFBR1-CAAcre) leads to the development of
sex cord-stromal tumors, reminiscent of GCTs [48]. These
tumors express granulosa cell markers including forkhead box
L2 (FOXL2), INHA, and FOXO1. Importantly, serum levels of
estradiol, inhibin A, and inhibin B are highly increased and
follicle-stimulating hormone (FSH) is dramatically reduced in
TGFBR1-CAAcre mice, consistent with the hormone profile of
human GCTs. Moreover, constitutive activation of TGFBR1
promotes ovarian cell proliferation, compromises cell differ-
entiation, and disrupts the expression of genes associated with
ovarian differentiation and function (e.g., 3b-hydroxysteroid
dehydrogenase [Hsd3b], FSH receptor [Fshr], natriuretic
peptide type C [Nppc], and wingless-type MMTV integration
site family member 4 [Wnt4]) [48]. Further analyses of gene
expression using mouse ovaries have indicated potential
involvement of increased expression of phospho-AKT and
GLI-Kruppel family member GLI1/2 (Gli1/2) and reduced
expression of Tgfbr3 in GCT development [48]. This genetic
evidence supports the tumorigenic effect of TGFBR1 activa-
tion in the ovary. However, the specific contribution of
SMAD3 signaling to GCT development in TGFBR1-CAAcre

mice has not been determined, although increased expression
of phospho-SMAD2/3 has been observed in these mice [48]
(Gao and Li, unpublished results). Clarification of the role of
SMAD3 requires the generation of mice harboring inactivation
of SMAD3 and constitutive activation of TGFBR1 within
granulosa cells in the future.

TGFB SUPERFAMILY SIGNALING AND HUMAN GCT
DEVELOPMENT

Although limited information on transcriptomic changes of
human GCTs is available in publicly available databases
including GEO DataSets, Oncomine, Cbioportal, and The
Cancer Genome Atlas, partially due to the rarity of this type of
tumors in women, emerging evidence indicates that TGFB/
activin signaling is active in human GCTs [12, 31, 41].
Currently, there are only two established GCT cell lines
available in this research field. KGN and COV434 cells are
derived from the respective adult and juvenile GCTs [49, 50].
KGN cells but not COV434 cells bear FOXL2 402C ! G
mutation [51]. In addition, KGN cells express FOXL2, while
COV434 cells lack FOXL2 expression [51], which may be
associated with the aggressive property of juvenile GCTs [1,
52]. However, the causes of FOXL2 402C ! G mutation in
KGN cells and lack of FOXL2 expression in COV434 cells are
not known.

Existing literature supports the hypothesis that TGFB
superfamily signaling is involved in the pathogenesis of human
GCTs. The expression of phospho-SMAD2/3 in human
ovarian and testicular juvenile GCTs and extraovarian GCT
implants suggests the active status of TGFB/activin signaling
in GCTs [12]. Furthermore, SMAD2/3 and nuclear factor
kappa B (NFjB) signaling pathways positively influence the
survival of KGN cells cultured in vitro [53]. It has been
demonstrated that treatment of human COV434 cells with
TGFB1, but not activin A, increases cell viability and inhibits
apoptosis via TGFBR1-dependent repression of caspase 3/7
activity and poly (ADP-ribose) polymerase 1 (PARP1)
cleavage, indicating that activins and TGFBs may play
different roles during GCT progression [41]. TGFBR3, also
known as betaglycan, promotes the antagonism of activins by
inhibins via binding to inhibins [33]. Recent evidence points to
a tumor suppressive role of TGFBR3 in GCTs using cultured
human GCT cell lines [54, 55]. In support of this concept,
transcript levels of TGFBR3 are lower in human GCTs
compared with normal ovarian tissues [54]. Immunoreactive
signals for TGFBR3 are also weaker in human GCTs versus
fibrothecomas [56]. Moreover, stable transfection of TGFBR3
in human GCT cell lines increases cell adhesion and decreases
cell invasion [54]. TGFBR3 has also been proposed to inhibit
GCT metastasis through interaction with the NFjB pathway
based on studies using cultured human GCT cell lines and
xenograft mouse model [55].

In addition to TGFB/activin signaling, BMP signaling is
also involved in GCT development. Components of the BMP
signaling pathway, including BMP ligands, receptors, and
downstream SMAD1/5, are present in human GCTs [57].
Human GCT cell line also expresses BMP signaling receptors
and SMADs [58]. Treatment of cultured human GCT cell line
or immortalized human granulosa cell line (SVOG) with BMPs
induces SMAD1/5/9 phosphorylation [59, 60]. Nevertheless,
BMP signaling appears to be antitumorigenic, as is corrobo-
rated by the aforementioned phenotype of Smad1/5 and
Bmpr1a/1b conditional knockout mouse models and the fact
that COV434 cells express lower levels of SMAD1/5 versus a
nonjuvenile GCT cell line [57]. A study using cultured
COV434 cells suggests that the tumor suppressive action of
BMP signaling may be mediated through the antagonism of
Sp1 transcription factor (SP1) by SMAD1/5 on the promoter
region of platelet derived growth factor subunit A (PDGFA)
gene, leading to reduced production of PDGFA protein, a
multifunctional molecule that has a prominent role in
angiogenesis [57]. Of note, TGFB1 stimulates the expression
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of vascular endothelial growth factor (VEGF) via SP1-
dependent transcriptional activation in human cholangiocellu-
lar cancer cells, suggesting a potential role of TGFB signaling
in tumor angiogenesis [61]. However, TGFB signaling inhibits
the expression of VEGFA in the FET cell line that is derived
from early-stage colon cancer [62]. These findings suggest that
regulation of tumor angiogenesis by TGFB signaling is
contextually dependent [63]. However, the role of TGFB
signaling-induced angiogenesis in the development of GCTs is
not clear. That sustained activation of TGFBR1 promotes
ovarian angiogenesis and GCT formation provides circumstan-
tial evidence supporting a link between TGFB signaling-
stimulated angiogenesis and GCT development [48].

SMAD3 ACTIVATION AS A POTENTIAL CONVERGING
POINT OF DYSREGULATED TGFB SUPERFAMILY SIG-
NALING AND GENETIC ABERRATIONS IN GCTs

FOXL2 is a transcription factor with a fundamental role in
ovarian granulosa cell differentiation and function [64]. A
recent study has shown that female adult GCTs (;97%), but
not other types of ovarian tumors, carry a FOXL2 somatic
missense mutation (402C! G), resulting in the translation of a
mutant FOXL2 (C134W) protein [65]. Although GCTs are
rarely found in men, the FOXL2 402C ! G mutation has also
been reported in adult GCTs from some male patients [66]. The
impact of FOXL2 402C! G mutation on FOXL2 function has
been highlighted in recent elegant reviews [67, 68]. Current
literature supports that FOXL2 402C ! G mutation increases
cell proliferation, reduces apoptosis, and alters ovarian
steroidogenesis to favor the synthesis of estrogen [67, 68].
Studies aimed at identifying FOXL2 partners have uncovered
that mutant FOXL2 (C134W) is defective in integrating pro-
apoptotic signals in cultured KGN cells, leading the authors to
speculate that failure to trigger apoptosis by the mutant FOXL2
may contribute to the oncogenesis of GCTs [69]. The specific
role of the mutant FOXL2 (C134W) in granulosa cell
tumorigenesis remains to be elucidated. The fact that FOXL2
402C ! G mutation occurs nearly universally in adult GCTs
but is rare in the juvenile type of GCTs suggests the distinct
etiology of the two types of GCTs [65]. Molecular changes
associated with FOXL2 mutation have been recently investi-
gated. An interesting question posed is, does FOXL2 mutation
link to TGFB/activin signaling activation in human GCTs?
New evidence has revealed molecular and functional interac-
tions between FOXL2 and SMAD3 and suggested that
SMAD3 activation may serve as a critical converging point
of dysregulated TGFB superfamily signaling and genetic
aberrations in human GCT development.

First, SMAD3 interacts with FOXL2 and GATA binding
protein 4 (GATA4) to regulate the promoter activity of genes
associated with GCT cell proliferation and survival (e.g., cyclin
D2 [CCND2]) in cultured human GCT cell lines [70]. The
balanced regulation of granulosa cell survival and apoptosis by
GATA4 and SMAD3 is impaired when FOXL2 mutation
occurs [70]. Second, another recent study has shown that
GDF9-stimulated follistatin mRNA expression in COV434
cells requires FOXL2 and SMAD3. However, FOXL2
(C134W) mutant protein inhibits the effect of GDF9 on
follistatin transcription potentially through impairing the
binding of SMAD3 to the SMAD binding site (SBE) [71]. In
an independent report using cultured KGN cells, activin A has
been shown to promote tumor cell proliferation via an ACVR1-
SMAD2/3-SMAD4 circuit [72]. Moreover, overexpression of
the wild-type FOXL2 stimulates follistatin expression. How-
ever, FOXL2 402C ! G mutation renders the FOXL2

(C134W) protein incapable of inducing follistatin expression
[72]. Because follistatin antagonizes the effect of activin
signaling on cell proliferation, it is conceivable that reduced
follistatin may lead to potentiated activin signaling, SMAD2/3
activation, and increased cell proliferation. Last, but not least, a
study comparing the transcriptomic profiles of COV434 cells
that overexpress wild-type and mutant FOXL2 (C134W)
protein has revealed that target genes of FOXL2 (C134W)
are enriched for TGFB signaling [73]. Using microarray and
Ingenuity Pathway Analysis, the authors have identified the
regulation of TGFB superfamily associated genes by mutant
FOXL2 (C134W) protein. The candidate genes include, but are
not limited to, INHA, SMAD3, ACVR, AP-1, C-JUN, BMPR,
SMAD6, INHBA, ID1, ID2, and ID3 [73]. Notably, increased
expression of signaling components of activins/TGFBs (ACVR
and SMAD3) and reduced expression of INHA and BMP
signaling elements (BMPR, SMAD6, ID1, ID2, and ID3)
suggest a potential activation of activin/TGFB-SMAD2/3
signaling in human GCTs.

Abnormalities of other transcriptional regulators/pathways
that control or influence TGFB signaling activity may also
contribute to GCT development. FOXL2 has been shown to
interact with SMAD3 to regulate estrogen receptor 2 (Esr2)
expression induced by activin in primary mouse follicular cells
[74]. Besides SMAD3, FOXL2 interacts with various partners
with different target specificities to regulate distinct cellular
functions, including apoptosis of KGN cells [69]. Hiemer and
colleagues have reported that major transcriptional effectors of
the Hippo pathway, transcriptional co-activator with PDZ-
binding motif (TAZ) and Yes associated protein 1 (YAP)
(TAZ/YAP), interact with SMAD3 in breast cancer cells,
directing a TGFB-induced transcriptional program that pro-
motes tumorigenesis [75]. Importantly, YAP regulates KGN
cell proliferation, migration, and steroidogenesis [76]. Tribbles
homolog 3 (TRIB3) can also interact with SMAD3 to regulate
HepG2 tumor cell migration and invasion in vitro [77]. Of
note, TGF alpha (TGFA) regulates KGN cell proliferation and
migration and activates a variety of signaling molecules
including MAPK1/3 and MAPK14 [78], targets that can also
be activated by non-SMAD signaling. In addition, activation of
WNT and Notch signaling has been known to affect TGFB
signaling [79, 80]. Interestingly, mice expressing a dominant
stable beta-catenin mutant in granulosa cells develop ovarian
GCTs [26]. Therefore, future studies are needed to uncover the
contribution of TGFB interactive molecules/pathways to the
pathogenesis of GCTs. A hypothetical model is proposed to
describe the role of SMAD3 in GCT development (Fig. 2).

PERSPECTIVES

Although the involvement of inhibins and activins in sex
cord-stromal tumors has long been known, the role of TGFB
signaling and the converging point of dysregulated TGFB
superfamily signaling cascades and genetic aberrations in
GCTs have not been recognized until recently. The break-
through discovery of FOXL2 somatic mutation (FOXL2 402C
! G) in adult GCTs and the finding that TGFB/activin
signaling is enriched in human GCT cells overexpressing
FOXL2 (C134W) protein provide new insights into how
genetic aberrations may lead to GCT development via
dysregulation of TGFB/activin signaling [65, 73]. The role of
SMAD3 in GCT development has been corroborated not only
by the aforementioned evidence that deletion of Smad3, but not
Smad2, in Inha�/� mice mitigates gonadal tumor development/
progression [8, 9, 35], but also by the finding that SMAD3
serves as an important partner of FOXL2 in the regulation of
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follistatin expression and granulosa cell viability and apoptosis
[70, 71]. Furthermore, the consistent detection of phospho-
SMAD3 in several genetically modified mouse models
targeting genes associated with both TGFB superfamily and
non-TGFB superfamily members and the recent demonstration
that constitutively active TGFBR1 promotes ovarian tumori-
genesis [48] collectively suggest that SMAD3 activation may
be a critical converging point of dysregulated TGFB
superfamily signaling and genetic aberrations in GCT devel-
opment. Additional studies are warranted to revisit SMAD3
activation in mouse models where its activation status remains
unknown. It needs to be mentioned that although mouse
models represent a useful tool to study human GCTs,
particularly signaling pathways during tumor development,
limitations of these models exist. The differences between mice
and humans in developmental biology and physiology
represent general limitations for the application of mouse
models to GCT research. Moreover, GCT models mimicking

FOXL2 402C ! G mutation are not available, making it
difficult to dissect the initiating cascades of human GCT
development. Knocking out Foxl2 in mice does not cause GCT
formation, but leads to defects in follicular development and
ovarian differentiation [81–83]. Conditional deletion of Foxl2
using inducible Cre in adult mice causes ovary-to-testis
transdifferentiation [64]. Thus, introduction of the FOXL2
mutant into mouse granulosa cells may help clarify this
question.

In addition to SMAD-mediated signaling, TGFBs can act
through SMAD-independent noncanonical pathway. It is well
established that mitogen-activated protein kinase 1/3 (MAPK1/
3; also known as extracellular signal-regulated kinase 1/2
[ERK1/2]), MAPK14 (also known as p38), and MAPK8 (also
known as c-June N-terminal kinase [JNK]) are common
mediators of noncanonical TGFB signaling. TGFB signaling
can activate MAPK8 and MAPK14 via mitogen-activated
protein kinase kinase kinase 7 (MAP3K7 or TAK1). Activation
of ERK1/2 is generally associated with RAS-RAF-MEK-
mediated signaling [16, 17, 84]. For example, TGFB1 activates
AKT, MAPK1/3, and MAPK14 through TGFBR1 in cultured
human peripheral blood monocytes [85]. Interestingly, activin
A receptor like type 1 (ACVRL1, also known as ALK1) has
been involved in SMAD1/5/9 activation by TGFBs in
endothelial cells and chondrocytes [86, 87]. It is noteworthy
that constitutive activation of MAPK1/3 in KGN cells is
associated with cell proliferation [88], suggesting a potential
role of noncanonical TGFB signaling in the pathogenesis of
GCTs. Future studies are needed to define the contribution of
noncanonical TGFB signaling to the development and
progression of GCTs.

The evidence that enhanced TGFB/activin signaling pro-
motes GCT development provides a rational basis for testing
the role of TGFB and activin receptor modulators in GCT
formation and progression. The molecular and functional
interactions among TGFB, activin, and BMP signaling during
GCT initiation and progression are poorly defined and need to
be investigated to achieve a comprehensive roadmap of TGFB
superfamily signaling circuitry in GCTs. Further deciphering
molecular mechanisms that underpin the tumorigenic function
of FOXL2 402C ! G mutation, particularly the interaction
between mutant FOXL2 and TGFB/activin and other signaling
pathways, will help understand the pathogenesis of GCTs and
design novel therapeutic strategies.

The role of tumor microenvironment in GCT development
is poorly delineated. Tumor-associated macrophages, infiltrat-
ing leukocytes recruited to solid tumors, have been shown to
promote cancer development [89]. However, the contribution
of tumor-associated macrophages to GCT progression is not
clear. Notably, chitinase-like 3 (CHIL3/YM1), which is
associated with M2 polarization, is detectable in GCTs of
mice lacking Foxo1/3 and Pten [31] or harboring a constitu-
tively active TGFBR1 (Gao and Li, unpublished result),
suggesting a potential role of altered tumor microenvironment
in GCT development.

In summary, understanding the interrelationship among
genetic aberrations, signaling circuitry, and tumor microenvi-
ronment in the pathogenesis of GCTs will lay a blueprint to
guide the discovery of therapeutic targets for GCTs. Significant
progress is expected in these areas over the next decade.
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FIG. 2. Hypothetical model depicting a potential role of SMAD3
activation in GCT development. In this model, we hypothesize that
SMAD3 activation may serve as a converging point of dysregulated TGFB
superfamily signaling and genetic aberrations, and play an important role
in GCT development. Activin and TGFB-induced signaling converges on
SMAD3 and promotes ovarian tumorigenesis, as is supported by studies
using genetically modified mouse models, including Inha�/� [4, 34],
Inha�/�; Smad3�/� [8], Smad1/5 conditional knockout [10], Bmpr1a/
Bmpr1b conditional knockout [11], and TGFBR1-CAAcre mice [48]. The
activity of activins is regulated by follistatin and inhibins (i.e., negative
modulators) and TGFBR3, an inhibin-binding protein that promotes the
antagonism of activins by inhibins. BMP pathway suppresses GCT
development at least partially through influencing SMAD3 activation.
FOXL2, a key regulator of granulosa cell differentiation, may inhibit
SMAD3 activation through inducing follistatin production and differen-
tially modulating the expression of activin and BMP signaling components
[71–73]. FOXO1/3 and PTEN seem to negatively impact SMAD2/3
activation and GCT formation [31]. Additionally, it is postulated that
molecules/pathways that influence TGFB signaling activity, particularly
those interacting with SMAD3, are potential regulators of GCT develop-
ment. Such candidates include, but are not limited to, TAZ/YAP, TRIB3,
GATA4, WNT, and Notch [70, 75, 77, 79, 80]. Their specific roles and
interactions with TGFB signaling in the pathogenesis of GCTs have yet to
be experimentally tested. This model does not exclude potential
contributions of dysregulated signaling events upstream or downstream
of SMAD3, SMAD-independent signaling mechanisms, and other
signaling pathways in the pathogenesis of GCTs.
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