
1

Vol.:(0123456789)

Scientific Reports |          (2022) 12:212  | https://doi.org/10.1038/s41598-021-03846-z

www.nature.com/scientificreports

Country‑specific optimization 
strategy for testing 
through contact tracing can help 
maintain a low reproduction 
number ( R

0
 ) during unlock

Uddipan Sarma1* & Bhaswar Ghosh2*

In response to the COVID19 pandemic, many countries have implemented lockdowns in multiple 
phases to ensure social distancing and quarantining of the infected subjects. Subsequent unlocks to 
reopen the economies started next waves of infection and imposed an extra burden on quarantine 
to keep the reproduction number ( R

0
) < 1. However, most countries could not effectively contain the 

infection spread, suggesting identification of the potential sources weakening the effect of lockdowns 
could help design better informed lockdown-unlock cycles in the future. Here, through building 
quantitative epidemic models and analyzing the metadata of 50 countries from across the continents 
we first found that the estimated value of R

0
 , adjusted w.r.t the distribution of medical facilities and 

virus clades correlates strongly with the testing rates in a country. Since the testing capacity of a 
country is limited by its medical resources, we investigated if a cost–benefit trade-off can be designed 
connecting testing rate and extent of unlocking. We present a strategy to optimize this trade-off in a 
country specific manner by providing a quantitative estimate of testing and quarantine rates required 
to allow different extents of unlocks while aiming to maintain R

0
< 1 . We further show that a small 

fraction of superspreaders can dramatically increase the number of infected individuals even during 
strict lockdowns by strengthening the positive feedback loop driving infection spread. Harnessing the 
benefit of optimized country-specific testing rates would critically require minimizing the movement 
of these superspreaders via strict social distancing norms, such that the positive feedback driven 
switch-like exponential spread phase of infection can be avoided/delayed.

Declaration of the coronavirus pandemic by WHO severely overhauled global economic and social endeavors1. In 
response to the initial upsurge of infection spread3,4, many European and East Asian countries were able to con-
tain the first wave successfully by imposing strong mitigation measures through nationwide lock-down coupled 
with rigorous testing and quarantine strategies. However, even with strict lock-downs, many countries struggled 
to contain the growth of infection2. During the pre-vaccine phase5 isolation of the infected population follow-
ing aggressive testing and ensuring strong social distancing were the two most widely accepted ways globally to 
contain the infection spread and reduce the fatalities6,7. Despite the recent launching of several vaccine programs 
worldwide, complete immunization can take several months to years to cover the complete cross-section of sus-
ceptible age groups in all countries, especially in the economically fragile countries. Also, there are indications 
that vaccination alone may not be sufficient to completely contain COVID198; this inevitably rearticulates the 
importance of occasional lockdown and quarantine strategies in the immediate future.

However lockdowns, also had major financial implications in the livelihood of millions of people, especially 
(but not restricted to) in low and medium-income countries9–12, calling for immediate plans to open up the 
economic activities. The unlocking measures then subsequently led to an increase in infection rates which 
initiated the next wave of infection in several countries who were largely successful in containing their respec-
tive first waves. The lockdown-unlock cycles were not successful to the extent desired and there could be scope 
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of improvement in the strategies of testing and quarantining to maintain the basic economic activities while 
minimizing the spread of infection at the same time. The number of testing conducted per day in a country 
is limited by the country’s resource capacity13 but it is also observed that the testing capacity is steadily rising 
in most of the countries14–16. Intuitively, the allowed extent of unlocking in a country should be a function of 
testing capacity as the daily testing captures the trend (increase or decrease) of infections per day, but it is not 
yet well established how testing facilities and extent of unlocking can be connected quantitatively. In this study 
we show that a country-specific cost–benefit trade-off between testing rate and unlocking extent can facilitate 
devising quantitative guidelines for unlocking, while considering the maximum resource capacity for testing 
within a given country.

Here, firstly we built a dynamic epidemic model17–20 that captures the spread of COVID19 infection and cali-
brated the model to country-specific time series data1 for confirmed, recovered and dead populations. We did this 
for 50 different countries with various stages of infection. The model simulations and subsequent analysis suggests 
how the extent of partial unlock (extent of unlock) and quarantine rates can be optimally combined to maintain 
R0 < 1; this depends on transmission rate, quarantine capacity and associated cost of testing. We also connected 
the extent of unlock with the frequency of the periodic unlock21 time. Although the dynamic epidemic models 
build with ordinary differential equation (ODE) can quantitatively estimate infection spread parameters with high 
confidence they can not explicitly capture the relation between R0 and testing rates, hence, we next developed an 
agent-based stochastic epidemic model which uses the country specific infection parameters optimized using 
the ODE model and then incorporates testing through contact tracing of individual infected agents. Using this 
hybrid modeling approach, we first estimated the testing rate required to maintain R0 < 1 and further studied 
how superspreaders22 can spread the infection during strict lockdowns; our simulations show that a small frac-
tion of superspreaders can account for the majority of infections observed during the lockdowns which would 
then eventually be amplified further in the next cycle of unlocking. Indeed, most countries reported a continuous 
rise in infection during the lockdown, indicating such plausible underlying contribution from superspreaders. A 
recent study on two Indian states showed that a small fraction of superspreaders were responsible for transmit-
ting ~80% of infection during lockdown22. Analysis of epidemic models specific to different countries shows a 
switch-like spread of infection can occur as a function of disease transmission rate and quarantine rate stem-
ming from the implicit systems-level positive feedback loop primarily driving the spread of infection epidemics 
such as COVID19. Our analysis strongly suggests that minimizing the movement of superspreaders during the 
lockdowns can be very critical to the rapid success of such lockdowns and it can delay/circumvent the onset of 
the exponential increase in infection in the subsequent unlocks.

Results
Country specific doubling rate of the infection is dependent on the testing rate.  To investigate 
the impact of testing on the epidemic dynamics in different countries, we first took the daily confirmed infection 
time course data from WHO1 and clustered the region-wise data according to their dynamic patterns. A hierar-
chical clustering algorithm (using pheatmap package in R) is used to analyze the dynamics of selected countries 
(countries with at least 1000 infections per day in their maximum infection spread phase between 15th Jan to 
15th August 2020 were selected). Figure 1A shows provinces in China and S. Korea, for instance, are clustered 
together, as the infection spread there at the earliest times. Subsequently, infection in different parts of Europe/
US is followed by infection in other Asian and South American countries (in Fig. 1A the color bar represents 
daily confirmed cases normalized to the maximum for each country (see Figure S1A for an enlarged version 
representing certain regions in the heatmap). Next, we calculated the doubling rate (the inverse of the doubling 
time which shows how much time does the population take to double the number of infections in each country) 
from the time series data of these countries, as shown in Fig. 1B. Both Fig. 1A, B comparatively show that infec-
tion peaks and doubling rates vary across countries. For a more direct comparison of the time evolution of the 
infection trajectories, we superimposed them. In order to superimpose the trajectories, the doubling rate time 
courses for the different countries were aligned at the maximum doubling rate (Details in SI). Linear correla-
tions analysis (Methods) between different time points of the aligned trajectories and numbers of tests/10,000 
population across these countries are shown in Fig. 1C. We observed that the normalized daily cases showed 
a positive correlation with the test rate around a time point of 16 days on the aligned time axis (Figs. 1C, S1C, 
where 0 corresponds to the time of maximum doubling rate), suggesting, countries with higher test rates tend 

Figure 1.   The Covid-19 outbreak in different countries and its relation with the testing rate. (A) The heat 
map displays the clustered dynamics for around 100 different countries for the daily cases normalized to 
the maximum for each country (Days correspond to 22nd January, 2020 and to 15th August, 2020). The 
dendrogram is based on hierarchical clustering of the time traces. The horizontal axis represents the time in 
days while the vertical axis corresponds to different countries. The color code provides the (normalized) number 
of confirmed cases. (B) The heat map represents the doubling rate as a function of time clustered according 
to the dynamics of the time traces as shown in (A). The horizontal axis represents the time in days while the 
vertical axis corresponds to different countries. The color code provides the doubling rates of confirmed cases. 
The results are shown on an exponential scale. (C) Pearson correlation coefficient of test rate with the daily 
confirmed cases at different time points along the dynamics are shown. The solid lines represent loess based 
local regression fits. The time traces are aligned w.r.t the maximum doubling rates. 0 on the x-axis corresponds 
to the maximum doubling rate for all the countries. (D) The Pearson correlation coefficient of test rate with the 
doubling rate at different time points along the dynamics aligned as described in (C). The solid lines represent 
loess based local regression fits.
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to have higher confirmed cases. On the other hand, the doubling rate after around 26 days displays a negative 
correlation with test rate (Figs. 1D, S1B lower panel), hence, countries with higher testing rates are also able to 
reduce the rate of infection spread faster.

During the start of the infection, the doubling rate is usually high for a higher testing rate as indicated by a 
positive correlation. Thus, a higher testing rate (Figure S1B top panel) during the onset of infection allows more 
accurate estimation of the spread of infection which can be critical in containment of the infection at its early 
stages through preventive measures such as quarantine. Next, in order to quantitatively investigate the effect of 
testing rate and lockdown on R0 we next took recourse to a quantitative epidemic model and subsequently an 
agent-based model.

R
0
 values during lockdown period exhibit significant dependency on the test rate.  To calculate 

the R0 for different countries we next constructed a compartmental model to quantitatively capture the dynamics 
of infection. The model contained five compartments—susceptible (S), exposed (E), Infected (I), Quarantined 
(Q) and removed (R), where R contains both recovered (Re) and dead (D) population fractions23. Figure 2A 
shows the structure of the implemented SEIQR model. A susceptible person is exposed to the infection through 
transmission from an already infected person (rate parameter β ). After exposure, the exposed individual (E) is 
infected too and moves to compartment I (rate parameter α1 ) and it subsequently gets quarantined in compart-
ment Q (rate parameter α2 ). The quarantined individual eventually either recovers (rate parameter γr ) or dies 
(rate parameter γd ). In this model, we have not considered reinfection of the recovered individual. Infection 
dynamics were simulated by a set of 6 coupled ordinary differential equations. The SEIQR model thus con-
structed is next fitted to the confirmed (Co), recovered (Re) and dead (De) population trajectories obtained from 
the public data (details in methods and SI, section II).

Figure 2B shows the confirmed cumulative and daily cases, as well as the estimated lockdown extent (details of 
lockdown function in methods sections) and lockdown dynamics for four representative countries with different 
susceptible population sizes and stages of infection. Model fits for the 50 countries are shown in Supplementary 
Figure S2. The average incubation time independently estimated from the fitting infection dynamics of all the 
50 countries (average of 1

α1
 ) is approximately 8.1 days which is close to the observed value25. Our simple SEIQR 

Figure 2.   The description of the SEIQR model and calibration for different countries. (A) Schematic 
representation of the SEIQR model which contains susceptible, exposed, infected, quarantined, recovered 
and dead compartments. The lockdown is implemented through a sigmoid function as shown in the methods 
section. The quarantined, recovered and dead cases together comprise the confirmed cases. The arrow from 
infected to susceptible represents the positive feedback that fuels the infection spread in the population which 
in turn is negatively regulated by the lockdown, as indicated by a blunt headed bar. (B) The SEIQR models fit 
the data for 4 representative countries as indicated for the cumulative confirmed and daily confirmed cases. The 
number of days in X axis corresponds to the time course data available in JHU CSSE [41] where 0 corresponds 
to 22nd January, 2020 and the end time point corresponds to 30th October, 2020. The lockdown function in 
the third column shows the extent of lockdown (also the percentage of lockdown where 1 = 0% and 0 = 100% 
lockdown) which is also estimated by fitting during the model calibration.
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model thus quantitatively captured the cumulative infection dynamics of countries with different approaches 
towards lockdown and subsequent unlock implementation. Parametrizing the model with multiple country 
specific waves of infection (data until Oct 2020), where each wave is of distinct magnitude and duration (Fig. 2B, 
shown for four representative countries Australia, USA, Austria and India), resulted in country specific infection 
parameters of higher confidence. The model fitted to cumulative trajectories of a country also captured well the 
daily infection numbers in that country (Fig. 2B, 2nd column). We next used these country specific parameters 
to calculate the respective R0 values.

R0 for different countries were calculated just after lockdown (Fig. 3A). The test rate displays a negative cor-
relation with R0 values (Fig. 3B), however, the correlation is not significant (correlation coefficient ~ 0.33). R0 
presumably depends on many other factors including demographics, medical facility and distribution of virus 
strains in the population which may interfere with the influence of test rate in spread of infection. In order to 
systematically adjust for the influence of such factors on R0 , we collected several publicly available datasets of 
demographics, medical facilities and genome sequences in a country specific manner1 (details in methods). R0 
values have a significant correlation with several of these factors (Figs. 3C, S3A). We also observed a statistically 
significant correlation of R0 with the frequency of clades in the population; specifically the L and GR strains 
show significant influence on R0(Figs. 3D, S3B). We next linearly adjusted the R0 values (see methods) using 

Figure 3.   The reproduction number ( R0 ) displays correlation with the testing rate across countries. (A) The 
barplot shows  R0 for the fitted 50 countries after lockdown. (B) The scatter plot describes correlation between 
the test rate and R0 after lockdown for the 39 countries with at least 10 complete genome sequences as of the 
end of June, 2020 described in the main text. (C) The statistical significances of the linear dependence of R0 
on different demographic and medical facilities factors are shown based on linear regression for the same 39 
countries. (D) The statistical significance of linear dependence of R0 on the frequencies of the clades (G, GR, 
GH, L, O, S, V) are shown. (E) The scatter plot indicates the correlation between the adjusted R0 values and the 
test rates.R0 values for each country are adjusted based on the correlation obtained in (C, D) described in the 
method section. (F) The values of the fitted transmission rates and quarantine rates for all the 50 countries are 
plotted and the representative countries for consideration of the cost–benefit analysis and agent based model 
simulation are shown in colors red, green and blue.
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the most significant factors derived from the correlation analysis-median age, population size, doctors/10,000 
patient and frequency of the L clade-which shows that the adjusted R0 values exhibit much higher correlation 
with the test rate (Fig. 3E. correlation coefficient 0.75). Here, for the correlation analysis, we choose countries 
only with at least 10 complete genome sequences till the end of June 2020 which selects 39 countries out of the 
original set of 50 countries.

Owing to the asymptomatic component of the COVID19 infection, testing the population is essential in order 
to quarantine the asymptomatic people. Thus, the quarantine rate would critically depend on the testing rate. 
Ideally a high testing rate would allow a country to unlock it’s economies and at the same time maintain a low 
infection rate. On the other hand, increasing the testing rate imposes extra financial and resource costs. To study 
the nature of this cost–benefit trade-off between quarantine and unlock, we specifically selected 5 representative 
countries with different transmission rates for further investigation: high transmission rates (USA, India), low 
transmission rates (Australia, Austria) and high transmission rate and high quarantine rate (France) (Fig. 3F 
shows countries with distinct transmission rates and quarantine rates).

Optimum changes in country‑specific quarantine rates can effectively reduce the infection 
post lockdown.  Typically, when lockdown is removed, the transmission rate (β) is expected to increase. For 
our SEIQR model the R0 value is given by R0 = β

α2

ρ
ρmax

 (see SI section III for derivation) where ρ captures the 
extent of lockdown ( ρ = 1 and ρ = ρmax represents full lockdown and full unlock respectively). From this expres-
sion, we can calculate the extent by which the quarantine rate ( α2 ) must be increased in order to compensate 
for the effect of partial or full unlock such that R0 < 1 can be maintained during unlock. The fold change in α2 to 
keep the R0 value close to one is given by (SI for derivation)

Here, ρ = 1 corresponds to a full lockdown case and a gradual increase in value of ρ depicts partial unlock finally 
moving towards full unlock at ρ = ρmax . The equation shows that the required fold change to compensate for 
the effect of lockdown removal would reduce as the extent of unlock reduces (Fig. 4A). In fact, our model fitting 
shows a higher transmission rate for the USA compared to Austria or Australia, asking for a higher quarantine 
rate in the USA for the same extent of unlock (Fig. 4A). However, for instance for France, in spite of a very high 
value of β , the required increase in quarantine is low due to its already high quarantine rate (Fig. 4A). Better con-
trol on infection spread during unlocks would require an increased quarantine rate which can only be achieved 
by rigorous contact tracing and testing. We studied this scenario as a cost–benefit tradeoff where on one hand 
removal of lockdown benefits economic activities but at the same time more testing needs to be conducted to 
circumvent the enhanced rate of infection spread. If we assume that the maximum quarantine capacity (of fold 

(1)Fα =
β

α2

ρ

ρmax

Figure 4.   The optimization of trade-off between testing rate and extent of unlock. (A) The relationship 
between the extent of unlock and the corresponding quarantine rate required to keep R0 values equal to one 
for five countries as indicated. The equation Fα = β

α2

ρ
ρmax

(SI IV) is plotted with Fα on y-axis and ρ
ρmax

 on 
x-axis for different country specific ( α2,β values. The y-axis is plotted in log-scale. (B) The cost and benefit 
curves as a function of quarantine fold change for the countries. The benefit curve B = Fα

F0+Fα
(SI IV) is plotted 

at different values of Fα on x-axis for fixed value of F0 = 104 . The cost curve C = �Fc Fα
Fc−Fα

(SI IV) is plotted 
at different values of Fα for fixed value of maximum quarantine capacity Fc = 200 and cost per quarantine 
capacity � = 5× 10−5 . The cost–benefit is optimized at a value Foptα  ~ 60 for a maximum capacity Fc = 200 of 
the fold change in quarantine rate. (C) The optimum extent of unlock calculated from Foptα  as a function of the 
maximum quarantine capacity Fc for different countries as indicated. The Eq. (3) for optimal unlock is plotted 
with ρopt

ρmax
 on the y-axis and Fc on x-axis by fixing the parameters F0 = 104 and the cost per quarantine capacity , 

� = 5× 10−5 for different country specific ( α2,β values as indicated. Both the axes are plotted in log-scale.
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change) in α2 is Fc and investment cost in testing is � per testing, the optimal fold change in α2 would be (see SI 
section IV for details)

Figure 4B shows an illustration of the optimality in quarantine rate given a maximum capacity of quarantine rate 
Fc = 200 . Both the benefit (B) and cost (C) increases with Fα which leads to an optimal Foptα ∼ 60 where (B–C) 
is maximized (Fig. 4B). The optimal value is much below the maximum quarantine capacity of 200. Finally from 
Eq. (1) the optimal lockdown removal ( ρopt ) to maintain R0 < 1 is given by

Hence as the quarantine capacity Fc is low, the ρopt would be low (Fig. 4C) which illustrates: as the quarantine 
capacity is low, the extent of unlock should remain optimally low. Notably, higher value of unlock ρ is possible 
by increasing Fα beyond Foptα   to maintain R0 < 1 , but the overall benefit would be low given the cost of testing. 
In order to increase optimal extent of unlock ρopt , the maximum quarantine capacity Fc is also required to be 
increased (Fig. 4C) by augmenting the maximum testing capacity. In addition, the optimal benefit of testing 
would also depend on the intrinsic transmission rate ( β ). For instance, owing to higher value of β , given a 
maximum capacity ( Fc , the optimally beneficial unlock extent would be low for the USA (Fig. 4C) compared 
to Austria or Australia with much lower values of β who could afford a greater degree of unlocking for same Fc . 
Similarly, Eq. (3) also shows that the optimal extent of lockdown ( ρopt ) would increase if the cost of testing ( � ) 
increases. One effective way to manipulate the extent of lockdown is by varying the frequency of full unlock in 
a periodic lockdown-unlock20 (time interval of full unlock T1 followed by a time interval of full lockdown T2 ) 
within a time cycle of period T = T1 + T2 (SI section V and Figure S4 for details).

Agent‑based contact tracing model quantitatively connects testing rate to desired unlock 
extents.  The ODE modeling frameworks used to study the dynamics of infection (including ours) cannot 
model contact tracing explicitly, hence it cannot connect the number of testing required to achieve a certain 
quarantine rate. To address this gap we have next developed an agent-based model (ABM) to introduce test-
ing through contact tracing, such that a quantitative understanding on the required number of testing per unit 
population can also be derived (details in methods), in a country specific manner. In this hybrid modeling 
approach the agent-based stochastic version of the SEIQR model was simulated using country specific infec-
tion parameters obtained via calibrating the ODE model to country specific data (methods). In the ABM model 
infection spreads outward, starting with one infected agent at the center (Figure S5). The selected model for the 
parameter values of the USA, for instance, shows as the testing rate increases the maximum confirmed cases also 
increases (Figure S6A, qualitatively in agreement with data shown in Fig. 1C), but this also leads to the contain-
ment of infection much earlier causing a reduction in the reproduction number during different partial unlocks 
(Fig. 5A). The results are comparable for other countries as well (Figure S6B-D). We next used an interpola-
tion method based on cubic spline fitting (smooth.spline from R) to determine the minimum test rate ( Ntest ) 
required to keep the R0 < 1 during each partial unlock as indicated in Fig. 5A (methods). This calculation results 
in a monotonic increase in the required testing rate as the extent of unlock gradually progresses from full lock-
down towards full unlock (Fig. 5B). The exact values of required testing rates vary among countries for different 
partial unlocks depending on country specific transmission and quarantine rates (Fig. 5B). It is noticeable that 
due to low transmission rate before lockdown, countries like Austria, Australia are estimated to be able to unlock 
by 80% with their current testing rates, whereas for the USA, the current testing rates need to be ramped up at 
least by 3 times to achieve an unlock of 80%. In fact, this apparently projected connection between the agent-
based model and the analytical calculation is justified by the observation that the quarantine rate required to 
maintain R0 at a value of 1 from the analytical calculation follows a linear scaling relation with the corresponding 
testing rate required to maintain R0 at 1 from the agent-based model (SI V for details).

A small fraction of superspreaders can dramatically increase infection spread during lock‑
down.  The burden on the testing rate capacity can be essentially reduced by keeping the transmission rate 
low (e.g. Austria) implemented through strict standard measures of social distancing, wearing face masks, etc. 
However, even during the full lockdown, a small fraction of superspreading individuals22 can substantially 
undermine the diligent efforts exercised by the majority of the population. The superspreaders are defined as 
having a low quarantine rate and high transmission rate compared to the regular spreaders. A recent detailed 
contact tracing analysis focusing on a couple of states in India demonstrates that during the full lock down 
period a small fraction of superspreaders was responsible for transmitting 80% of reported infection, so even 
with rigorously planned full lockdown R0 < 1 could not be achieved22. Such contributions of superspreaders 
may generally explain why in most countries full lockdowns could not contain the infection effectively. Using 
our agent-based contact-tracing model we next simulated different scenarios where a population comprises dif-
ferent proportions of superspreaders.
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Our simulations suggest that a small increase in the fraction of superspreaders can drastically increase the 
number of confirmed cases (Fig. 5C & Figure S6F, simulated with parameter sets specific to India) and also the 
R0 (Fig. 5C-inset) when the testing rate is kept high to best track the spread. Notably, after the superspreader 
fraction is more than ~ 5% the impact of further increase in supersprader fraction is minimal, suggesting, a sharpe 
switch-like saturating phenomenon driving the superspreader effect which suggests that it is critical to maintain 
a minimal number of superspraders during the lockdown, for R0 < 1 (Fig. 5C). For instance, our simulations 
suggest that a small number of superspreaders (5%) contribute to the spreading of the majority of the infection 
(~ 70% when the testing rate is 9/10,000, Fig. 5D) and the fraction of total infection for 5% superspreader fraction 
is marginally less compared to the condition when superspreader composition is 10% in the population (Fig. 5D). 
The total number of confirmed cases for 5% or 10% superspreaders are also comparable and are distinct from 
the scenario when the superspreader fraction is 0% (Figure S6F, shown for India). In fact, we observed that the 
fraction of superspreaders required to have a 50% contribution in total infection over a period of time can be as 
low as 1% for India, whereas for Austria 3% superspreaders are needed for the same effect (data not shown). Here, 
Austria owing to a lower intrinsic transmission rate is able to tolerate more superspreaders whereas a very small 
superspreader fraction in countries like India (or the USA) with high transmission rate can result in a dramatic 
increase in overall infection. In order to better understand the mechanism for this switch-like behavior, especially 
at a high quarantine rate, we conducted deterministic simulations at different values of transmission rates ( β ). 

Figure 5.   The testing rate and fraction of superspreaders in the population influence the infection rate 
simulated by the agent based model. (A) The R0 values based on the agent based model with parameter values 
of the USA as a function of test/10,000 for different extents of unlock as indicated. The other four countries 
are shown in supplementary figure S4. The dashed horizontal line exhibits the R0 = 1 line, intersection of the 
line with the curves quantifies the test/10,000 required to maintain R0 = 1 . (B) The allowed extent of unlock 
and the corresponding test/10,000 required to keep the R0 value less than one calculated from the agent 
based simulation for the different counties with indicated current test rate. (C) The total confirmed cases as 
a function of percentage of superspreaders simulted for parameter values of India. Different lines indicate 
simulation conducted at different testing rates as indicated. (The inset shows the corresponding R0 values at 
different percentages of superspreaders). (D) The barplot indicates the contribution of superspreaders and 
normal spreaders over the total number of confirmed cases as a function of the percentage of superspreaders 
at 3 different testing rates 0.2/10,000, 2/10,000 and 9/10,000, as indicated. (E) The relationship between the 
transmission rate and the total confirmed cases at two different values of quarantine rate as indicated for two 
representative countries, the USA and India.
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The total confirmed cases increase in an ultrasensitive switch-like manner at a high quarantine rate α2 (where α2 
is the mechanistic equivalent of testing rate in the agent-based model) while the increase is more gradual at low 
α2 (Fig. 5E). This switch can be understood as a consequence of the inherent systems-level positive feedback loop 
that drives the infection spread in epidemic outbreaks where testing and quarantining are implicit components. 
Typically the infected and yet not quarantined fraction of the population is the driver of the positive feedback 
loop (by exposing more subjects to infection) where high quarantine reduces and low-quarantine enhances the 
strength of this loop. While rigorous testing and quarantining is a necessary measure to contain the infection, it 
can only delay the onset of the exponential phase of infection spread and movement of superspreaders helps reach 
the exponential phase faster by fueling the strength of the positive feedback loop to reach the switch threshold. 
In the ODE model, the superspreaders and regular spreaders would have β values above and below the switch-
ing threshold (Fig. 5E), respectively, during the lockdown. This will lead to an overall dramatic increase in the 
number of infected populations owing to the superspreaders’ contribution. This analysis thus suggests that in 
order to leverage the benefit of augmented testing capacity, tracing the movement of superspreaders appears as 
crucial as the implementation of other standard social distancing measures.

Discussion
The COVID19 epidemic has disrupted normal life in an unprecedented manner in almost every corner of 
the world. Similar outbreaks, with different infective capacity, were reported earlier, for instance, the basic 
reproduction number or R0 for COVID19 is comparable to the SARS-cov26,27 and much higher than the MERS 
infection28,29. In this study, we quantitatively explored the COVID19 outbreak and its relation with quarantine 
measures in several countries using both deterministic and agent-based models coupled to analysis of country 
specific metadata. We first employed a deterministic (ODE based) SEIQR epidemic model and fitted the trajec-
tories from 50 countries at different stages and starting times (day) of infection. We then built an agent-based 
stochastic model30 to implement contact tracing by utilizing the best-fit parameters from the ODE based SEIQR 
model and implement them in the agent-based model while ensuring a quantitative scaling between both models. 
The primary goal of utilizing the two distinct modeling approaches is to connect the testing rate to the unlock 
process since contact tracing can not be implemented in ODE based epidemic models. Earlier studies discuss the 
limitations of ODE based models and agent-based models32, but studies connecting both modeling approaches 
especially in the context of the COVID19 epidemics to understand the relation between testing rate and unlock 
measures are not reported in the literature. Here, feeding the country specific epidemic parameters from the 
ODE model into the agent-based model, we derive country specific optimal testing rates through contact trac-
ing. Such analysis aims to guide different degrees of unlocking to open up economies in different countries since 
long-term lockdown is impractical and detrimental to the economy of any country31.

Typically, the actual infected number of people is expected to be higher than the sampled ones and limitations 
like that pose challenges for devising accurate mathematical models32. The actual susceptible population size is 
thus mostly unknown and it could often be different from the tested population size, so the number of infected 
people from the data only captures the tested sample when the total number of tests is less than the total popula-
tion of a region/country. This is also one of the reasons why increased testing rate is critical in better capturing 
the magnitude of the infection (and not only the nature of the dynamics, the dynamic features of the infection 
spread can be robustly captured even with a relatively smaller tested population size) that can lead to devising 
more accurate epidemic models with better predictive capacities in early stages of the infection. In addition, 
because of the asymptomatic nature of the infection33, the need to quarantine the maximum number of infec-
tious people through testing is equally important to successfully contain the infection spread. Apart from the 
testing rate, other factors like immunization34, age35, sex36 medical facility and specific virus strains37 may play 
important roles both in transmission and fatality but testing rate is the only variable amongst all these critical 
factors that can be manipulated immediately post infection via human intervention.

In countries like India where population density and size outmatch the healthcare infrastructure, an early 
implementation of lockdown was critical in slowing down the spread of the infection. Similarly, in the early 
days of CDOVID19 spread, delay in lockdown implementation had a catastrophic impact in Italy or Spain 
despite adequate health infrastructure per capita, highlighting the importance of implementation of early and 
rapid measures post infection irrespective of healthcare infrastructure. This is further highlighted by countries 
like India and the USA where unlock measures immediately witnessed a dramatic increase in infection spread.

Reopening the economy was also an impending necessity in all countries under lockdown. Here, utilizing 
quantitative knowledge on infection and lockdown dynamics from the ODE model and feeding the country-
specific best-fit parameters into the agent-based model, we propose strategies for optimal testing and quaran-
tining of the infected subjects to maintain R0 < 1 during the unlock periods. We quantitatively demonstrate 
the quarantine and testing that can be optimally adjusted (post lockdown) to minimize the infection spread. 
We demonstrate that the effective increase in testing mediated quarantine measures has to be country specific, 
primarily depending on the transmission and quarantine rates of a country. Already, many countries have taken 
initiatives to accentuate the testing capacities either through developing more testing facilities14–16 or through 
designing efficient pool testing algorithms38,39. Our study can additionally help facilitate more informed planning 
of such testing processes where, for instance, if a goal of 30% unlock of economy is set by a given country (or a 
province in a country), then the respective increase in testing rates to achieve such unlock goals can be predefined 
as the minimal testing rate target. In an unprecedented efficiency, multiple vaccines are rolled out now, which 
will eventually aim to contain the COVID19. But it is still relatively unclear how the rapidly evolving variants of 
the virus will impact the efficacy of different types of vaccines as the vaccines have distinct mechanisms of target 
engagement. Further, many developing or underdeveloped countries may not have access to such widespread 
immunization programs to vaccinate their entire population till at least 202240. Thus, systematic planning of 
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testing and designing of lockdown-unlock measures remain key factors in containing the current spread of 
COVID19 in specific and perhaps in case of similar such epidemics in the future.

Periodic lockdown21 is another efficient way to implement partial lockdown which best works if the R0 
value during the lockdown is much lower than 1 maintained typically via rigorous testing and quarantining. 
However, in many developing as well as developed countries, it became almost impossible to limit the mobility 
of people even during lockdown11,25, thus, maintaining a low R0 during lockdown remains a challenge. A small 
unidentified fraction of the exposed population during the unlocks can potentially remain unidentified due to 
the long incubation period characteristic of COVID19. Indeed, we saw a higher surge of a second wave all over 
Europe that qualitatively resembles the second wave of Spanish flu pandemic of 191841. A recent landmark study 
highlights how a small fraction of unidentified superspreaders dramatically accelerated the spread of infection 
in two states of India even during nationwide lockdown22 and undermined India’s advantage of early lockdown. 
Looking at the trend of infection dynamics across the world, this could be true to multiple other countries as 
infection numbers kept on growing constantly even during the lockdowns. Thus, the discovery of superspreader 
mediated infection spread via contact tracing can be a critical component of lockdown implementation itself 
which further underscores the advantages of our proposed strategy of optimally augmenting the test rate through 
contact tracing. Additionally, the emergence of a few more new strains may also have accelerated the upsurge of 
confirmed cases45. In this study, using an approach of cost–benefit optimization we derived a data-driven strategy 
that aims to achieve R0 < 1 during unlocks which will perhaps also reduce the severity of uncontrolled future 
outbreaks. A general property of epidemic outbreaks such as COVID19 is that they are fueled by the strength of 
an implicit positive feedback loop connecting the infected population to the susceptible population. Such positive 
feedback can promote switch-like responses especially when the testing/ quarantine rates are high. Our simula-
tions suggest a small fraction of superspreaders (with high β ) can exploit the switch-like response capacity of 
the system to trigger a major increase in infection number during the lockdowns. As the superspreader fraction 
increases beyond a threshold even for a high testing rate scenario a sudden increase in the number of confirmed 
cases can arise due to overall change in the strength of the positive feedback loop. Thus, the containment of 
superspreaders during the lockdown would be critical to maintain a low R0 such that subsequent unlocks can be 
implemented in an optimal manner, especially in densely populated cities where the transmission probability is 
higher. In fact, the recent upsurge of infection spread in several regions even after the launching of vaccination 
programs8 reiterates the warning that our complacency in obeying all social distancing and quarantine rules out 
of desperation to return to pre-pandemic life may incur fatal consequences. Finally, if this COVID19 pandemic 
is successfully contained in the coming months due to improvements in the efficacy of vaccines, the strategy we 
propose here may still facilitate better containment of future such outbreaks.

One of the limitations of our study or similar such studies used commonly to model infection spread in epi-
demics like COVID19 can be the assumption that the population is homogeneously distributed over a region/
country with an equal number of contacts for every individual. In the real world the contact network in many 
cases follows a scale-free structure46. In fact, a recent study has shown that incorporating such detail indeed 
improves model prediction accuracy47. However, it is also suggested that such a real-world network would slow 
down the spread of infection46. Thus, in our study, the prediction accuracy is expected to be less with a homoge-
neous contact network and the required testing rate would plausibly be overestimated (but not underestimated) 
due to this assumption. Different realizations of the contact network can easily be introduced in our ABM 
framework, but it will also increase the complexity of the current model with inclusion of additional parameters. 
Future extensions can systematically explore the effects of different types of real-world contact networks and 
their meaningful combinations on infections spread as well as testing rate required to maintain R0 < 1 . Another 
model assumption pertains to the fact that all the infected population will eventually be quarantined in the ODE 
model. This assumption is derived from the observations that during the COVID19 outbreak the capacity for 
asymptomatic people to spread the infection is much less compared to the symptomatic people33 hence the posi-
tive feedback loop connecting the infected to the susceptible individuals is primarily driven by the infected and 
symptomatic individuals, an assumption also commonly used in epidemic models used to quantitatively model 
COVID19 infection24. Here, as the quarantine rate would determine the R0 value, a high quarantine rate would 
prevent the infected population from spreading the infection within a relatively shorter time scale while a low 
quarantine rate would allow the infected individuals to keep on spreading the infection. Based on the country 
specific quarantine rates the infected (and symptomatic) individuals will be quarantined at different rates, but 
in the duration between being infected and before being quarantined the individuals will continue to infect 
others, country specific dynamics of which is quantitatively captured by our country specific models. However, 
in a scenario where the asymptomatic subject driven infection spread is significantly higher, the models built 
with the current assumptions (including ours) will not capture the true dynamics of infection spread and would 
require extension to explicitly incorporate the asymptomatic compartment. In such scenarios understanding the 
true dynamics of infection would require excessive testing through contact tracing48.

For the ABM model, since we are considering testing through contact tracing, if we start with a very high test-
ing rate, the infection rate would be low which would require a small number of infected agents to be traced and 
tested. On the other hand, if we start with a very low testing rate, many exposed/infected individuals will remain 
untested. Hence in both low and high testing rate scenarios the total population will not be tested. In addition, 
since we also have a quarantine rate of infected population without any contact tracing and testing, similar to the 
ODE model, all the infected individuals will be quarantined eventually albeit slowly in the ABM model as well.
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Materials and methods
Calculation of doubling rate.  The doubling rate is calculated at each time point over the trajectory by taking 
the daily cases at that time and the next day. For an exponential growth of the infection, N(t) = N(t + 1)exp(rd) 
where N(t) depicts the number of infected people at time t

Here t = 1 day. The values in the heatmap in Fig. 1B are displayed in an exponential scale of doubling rate to avoid 
negative values. So a doubling rate of 1.4 in exponential scale means the doubling time of 1

log(1.4) = 3 meaning 
it takes around 3 days to double the number of infected people.

Correlation analysis.  For the correlation and significance of the correlation, we used cor.test() function in 
R. The function uses t-distribution statistics to calculate the p-value of the correlation. The t value of a pair of 
random numbers with correlation r and number of points n is give by,

The t-distribution provides the probability of t values for the null hypothesis that the mean correlation of the two 
random variables is zero. If the calculated correlation value falls on the tail of the t-distribution, the correlation is 
significant. The exact p-value is calculated from the t-distribution table of n degrees of freedom. The calculations 
are all done by the cor.test() package in R.

The SEIQR model.  The model comprises of susceptible (S), Exposed (E), Infected (I), Quarantined (Q), 
Removed (R which contains two compartments ‘recovered’ and ‘dead’).

The equations are

where S(t), E(t), I(t), Q(t), R(t) and D(t) are the susceptible, exposed, infected, quarantine, recovered and dead 
population at time t respectively. ρ(t) is the lockdown function and ω(t) is the time when infection starts in a 
given country after the first day of detection of the infection date as reported in WHO website (hence simulation 
start time corresponds to 22nd Jan, 2020 based on the WHO report).

The lockdown function ρ(t) is given as

Here K = Effect_lockdown_Country which determines the maximal effective lockdown for a given country, 
for instance K = 1, 2 and 3 would result in 50%, 66.6% and 75% maximal lockdown, respectively, during the 
lockdown. Here tc = time of lockdown start and S = strength of lockdown that determines the steepness of the 
lockdown implementation time from no lockdown to the maximal lockdown.

ρ(t) varies between 1( no lockdown) and 0 (full lockdown). ω(t) ensures that the model for a specific country 
is switched on when the infection begins in that country, hence if the detected case in a country is 40 days after 
Jan 22nd, the model for that country is switched on 35 days post Jan 22nd (assuming mean incubation time of 
5 days), during the calibration.

The lockdown is opened by modifying the ρ(t) function such that ρ(t) returns to 1 from its lockdown status 
to no-lockdown (1) status in a designated time .

Model calibration.  Model calibration involves minimizing an objective function that gives best fit param-
eter sets for confirmed, recovered and dead populations for a given country, simultaneously. We fitted the time 
series provided by JHU CSSE at github43 to the SEIQR model developed in the study and minimized the objec-
tive function using the nonlinear least square fitting algorithm (lsqnonlin) from MATLAB.

It returns x = lsqnonlin(fun, × 0, lb, ub), where x is a vector/matrix of variables whose values are to be deter-
mined, for instance, in our case x comprises the country specific infection parameters to be estimated via the 
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)
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fitting the model to the observed infection dynamics for a given country of interest. The function ‘fun’ contains 
the residuals or sum of squares of the difference between model value and data point for a given time point; the 
residuals are evaluated for each time point for which data point is available. × 0 is the initial parameter vector 
that comprises the initial guesses of the model variables and ub and lb respectively represent upper bound and 
lower bound vectors corresponding to each value in × 0. For instance, to calibrate the confirmed population 
trajectory for the USA the fitting algorithm minimizes the sum of residuals for [Quarantined_USA + Recov-
ered_USA + Dead_USA] between both model and data. This exercise was carried out for all the 50 countries 
individually to obtain the country specific infection parameters (a more detailed description is provided in SI II).

Analysis of the virus genome sequences for clade distribution.  We first collected the individual 
sequenced genome from individual countries and their corresponding clades as reported43. Each genome in a 
particular country belongs to one of the seven clades (G, GH, GR, L, S, V, O) as described43. From the data, we 
determine the frequency of each clade in individual countries by finding the number of sequences belonging to 
that clade divided by the total number of sequences. To calculate the correlation, out of the analysed 50 coun-
tries, we only considered countries having at least 10 sequences in the database.

Adjusted R
0
 values.  The R0 values obtained following the ODE SEIQR model  fitting are adjusted with 

respect to the significant parameters from the correlation analysis described in Figs.  3C, D and S3A,B. The 
adjustment factor is characterised as

The factors which are positively correlated with R0 (population size, frequency of GR clade) are placed in the 
denominator and factors having negative correlation values are placed in the numerator. The adjusted R0 values 
are quantified as

Agent‑based stochastic SEIQR model.  We utilized the model structure and calibrated parameters in 
the deterministic SEIQR model, as described in the previous section to build an agent-based stochastic ver-
sion of the same30. In this model, (the flowchart below) the individual agents are assumed to be located on a 
two-dimensional lattice of dimension 300× 300 . The points on the lattice represent susceptible agents in the 
population and each individual on the lattice is surrounded by four nearest neighbors at a minimum distance of 
one. Here, we considered the agents within a radius of seven as the contacts of every agent on the lattice. Thus, 
every individual agent would be in contact with a maximum of 28 neighbors. The initial patient at zero time is 
located exactly at the center having a location of (150,150) on this two-dimensional lattice. The infection spreads 
through persistent close contact with the nearest neighbors. At every time step, all the exposed and the infected 
agents are selected and 28 neighbors of the individual get exposed to the infection with a probability β . The value 
βODE in the ODE model is defined as the number of individuals a particular person infects per unit time. In the 
stochastic model each individual would infect 28× β people on an average per unit time. Thus, the conversion 
between transmission rates of the ODE and stochastic model is given by β = βODE

28

ρ
ρmax

 . Here we assumed that 
both the asymptomatic/exposed and symptomatic patients are capable of spreading the infection. The exposed 
patient in turn exhibits symptoms with a probability α1 and the symptomatic infected patient would be further 
quarantined with a probability α2 . The quarantined patient finally either recovers or dies with a rate γ.

The susceptible, exposed, infected, quarantined and recovered agents on the lattice are assigned values 0, 1, 
2, 3 and 4 respectively which allow us to track the dynamics of each component separately (Detail flowchart 
of the algorithm is provided below). To simulate country specific infection dynamics the parameters values for 
the ABM model were taken as the respective fitted values from the ODE based SEIQR model for a particular 
country. In order to introduce diagnostic testing, we identified all the symptomatic as well as the quarantined 
individuals from the pool at a particular time point and selected a fraction ( Ftest ) of the identified patients for 
contact tracing. The contacts of each selected individual were traced and diagnostic tests were conducted on 
them. The close contacts showing positive results were finally quarantined. This procedure is repeated for all 
the selected individuals. The status of the whole population is updated and the next time step is continued. The 
simulation was performed for 200 time points which corresponds to 200 days in the real time as the fitted model 
parameters used in the ABM model (from the ODE model) have units in 1/day. In order to increase the number 
of testing, the value of Ftest was increased. The parameter ρ is varied to change the extent of unlocking. However, 
we assumed that the testing procedure only commences after at least 100 individuals are already infected in the 
population, in order to introduce an initial delay in responding to the situation. For every infected person, we 
also keep track of the number of individuals who are getting infected from that particular infected person until 
that person is quarantined. The number of people infected during the simulation time defines the reproduc-
tion number for that individual. The R0 value for the whole population is quantified by taking the average over 
reproduction numbers for all the agents (persons) in the population. The number of tests ( Ntest ) is also counted 
at each time point. For a particular values of ρ , the Ntest and corresponding R0 value are recorded which enables 
us to calculate the minimum Ntest value required to keep R0 < 1. The scaling relation connecting the minimum 
Ntest and quarantine rate ( α2 ) obtained from the ODE model (Eq. (1)) is discussed in SI-VI in detail. A flowchart 
describing our workflow that also connects the ODE model and the ABM model is given below.
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Data availability
The data analysis and simulation were performed in R software [R version 3.4.4 (2018-03-15)]. https://​cran.r-​
proje​ct.​org/​bin/​windo​ws/​base/​old/3.​4.4/.
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