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Abstract: Ras proteins are essential mediators of a multitude of cellular processes, and its deregulation
is frequently associated with cancer appearance, progression, and metastasis. Ras-driven cancers
are usually aggressive and difficult to treat. Although the recent Food and Drug Administration
(FDA) approval of the first Ras G12C inhibitor is an important milestone, only a small percentage of
patients will benefit from it. A better understanding of the context in which Ras operates in different
tumor types and the outcomes mediated by each effector pathway may help to identify additional
strategies and targets to treat Ras-driven tumors. Evidence emerging in recent years suggests that
both oncogenic Ras signaling in tumor cells and non-oncogenic Ras signaling in stromal cells play an
essential role in cancer. PI3K is one of the main Ras effectors, regulating important cellular processes
such as cell viability or resistance to therapy or angiogenesis upon oncogenic Ras activation. In this
review, we will summarize recent advances in the understanding of Ras-dependent activation of PI3K
both in physiological conditions and cancer, with a focus on how this signaling pathway contributes
to the formation of a tumor stroma that promotes tumor cell proliferation, migration, and spread.

Keywords: Ras oncogenes; PI3-Kinase

1. Introduction

Ras proteins are the founding members of the Ras superfamily of GTPases, which
in humans is composed of more than 150 members [1,2]. Ras proteins are membrane-
bound small GTPases that act as molecular transducers, coupling cell surface receptors
to intracellular effector pathways to regulate cellular processes such as cell proliferation,
differentiation, migration, and apoptosis [3,4]. In humans, three Ras genes (H-ras, N-ras,
and K-ras) encode four distinct Ras proteins: H-Ras, N-Ras, K-Ras4A, and K-RasS4B, the
latter 2 resulting from alternative RNA splicing of the K-ras gen. These four Ras isoforms
are ubiquitously expressed and are highly similar in primary sequence, structure, and
biochemical properties [5,6]. They share 90% sequence identity in the G domain [7], being
100% identical in the N-terminus of this domain, termed the effector lobe, and sharing 82%
of the sequence of the allosteric lobe [5,8]. In contrast, the C-terminal hypervariable region
(HVR) shares little sequence similarity [7,9].

Alterations in Ras signaling are implicated in the development of different diseases,
such as neurological disorders, developmental disorders, and autism. Additionally, Ras
proteins are recognized as major oncogenes, as mutations in all three Ras genes occur in
approximately 30% of human cancers [10]. Mutant Ras is a driver both in tumor initiation
and tumor maintenance [5,7]. In general, K-Ras is the most frequently mutated isoform
(accounting for 75% of Ras mutation in cancer), followed by N-Ras (17%) and H-Ras
(7%) [10]. The frequency in which every isoform appears mutated varies by tissue type: a
large percentage of adenocarcinoma of the lung (32%), pancreas (86%), and colon (41%) is
driven by K-Ras mutations; 29% of melanomas are driven by mutations in N-Ras, while
H-Ras mutations appears mutated in 5% of head and neck squamous cell carcinoma and
6% of bladder cancers [11].
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2. Ras Activation and Downstream Signaling

Ras signaling is activated by cellular receptors including receptor tyrosine kinases
(RTKs), G-protein coupled receptors (GPCRs), cytokines receptors, and extracellular matrix
receptors [12]. Ras proteins act as molecular switches that cycle between two conforma-
tional states: an active GTP-bound state and an inactive GDP-bound state. This GDP/GTP
cycling is tightly controlled by two main classes of regulatory proteins: guanine-nucleotide-
exchange factors (GEFs), which upon receptor stimulation promote the activation of Ras
proteins by stimulating GDP for GTP exchange, and GTPase-activating proteins (GAPs),
which stimulate Ras-mediated GTP hydrolysis and Ras inactivation [6,12,13]. GTP binding
to Ras induces changes in conformation, mainly in two regions named switch I and switch
II, that greatly increase the affinity of Ras for its downstream effectors [14,15].

Ras-GTP stimulates a wide range of downstream effectors, although the best character-
ized are mitogen-activated protein kinases (MAPK), phosphoinositide-3 kinase (PI3K) [16,17],
and the Ral pathways [18] (Figure 1). The Raf–MEK–ERK signaling axis was the first
Ras-effector that was described [19,20] and it regulates cell growth, differentiation, in-
flammation, and apoptosis [21]. Activated Ras promotes the translocation of the Raf
serine/threonine kinase to the plasma membrane, where it is activated and phosphorylated
by different protein kinases. Active Raf phosphorylates and activates the MEK1/2 kinase,
which in turn phosphorylates ERK1/2 mitogen-activated protein kinase that eventually
exert their function on a large number of downstream molecules [22]. The phosphatidylinos-
itol 3 kinase (PI3K) pathway is the second best-characterized Ras effector and participates
in the regulation of a wide range of cellular activities, including cell growth, prolifera-
tion, differentiation, migration, and apoptosis [23]. Genetic alterations in PI3K/AKT and
Raf/MAPK/ERK pathway components leading to aberrant activation of signaling are
frequent in cancer [21,24]. The functional importance of the Ras–PI3K pathway and its role
in cancer will be extensively discussed in the next sections.

Figure 1. Ras effector pathways. GTP binding to Ras induces changes in protein conformation that
increases Ras affinity for downstream effectors, thus activating many different signal transduction
pathways. Among them, Raf/MEK/ERK, PI3K/AKT, and Ral are the best understood. Further, Ras
crosslinks with other signaling pathways such as proteins from the Rho family and YAP. Through
the regulation of the different downstream pathways, Ras proteins play a key role in the control of
proliferation, survival, metastasis, apoptosis, migration, angiogenesis, and endocytosis.
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Apart from the above-mentioned effectors, an increasing number of molecules that
specifically interact with Ras have been described, such as Ral-GEF, Rho-GTPases, Novel
Ras effector 1A (NORE1A), Af6, phospholipase C (PLC), Ras and Rab interactor 1 (RIN1), T-
cell lymphoma invasion and metastasis-inducing protein (Tiam), and growth factor receptor
14 (Grb1), although the precise physiological role is still not fully understood for many of
them [25]. Recently, Ras signaling has been shown to interact with the Hippo-signaling
effector YAP to facilitate tumorigeneses [26]. Thus, the list of Ras effectors continues to
grow, and more interactors belonging to the family of Ras effectors are expected to be
characterized in the next years [14,27–30].

3. PI3K Family

PI3Ks are a family of lipid kinases with a key role in the regulation of cellular functions
such as development, cell growth, metabolism, mobility, apoptosis, and proliferation [31].
Genetic deregulation of PI3K activity is associated with many human conditions such as
allergy, inflammation, diabetes, neurological disorders, heart disease, or cancer [32,33].

PI3Ks are grouped into three different classes (Class I, II, and III) on the basis of protein
structure, tissue expression, and substrate preference. These classes share four homologous
regions, although the kinase domain is the most conserved [34]. Class I PI3K is the best-
characterized family and the one most clearly implicated in human cancer [24], although
much remains to be learned about their coupling to upstream signals and their relative
functional output. Class I PI3K is composed of heterodimers formed by a catalytic subunit,
which contains the kinase domain that catalyzes production of phosphatidylinositol (3,4,5)-
trisphosphate (PIP3), and a regulatory subunit, which interacts with the catalytic subunit to
downregulate substrate access and kinase activity [35]. Class I PI3K is further subdivided
into Class IA and Class IB PI3Ks. The catalytic subunit of Class IA consists of p110α,
p110β, or p110δ, which in humans are encoded by Pik3ca, Pik3cb, and Pik3cd, respectively.
It can bind any of five different p85-like regulatory subunits (p85α, p55α, p50α, p85β, and
p55γ). Class IB PI3Ks feature the p110γ catalytic subunit, which differs from the Class
IA PI3K in its extreme N-terminus (lacking a p85 binding site) and binds either a p84 or
p101 regulatory subunit. P110α and p110β isoforms are commonly expressed in all tissues,
p110δ is mainly expressed in immune cells, and p110γ is expressed in immune cells and at
low levels in the heart, pancreas, liver, and skeletal muscle [32,34,36].

Class I PI3Ks are activated through different upstream mechanisms, such as RTKs,
GPCRs, or GTPases, which induce recruitment of PI3K to the membrane (Figure 2) [23].
Engagement of the ligand to its receptor induces the dimerization and autophosphorylation
at tyrosine residues of the RTKs and subsequent interaction with Src homology 2 (SH2)
domain–containing molecules [37,38]. From here, PI3K could be activated in three different
ways: (i) by direct binding of the regulatory subunit of PI3K, p85, to phospho-YXXM
motifs (X indicates any amino acid) within the RTK [39], triggering activation of the p110
catalytic subunit of PI3K; (ii) by Growth Factor Receptor-bound Protein 2 (GRB2) mediated
activation, in which GRB2 binds preferentially to phospho-YXN motifs of the RTK [40] and
to the scaffolding protein GAB, which in turn can bind to p85; (iii) via binding to Ras: GRB2
binds and activates Son of Sevenless (SOS), which then activates Ras, and in turn activates
p110 independently of p85. GRB2 can also exist in a large complex that contains SOS, Ras,
and GAB or other scaffolding proteins, bringing these activators into close proximity to
p110 PI3K [41]. It remains unclear which of these pathways predominates in different
physiological situations as data show that GPCRs, RTKs, and Ras proteins exhibit a wide
level of plasticity in terms of activating the various Class I PI3Ks [23]. Only p110α, p110δ,
and p110γ isoforms are activated by the Ras subfamily of proteins, while p110β is activated
by members of the Rho GTPase subfamily, specifically by Cdc42 and Rac1 [17,23,42,43].
PI3K isoforms also show differences when activated by direct binding to RTKs or GPCRs.
In the case of RTKs-dependent, Ras-independent activation, the Src Homology 2 (SH2)
domain of the regulatory subunits of PI3Kα, PI3Kβ, and PI3Kδ, can bind to phosphotyrosyl
residues of RTK or adaptor proteins such as insulin receptor substrate (IRS1) [23,44]. GPCRs
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only activate PI3Kγ and PI3Kβ isoforms as a result of direct interaction of the regulatory
subunit and the Gβγ subunit of the heterotrimeric G proteins, following activation of
GPCRs [23,35,45–47]. The different mechanisms by which each isoform is activated may
have a significant effect on the pathological and physiological processes it mediates. A
rigorous review of upstream regulators of PI3K and their role in disease has been published
by Wang and colleagues [35].

Once activated, Class I PI3K phosphorylates the 3-OH group of phosphatidylinositol
4,5-bisphosphate (PIP2), resulting in the generation of PIP3 [48] that acts as a second
messenger and recruits proteins that contain a pleckstrin homology (PH) domain, such
as serine–threonine kinase AKT and its activating kinase 3-Phosphoinositide-dependent
protein kinase 1 (PDK1), to the cellular membrane [49,50]. PDK1 phosphorylates AKT at
T308, leading to partial AKT activation. Phosphorylation of AKT at S473 in the carboxy-
terminal hydrophobic motif by the mammalian target of rapamycin complex 2 (mTORC2),
fully activates AKT [22,51,52]. Phosphorylated AKT subsequently phosphorylates a large
number of downstream targets that play an important role in the regulation of apoptosis
and cell survival (Figure 2).

Phosphorylated AKT activates the mammalian target of rapamycin (mTOR) via phos-
phorylation and inactivation of proline-rich AKT substrate of 40 kDa (PRAS40) and tuber-
ous sclerosis protein 2 (TSC2) [53]. mTOR phosphorylates 4E binding protein 1 (4EBP1)
and ribosomal protein S6 kinase (S6K1), responsible for ribosomal S6 protein (S6/RPS6)
phosphorylation [37] to promote protein synthesis and cellular proliferation [54]. AKT ex-
erts an inhibitory phosphorylation on the glycogen synthase kinase-3 (GSK-3), inducing the
expression of cell-cycle regulators such as c-Myc, cyclin D1, and cyclin E and thus promote
cell cycle progression [55]. Another important target of AKT is the proapoptotic forkhead
box transcription factors (FOXO) FOXO1, FOXO3, and FOXO4. AKT phosphorylates them,
blocking the transcription of target genes that promote apoptosis (such as BIM), cell-cycle
arrest (such as p21 and p27), and metabolic processes (such as sestrin3 and G6PC) [55,56].
AKT controls apoptosis through the inhibition of the proapoptotic activity of the BAD and
BAX factors, from the the B-cell lymphoma 2 (BCL-2) family [57–59]. The murine double
minute 2 (MDM2) is also phosphorylated and activated by AKT. MDM2 negatively regu-
lates p53, which promotes cell survival [60,61]. Importantly, AKT activates the IKK/NF-κB
signaling pathway, promoting many steps of cancer initiation and progression [55,62–64].

TEC family tyrosine kinases such as Bruton’s tyrosine kinase (BTK) and Targeting
Interleukin-2-Inducible T-cell Kinase (ITK) are also PI3K effectors with a key role in lympho-
cytes [65]. BTK has a critical role in B-cell function and malignancy [66]. BTK is involved
in the regulation of the developmental progression of pre-B-cells [67], and it is essential
for B-cell receptor (BCR)-mediated proliferation and survival of mature B-cells [68,69].
Mutation of genes encoding BTK are implicated in human immunodeficiency disease
X-linked agammaglobulinemia (XLA) [70,71], while BTK is abundantly expressed in B-cell
leukemias and lymphomas [72]. The initial link between PI3K, BTK, and B-cells was pro-
vided by mouse knockout studies showing that the deletion of Pik3r1 or Pik3cd caused
defects in B-cell development and survival similar to those in mice lacking BTK [73]. Fur-
thermore, pharmacological inhibitors of BTK and p110δ have shown a strong convergence
of clinical activity in cancer, with best responses in malignancies of mature B-cells [74–77].
PI3K-dependent BTK signaling is a key example of a PI3K network that has emerged as an
effective therapeutic target in cancer [78].
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Figure 2. Mechanisms of activation of PI3K and downstream effectors. GCPRs and RTKs are
upstream signals that control PI3K activation through direct interaction with the regulatory subunit
of PI3K. Further, RTK can activate PI3K indirectly through Ras activation that in turn activates PI3K in
a p110-dependent manner. Once activated, PI3K generates PIP3 that promotes AKT phosphorylation,
which subsequently phosphorylates a large number of downstream targets to control cell survival,
proliferation and apoptosis. Other PI3K effectors are TEC family tyrosine kinase, such as BTK, and
GTPases of the Rho/Rac/cdc42 family. Activation of PI3K-AKT pathway is an important mechanism
in the development of resistance to chemotherapy (through protection of drug-induced apoptosis [79])
and radiotherapy (through repair of radiation-induced DSBs [80,81]).

PI3K also targets GEFs involved in the activation of Rho/Rac/cdc42 GTPases family
proteins [3,82]. For example, both pharmacological and genetic PI3K-α inhibition in
endothelial cells reduced RhoA activation, which correlated with a migration and tail
retraction defect [83]. In epithelial cells, growth factors stimulate the PI3K-dependent
activation of Rac, leading to disruption of the actin cytoskeleton, release of filamentous
actin-bound aldolase A, and an increase in aldolase activity [84].

PI3K pathway activity is negatively regulated by the phosphatase and tensin ho-
molog (PTEN), a phosphatase that dephosphorylates and hydrolyses the secondary mes-
senger PIP3, converting it back to PIP2. Loss of function mutations in PTEN result in
enhanced PI3K signaling, which is associated with oncogenic cellular transformation and
cancer [23,85]. Similar to PTEN, the SH2 domain-containing enzyme inositol 5′-phosphatase
(SHIP) is also a negative regulator of PI3K, which specifically hydrolyses the 5-phosphate
group from PIP3 [35]. A tumor suppressor role of SHIP1 has only been described in a single
murine B-cell lymphoma model driven by oncogenic c-Myc and in lymphatic metastasis of
breast cancer; no additional studies have demonstrated a tumor suppressor role of SHIP1
in other spontaneous malignancies in humans [86,87].

4. Ras–PI3K Interaction

Ras-mediated PI3K activation in response to growth factors requires two steps, the
first of which is phosphorylation of the RTK and, in some cases, adaptor proteins, and
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secondly, activation of Ras small GTPases. Interaction between Ras and Class I PI3K is
mediated by the binding of the Ras binding domain (RBD) present in the catalytic subunit
of PI3K and the Ras switch region I (SW1) and II (SW2) that form part of the effector lobe
of Ras [17,88]. Upon GTP loading of Ras, both switch regions suffer significant structural
changes, increasing the affinity of Ras for effector targets [49,89]. Direct interaction be-
tween GTP-bound Ras and p110α augments the activity of p110α, possibly by inducing a
conformational change at the substrate binding site, stimulating its catalytic activity [23]
or by mediating a closer interaction with the plasma membrane [17,90]. Recent studies
suggest that, at least for the RTK-induced activation of mammalian PI3K, Ras mostly acts
to stabilize PI3K at the plasma membrane, whereas PI3K is allosterically activated by the
RTK [91,92].

The multidomain architecture in PI3K regulatory and catalytic subunits contributes to
the mechanisms through which PI3Kα activity is controlled as interactions between both
subunits stabilize the overall structure and keep PI3K in the inactive state [93,94] (Figure 3).
The N-terminal-SH2 (nSH2) and the Inter-SH2(iSH2) domains of p85 are required for
full inhibition of p110α lipid kinase activity [95,96]. When the ligand binds to RTK, the
phosphorylated tyrosine (pY) motifs in the receptors bind to the nSH2 domain of p85, thus
disrupting the inhibitory contact between the nSH2 and the catalytic subunit and inducing
a conformational change in p110α that leads to its activation [95]. Specifically, after nSH2
release, the C-lobe of the kinase domain moves away from the C2 domain, exposing the
p110α membrane binding surface to membrane interactions. The activation loop in the
kinase domain becomes more flexible and approaches ATP, generating an active PI3Kα
conformation for substrate catalysis [36] (Figure 3). For Ras-mediated PI3K activation, the
inhibition exerted by p85 is relieved through dissociation of p110 and p85, with the nSH2
domain of p85 playing a key role [96,97] (Figure 3). Recently, computational analysis of
K-Ras4B-mediated activation of p110α has shown that K-Ras4B/RBD binding disrupted
the interactions along the p110/p85 interface through the induction of overall structural
displacement of both nSH2 and iSH2 in p85 from the neighboring functional domains in
p110 including the C2, helical, and kinase domains. This results in the exposure of the
kinase domain and facilitates the full activation of PI3Kα [98].

Ras-mediated regulation of PI3K plays a role in many cellular processes involved in
both normal physiology and disease [61]. In all these contexts, Ras-stimulated production
of PIP3 results in membrane recruitment and, in many cases, activation of PH domain-
containing proteins, including PDK1 and AKT kinases, GEFs for Rac small GTPases, and
BTK. The best-characterized roles of Ras–PI3K signaling in eukaryotes are the regulation of
AKT function in cell survival and growth, as well as the remodeling of the actin cytoskele-
ton [99,100]. The Ras–PI3K pathway can also regulate the actin cytoskeleton by promoting
Ras signaling in various cellular contexts [91,101].

4.1. Ras–PI3K Interaction in Cell Growth and Apoptosis

Significant efforts have been made to understand the role of Ras and PI3K in the
regulation of different cellular events and its involvement in cancer since the discovery of
their interaction [102]. PI3K activation by different upstream receptors makes it difficult
to uncover the specific role of Ras-dependent activation of PI3K in the control of physio-
pathological processes. Adding to this complexity, Ras can activate a large number of
effectors, each of them contributing to the regulation of a specific cellular event. Thus, fully
understanding of the specific roles played by this interaction has been challenging.
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Figure 3. PI3K activation. Under unstimulated conditions, interactions between the regulatory and
the catalytic subunit keep PI3Ks in the inactive state. The nSH2 and iSH2 (coiled portion) domains of
p85 are the minimal fragment of the regulatory subunit required for full inhibition of p110α lipid
kinase activity. In PI3K activation by RTKs, binding of p85 to phosphorylated RTKs disrupts the
inhibitory contact between the regulatory and the catalytic subunit, which generates conformational
changes in p110α for substrate catalysis. In PI3K activation by Ras, the interaction of Ras with p110
displaces nSH2 and iSH2 in p85 from the p110α subunit, facilitating the full activation of PI3Kα.

Different approaches have been used to examine the functional relevance of Ras-
dependent activation of PI3K. Traditionally, the Ras–PI3K signaling pathway was studied
using genetic animal models or cell lines in which Ras was constitutively activated or
silenced [103–106], and AKT phosphorylation was used as a readout for Ras-dependent
PI3K activation. These tools were usually complemented with pan- or isoform-specific
PI3K and ERK small molecule inhibitors to allow the evaluation of the individual roles of
Ras effectors in the final physiological response [107,108]. The general conclusion drawn
from these studies was that Ras requires PI3K activation to regulate cell viability, through
the control of proliferation and apoptosis [65,104,109], and to induce transformation of ep-
ithelial cells [99,103]. Thus, it was concluded that dysregulation of the processes controlled
by the Ras–PI3K pathway or mutation on any of its components leads to oncogenesis.

The use of PI3K inhibitors to study Ras-downstream signaling has also been used to
determine the functionality of this effector pathway. However, these inhibitors block PI3K
activity independently of how it is activated. To circumvent this issue, Rodriguez-Viciana
et al. designed different Ras mutants that are specifically unable to interact with each of
its effectors [100]. This study showed that mutations in different residues of the effector-
binding domain of Ras altered the transformation capability of oncogenic Ras and that both
Raf and PI3K activation are critical to induce fibroblast transformation by Ras. Additionally,
it demonstrated that PI3K, but not Raf, modulates membrane ruffling and cytoskeletal
reorganization. Subsequent studies using these mutants showed that Ras–PI3K interaction
protected fibroblasts from c-Myc-induced apoptosis as effectively as constitutive activation
of p110α, and this protection was abolished by the treatment of fibroblasts with a PI3K
inhibitor [109].
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Important advances in the understanding of the specific role of Ras-dependent acti-
vation of PI3K were achieved by the generation of different mouse models in which Ras
binding to the catalytic unit of PI3K was prevented. Suire et al. generated a mouse model
in which five residues of the Ras-binding domain of p110γwere altered (T232D, K251A,
K254S, K255A, and K256A). Using this model, they established that Ras interaction with
p110γ is not necessary for mouse development, since mutant mice were viable, fertile, of
normal size, and with generally normal blood counts. However, the study showed that neu-
trophils in which p110γ cannot interact with Ras showed reduced PIP3 accumulation, AKT
phosphorylation, chemokinetic responses, and reactive oxygen species (ROS) production
in response to GPCR agonists [101].

Studies in Drosophila showed that Ras–PI3K interaction is essential during develop-
ment [110,111]. Substitution of four amino acids in the Ras binding domain of Dp110 (the
only Class I PI3K in Drosophila) (T231D, K250A, R253A, and K257A) prevented its interac-
tion with Ras. The resulting mutant flies were viable, but smaller in size. Female flies were
less fertile than wild-types (WTs), pointing to a role of Ras/PI3K interaction in the response
to growth-stimulating stimulus. Furthermore, AKT activation was diminished in response
to insulin in the brain and imaginal discs, and basal AKT activation was downregulated in
the ovaries [110]. Further studies using this model showed that Ras activation of PI3K is
also required to decrease motor neuron excitability, but not for the PI3K-dependent increase
in nerve terminal growth [112].

Generation of a mouse model in which the binding of Ras to the p110α subunit of
PI3K was prevented by the introduction of two point mutations (T208D and K227A) in
the RBD domain of the endogenous Pik3ca gen revealed additional roles of Ras-dependent
activation of PI3K. In these mice, RBD mutations did not affect the basic enzymatic activity
of p110α, coupling to the p85 regulatory subunit, expression of PI3K components (p85,
p110α and p110β), or interaction with other Ras effectors. However, the homozygous
mutant mice died shortly after birth due to deficient lymphatic vasculature development,
and the few surviving mutant adults exhibited reduced body weight compared to WT [113].
The importance of a functional p110α subunit in vascular development during embryoge-
nesis was also shown with a mouse model where ubiquitous or endothelial cell-specific
inactivation of p110α led to embryonic lethality at mid-gestation, associated with severe
defects in the vascular remodeling [83]. Conversely, mice with inactive p110β or p110γ
were viable and fertile, without obvious vascular defects, confirming that p110α plays
a unique role among Class IA PI3K isoforms in embryonic vascular morphogenesis and
remodeling [83] and that this effect may be mediated by Ras. These results also suggested
that cellular responses during embryogenesis and adulthood require different growth
signals, and Ras activation of PI3K may have a function in the regulation of cell responses
to different growth stimulus. This idea is reinforced by the observation that, in fibroblasts
lacking Ras–PI3K interaction, epidermal growth factor (EGF) and fibroblast growth factor
2 (FGF2) fail to properly induce AKT activation, whereas platelet-derived growth factor
(PDGF) does not [113,114], and migration is impaired in response to EGF, FGF2, hepato-
cyte growth factor (HGF), and insulin but not in response to PDGF [115]. Furthermore,
insulin-induced activation of AKT and ERK is also reduced in hepatocytes in which H-ras
is silenced [116], indicating that different Ras isoforms may also differentially regulate
growth factor-induced signaling pathways.

It is well established that PI3K is one of the principal effectors of Ras in the regulation
of the cell cycle, being the main effector promoting transition from G0 to G1 phase in
quiescent cells [117–119], as well as entrance of cells into S phase [117]. In parallel, Ras
regulates pro-survival signals via PI3K activation of AKT. Phosphorylated AKT, in turn,
phosphorylates a number of substrates that play a role in the regulation of apoptosis, such
as BAD [57,120,121], NF-kB [122–124], or FOXO [125]. Thus, by stimulating proliferation
and preventing apoptosis, Ras–PI3K signaling supports tumor growth.

The role of PI3K signaling in apoptosis inhibition is not restricted to the classical Ras
isoforms. R-Ras is a Ras family member that functionally differs from H-Ras, N-Ras, and
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K-Ras [126] and is highly expressed in the vascular endothelial cells [127], where it pro-
motes lumenogenesis, supports the lumen structure with the stabilized microtubules [128],
and promotes vessel maturation by endothelial barrier stabilization and pericyte asso-
ciation [129,130]. Using human umbilical vein endothelial cells (HUVEC) cells, Takino
et al. described that Ras guanyl nucleotide releasing protein 2 (Ras-GRP2), a Ras GEF,
inhibits apoptosis by inhibiting BAX activation in a PI3K-dependent way [131]. The authors
demonstrated that Ras-GRP2 suppresses BAX activation-induced apoptosis by promoting
HK-2 translocation to mitochondria via R-Ras/PI3K/AKT signaling pathway. The BAX
pathway is involved in apoptosis in endothelial cells in conditions of hyperglycemia and
high methylglyoxal levels as a trigger of atherosclerosis and in lipopolysaccharide-induced
apoptosis caused by inflammation [132,133]. Therefore, inhibition of BAX translocation by
Ras-GRP2/R-Ras/PI3K/AKT/HK-2 may result in a survival benefit in these conditions.

4.2. Ras–PI3K Signaling in the Immune System

Most studies on the role of PI3K in the immune system focus on PI3Kγ and PI3Kδ
isoforms, while the function of PI3Kα in immune cells is less understood. The impor-
tance of PI3Kγ and PI3Kδ isoforms for the normal activity of the immune system has
been revealed in mice lacking functional versions of PI3Kγ [47,134] or PI3Kδ [135,136],
which are viable but show significant defects in both innate and adaptive immunity [137].
Mice lacking 110δ exhibit impaired B-cell development and humoral immune responses,
reduced T-independent antibody responses, and relatively normal numbers of thymo-
cytes [135,136,138], while p110γ-deficient mice have a modest reduction in thymic cellular-
ity and no alterations in development or function of B-cells [134].

The contribution of Ras signaling to 110δ or p110γ in the maturation of the immune
system during development has not been determined; however, results from studies using
N-Ras knockout (KO) mice overlap with those obtained with p110γ deficient mice [134,139]:
both N-Ras and p110γ regulate proliferation and IL-2 production of T-cells and promote
an inflammatory response after stimulation with an infectious agent.

PI3Kγ can operate as a p110γ/p84 or p110γ/p101 complex, which confers PI3Kγ
signal-specificity [140]. These complexes show some differences in tissue distribution.
The p84 subunit is highly expressed in the immune system but also in other tissues and
organs, such as the heart, pancreas, and the central nervous system, while p101 shows a
more restricted expression profile in the immune system but was below the detection limit
in other body compartments [141–143]. Such differences of expression and distribution
in human tissues point to different cellular functions of both enzymes. In fact, p84 and
p101 regulatory subunits show a distinct function in specific cell types, such as mast cells,
neutrophils, and cardiomyocytes [142–145]. For example, neutrophils lacking p84 have
selective defects in p110γ-dependent oxidase activation, but neutrophils lacking p101 show
selective defects in p110γ-dependent motility [145]. Given the different role that p84 and
p101 can play in the control of cellular functions, it seems indispensable to understand the
mechanisms that drive their activation.

The PI3Kγ isoform can be activated by GPCRs or by Ras-dependent mechanisms [35],
but it is unclear which of the two mechanisms is more relevant [146]. There is a general
agreement that p101/p110γ is more sensitive to activation by Gβγ than p84/p110γ, which
may be due to a decrease in the affinity of p84 to Gβγ [142,147]. In agreement with this,
studies in HEK cells have suggested that Ras is an indispensable co-regulator of p110γ/p84,
which requires Ras co-stimulation for full activation, whereas p110γ/p101 activation is
mainly mediated by interaction with the Gβγ subunit of GPCRs, without any input from
Ras [140]. In apparent contradiction to this, data obtained with primary neutrophils bearing
mutations that prevent interaction of Ras with the RBD domain of p110γ show that Ras-
GTP is an important regulator of p101/p110γ and not only of p84/p110γ [101,145]. These
data illustrate that p84 and p101 variants of PI3Kγ are stimulated by Ras and Gβγ to
different degrees depending on cell type, stimulus, and Ras isoform involved and that
these differences shape cellular responses.
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Ras–PI3K signaling has been shown to regulate different functions in neutrophils. Neu-
trophils in which PI3Kγ cannot bind to Ras (p110γDASAA/DASAA) and p101−/− neutrophils
(used as a specific mean of assessing the role of Gβγs in the activation of PI3Kγ) exhibited
a reduction of PIP3 accumulation, AKT activation in response to GPCR agonists, and
reduced migration. However, loss of Ras binding to PI3Kγ specifically reduced neutrophils’
ability to produce ROS after stimulation with the peptide N-formyl methionyl–leucyl–
phenylalanine (fMLP) or the complement fragment (C)5a (C5a) [101]. Further investigation
confirmed that, at least in neutrophils, Ras induces ROS formation via two Ras-GEFs: Ras
guanyl releasing protein 4 (Ras-GRP4) was required for fMLP-stimulated ROS formation
in unprimed neutrophils, while SOS1/2 have a role in primed neutrophils [148]. In vivo
studies demonstrated that Ras signaling in the absence of GPCR stimulation is not sufficient
to activate PI3Kγ, and Ras interaction with p110γ is required for full GPCR stimulation of
PI3Kγ, suggesting that Ras combines synergistically with inputs from Gβγ to determine
PI3Kγ activity [149].

Ras signaling to PI3K is also relevant for the control of allergies. Mast cells are key
effectors in the pathology of allergic disease [150]. In mast cells, the pharmacological
inhibition of Ras with a farnesyltransferase inhibitor (FTI-227) reduced AKT phosphoryla-
tion upon activation with adenosine. Functionally, FTI-277 attenuated degranulation of
IgE/antigen-activated mast cells upon co-stimulation with adenosine, reduced expression
of tumor necrosis factor α (TNF-α) and IL-6, and impaired cell migration [146]. These
data suggest that the development of specific p110γ/p84 targeting strategies for mast
cell-related diseases will presumably have limited effects on p101-dominated immune cells,
thus reducing side effects.

5. Ras–PI3K Interaction in Cancer

Mutations in the Ras genes were first reported in cancer over 30 years ago and numer-
ous studies have since validated mutant Ras as a driver of tumor initiation and mainte-
nance [151]. Activating point mutations in the genes encoding the Ras subfamily are found
in approximately 27% of all human cancers, with 98% of the mutations occurring at one of
three mutational hotspots (G12, G13, and Q61), regardless of the isoform involved [5,10].
These mutations disrupt GAP-mediated GTP hydrolysis, which results in an accumulation
of constitutively GTP-bound Ras in cells and an exacerbated activation of effector path-
ways even in the absence of upstream stimulation [10,11]. Additional mechanisms of Ras
activation in cancer include (i) perturbation in GDP–GTP regulation; (ii) loss of GAPs, such
as neurofibromin (NF1), and (iii) persistent RTK-mediated activation of GEFs [5].

PI3K also plays a critical role in cancer. Mechanisms that enhance PI3K activity in-
clude mutations in proteins upstream of PI3K (such as Ras or RTKs), mutational activation
of PI3K itself (mainly mutations in the Pik3ca gen), or loss of function of its inhibitor
PTEN [23]. In particular, mutations in Pik3ca are the second most common alteration in
human tumors [35,152]. Gene insertions, deletions, and somatic missense mutations in
Pik3ca are frequent in colon, breast, brain, liver, stomach, and lung cancers [153]. There are
two common “hotspots” for mutations in Pik3ca, H1047R, which enhances the interaction
of the kinase domain with membranes and bypasses the requirement for association with
Ras [154], and E525/E545K, which disrupts the inhibitory interface with the n-SH2 domain
of the regulatory subunit [23,95,155]. Other mutations that activate PI3K occur in the
Pik3r1 and Pik3r2 genes, coding for the regulatory subunits p85α and p85β, respectively.
Mutations in these genes reduced the ability to interact with and stabilize the p110 catalytic
subunit in type IA PI3Ks [156]. Aberrant PI3K activation can also occur due to loss-of-
function mutations and deletions in PTEN, which is the third most frequent alteration in
human tumors [35]. Ras and Pik3ca mutations are mutually exclusive in endometrial and
breast cancers, but co-exist in colorectal and lung tumors [31,157–159], suggesting that
the acquisition of both mutations may confer additional characteristics that are beneficial
for the tumor. For example, in colorectal cancer, coexistant K-Ras and PI3K mutations
decrease sensitivity to PI3K and mTOR inhibition [158], and in lung cancer, the addition of
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a constitutively active PI3K mutant to epidermal growth factor receptor (EGFR) mutant
tumors confers gefitinib resistance in vitro [160]. Thus, determining Pik3ca mutation sta-
tus and its coexistence with other gene mutation may be helpful to predict response to
targeted therapy.

The initial indications that Ras interaction with PI3K could regulate tumorigenesis
were obtained by in vitro studies showing its role in oncogenic cell transformation and cell
survival [65,100,103,161]. Since then, a large number of studies have shown that PI3K acti-
vation regulates different aspects of Ras transformation [162,163]. To provide some specific
examples, one study showed that activation of PI3K/AKT pathway is involved in intestinal
epithelial cell transformation following induction of oncogenic Ha-RasVal12: pharmacolog-
ical inhibition of PI3K activity exerted an anti-neoplastic effect on Ras-expressing intestinal
epithelial cells, which included stimulation of apoptosis, reversal of morphological trans-
formation, and accumulation of cells in the G1 phase of the cell cycle [103]. PI3K is also
required for Ras transformation of fibroblasts and acts upstream of Rac GTPase to induce
cortical actin rearrangement, membrane ruffling, and lamellipodia formation in oncogenic
Ras-transformed cells [100]. Using a dominant negative mutant of Ras and PI3K inhibition,
it was demonstrated that Ras and PI3K activation participates in ghrelin-caused prolifera-
tion of human colon cancer cells through the activation of the AKT/mTOR pathway [65].
Moreover, Ras–PI3K signaling regulates prostaglandin E2 inhibition of apoptosis in cancer
cells [161].

In vivo, Ras activation of PI3K signaling is essential for lung carcinogenesis driven
by oncogenic mutation of K-Ras and the formation of skin tumors induced by activating
mutations of H-Ras [113]. However, once tumors are established, they are less dependent
on RAS-PI3K signaling and disruption of their interaction only leads to partial tumor
regression, followed by long term stasis [164]. Similar results were obtained in lung
tumors developed in response to K-Ras activation with normal PI3K signaling, in which
established tumors did not reduce in size when mice were treated with NVP-BEZ235, a dual
pan-PI3K/mTOR inhibitor, even though tumors driven by expression of activated PI3K
did regress upon treatment with this drug [160]. These data suggest that additional K-Ras
activated pathways cooperate with Ras to promote tumor maintenance and development.
Combination of PI3K and MEK inhibition caused impressive tumor regression, albeit
accompanied by significant toxicity [164,165]. Similarly, subcutaneous tumors formed
by tumor cells in which Ras preferentially binds to PI3K continue to grow even in the
absence of oncogenic Ras signaling. However, if tumors are formed by cells in which Ras
preferentially binds to Raf or RalGEF, they stop growing or even regress in some instances.
In this setting, the activation of the three pathways was required for Ras-induced tumor
initiation, suggesting that Ras-dependency of downstream pathway activation may vary
with tumor stage and tumor type [166]. Ras–PI3K interaction is also required for tumor
progression of WT Ras cancers since removal of Ras–PI3K interaction in an EGFR mutant
lung cancer model caused important tumor regression [114]. These results suggest that
direct targeting of the Ras-binding domain of p110α may be effective in K-Ras-driven
lung tumors and in WT-mutant lung tumors. According to the observation that PI3K
mediates oncogenic signaling in Ras-WT cancers, Molina-Arcas and colleagues showed
that PI3K is critical for survival of both K-Ras mutant and K-Ras WT NSCLC cells, as
PI3K inhibition induced loss of cell viability irrespective of the genotype [167]. However,
opposite results on the role of oncogenic Ras on PI3K activation were obtained in colorectal
cancer cells carrying mutations in K-Ras, where knockdown of K-Ras did not suppress AKT
phosphorylation and PI3K/AKT pathway required insulin-like growth factor I receptor
(IGF-IR)-induced activation. This is therapeutically important as, while suppression of
mutant K-Ras is not sufficient to downregulate PI3K/AKT, IGF-IR inhibition could suppress
PI3K signaling in K-Ras mutated colorectal cancers [168]. In summary, PI3K is not under
the sole control of mutant K-Ras, and consequently, to discern the mechanism of PI3K
activation in different cancers seems to be essential for the development of new drugs.
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p110α is also critical for K-Ras-driven pancreas carcinogenesis as p110α inactivation
prevents mouse lethality and the appearance of all types of pancreatic lesions induced by
mutated K-Ras [169]. Supporting these data, Eser et al. demonstrated that oncogenic Pi3kca
mouse models show similar patterns of acinar-to-ductal metaplasia (ADM), pancreatic
cancer progression, and activation of key downstream effectors of PI3K to the K-Ras
G12D model, indicating that PI3K signals downstream of mutated K-Ras in pancreatic
cancer [170]. Further, PDK1, AKT, or PI3K inhibition resulted in normal life expectancy
and inhibition of pancreas cancer development in the K-Ras G12D model.

The array of proliferative signals generated by oncogenic Ras culminates with the
upregulation of several transcription factors that are required for cell cycle entry and pro-
gression, including FOS, serum response factor (SRF), the leucine zipper protein JUN, the
ETS domain-containing transcription factor ELK1, activating transcription factor 2 (ATF2)
and NF-κB [171–176]. In turn, these factors trigger the expression of cyclin D1 [177–179].
Although initial studies attributed the stimulation of cyclin D1 transcription by Ras to the
activation of the Raf–MAPK pathway, it has become evident that additional levels of control
are achieved through the Ras activation of PI3Ks, the RHO family of GTPases Rac1, and the
Ral-guanine nucleotide dissociation stimulator (GDS) family of GEFs [19,177,178,180–183].
In addition to stimulating cyclin D1 gene transcription, oncogenic H-Ras regulates the
metabolic stability of the cyclin D1 protein through PI3K-dependent inhibition of GSK3β,
the kinase that is responsible for the phosphorylation and the consequent ubiquitylation
and proteasomal degradation of cyclin D1 [184].

Numerous molecular abnormalities that result in constitutive activation of the PI3K
pathway have been reported in hematologic malignancies, demonstrating the importance
of targeting PI3K in leukemia and lymphomas [185]. However, there are few data de-
scribing the requirement of PI3K activation in Ras-mutated hematological malignancies.
A possible link between Ras-p110γ interaction and the development of T-cell acute lym-
phoblastic leukemia (T-ALL) was shown by Janas et al. [186]. The authors demonstrated
that thymocytes harboring a mutation of p110γ that blocked its interaction with Ras have
a reduced proliferation rate in response to CXC Motif Chemokine Receptor 4 (CXCR4, a
receptor implicated in β-selection of thymocytes) and consequently were defective when
undergoing β-selection in comparison with WT counterparts. Thus, in thymocytes, p110γ
is a key target of Ras signaling that is required for an optimal proliferative response at
β-selection, and therefore this pathway may be implicated in the development of T-ALL,
which typically presents the expansion and dissemination of cells arrested between β-
selection and double positive stages. p110αmay also have a role in Ras-driven leukemia,
since the loss of p110α caused a significant improvement in survival in a murine model
of leukemia induced by oncogenic K-Ras mutations and prolonged the latency of the
myeloproliferative neoplasm [105].

As metabolic disorder was pointed out as a hallmark of cancer, great attention was
paid to the crucial role of oncogenic Ras in tumorigenesis, where it orchestrates a metabolic
reprogramming of tumors [187]. Oncogenic Ras plays an important role in regulating
cancer cell metabolism by triggering several main metabolic changes [188]. Activation
of Ras upregulates growth-promoting pathways controlled by PI3K-mTOR, and growing
evidence suggests that there is a tight correlation between metabolic rewiring in cancer
and these pathways. For example, Ras mutant cells are dependent on sufficient glucose
uptake and PI3K can increase glycolysis through activation of AKT and stabilization of
Hypoxia-inducible factor 1 (HIF-1) [189,190]. Additionally, one of the effectors of PI3K,
mTORC1, can drive a complex pathway to support glycolysis, the pentose phosphate
pathway (PPP), and nucleotide biosynthesis [191,192]. Analysis of different genes with
driver mutations that were linked to the regulation of metabolic pathways in K-Ras-driven
cancers, such as Pik3ca [49], KMT2D [193], PTEN [194], and IDH1 [195], suggested a
theoretical broader transcriptional and signaling circuit coordinated by Ras together with
p110α, NF1, and PTEN for the tight regulation of metabolic pathways [188]. Given the
relevance of Ras–PI3K signaling in metabolic rewiring, the different levels of interplay
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between the PI3K–AKT and K-Ras–MAPK signaling cascades [164] should be considered,
including for potential therapies. Additional studies are needed to understand how the
cross-talk between these two pathways contribute to the metabolic rewiring needed to
sustain uncontrolled proliferation in cancer [196].

5.1. Ras–PI3K Signaling in Migration and Metastasis

The metastatic spread of the primary tumor accounts for over 90% of cancer deaths [197].
Metastasis formation requires complex interactions between cancer cells and multiple mi-
croenvironments [198]. The epithelial-to-mesenchymal transition (EMT) process is a crucial
mechanism in the progression of tumor metastasis and is characterized by the loss of cell–
cell adhesions and the acquisition of cell–matrix interactions [199], which allow cancer cells
to become mobile and invasive, enabling metastasis and chemotherapy resistance [197].
Both Ras and PI3K/AKT pathways are well documented to drive EMT, invasion, and
metastasis [200–205]. However, the importance of Ras–PI3K interaction in Ras-induced
EMT is not clear, and the signaling pathways by which Ras contributes to EMT are contro-
versial [206]. On one hand, K-Ras silencing inhibited EMT and proliferation of breast cancer
cells, while promoting apoptosis, but these effects were reversed when mutant cells were
treated with a PI3K/AKT agonist [99]. Furthermore, PI3K-AKT signaling was suggested
to be required for transforming growth factor β (TGF-β) induced EMT and cell migration
in mammary epithelial cells [207]. In the same line, another study demonstrated that
H-Ras-driven tumors induce PI3K/AKT-dependent ß-catenin activation and that this is
associated with increased cell proliferation, EMT, and cell invasion [208]. These data would
suggest that PI3K acts downstream of Ras to regulate EMT, proliferation, and apoptosis.
Additional supporting evidence of the role of PI3K as a mediator of Ras-induced EMT was
obtained in esophageal cancer cells, where depletion of Ras-GAP SH3 domain binding
protein (G3BP1, a protein that modulate the Ras signaling pathway via interacting with
the SH3 domain of RasGAP and found overexpressed in some cancers [209–211]) represses
invasion and migration potential via EMT suppression. This was accompanied by a signifi-
cant decrease in the levels of p-AKT and p-GSK3β. The overexpression of G3BP1 had the
opposite effect, which was revered by pharmacological inhibition of PI3K [212]. On the
other hand, other studies have established that PI3K is not required for Ras-induced EMT.
Janda and colleagues demonstrated that while the PI3K pathway is required to induce
rapid tumor growth and enhanced proliferation of mammary epithelial cells expressing
oncogenic H-Ras in collagen gels, it fails to cause EMT in vitro and in vivo and EMT in-
duction is mediated by MAPK-pathway activation [213,214]. According to these data,
Fischer and colleagues showed that ERK/MAPK activity is necessary and sufficient for the
cooperation with TGF-β to regulate proliferation and survival of hepatocytes during EMT
and to promote hepatocellular tumor progression [206]. All together, these data suggest
that the contribution of Ras effectors in the control of EMT may depend on the cell type,
the cellular context, and the Ras isoform involved.

Acquisition of a migratory phenotype and extensive reorganization of the actin cy-
toskeleton is one of the first requirements for metastasis formation. Oncogenic activation of
RAS has been implicated in facilitating almost all aspects of the malignant phenotype, and
metastasis is not an exception [215,216]. Oncogenic Ras induces alterations in cell–cell and
cell–matrix interactions and the acquisition of a migratory phenotype. The perturbation of
cell–cell contacts by oncogenic RAS is accomplished through the targeting of the molecular
machinery that maintains intercellular adhesion junctions, including the E-cadherin re-
ceptor and its associated cytoplasmic protein β-catenin [217,218]. Additionally, oncogenic
RAS directly contributes to the enhanced motility of cancer cells by causing pronounced
changes in the polymerization, organization, and contraction of actin, the polymerization
and/or stability of microtubules, and the transcriptional regulation of mitogenic gene
products [215,219]. Collectively, these changes establish the front–rear asymmetry that is
required for cell migration.



Genes 2021, 12, 1094 14 of 40

The existence of several functional links between the Ras, PI3K, and Rho-mediated sig-
naling pathways must be considered when assessing oncogenic Ras in metastasis [82,220–222].
Ras regulates the actin cytoskeleton through Rac, a process that is entirely dependent on
normal PI3K function acting upstream of Rac [100]. Rac and PI3K are linked by a feed-
back loop that is critically involved in the establishment and maintenance of cell polarity.
Ras-GTP activates PI3K and the production of PIP3 at the leading edge of migrating cells.
This increase in PIP3 induces Rac activation [223], which in turn sustains the formation of
directional protrusions. Active Rac binds to p85 and further stimulates the activation of
PI3K, thus amplifying Rac activation and migration induction [224]. PI3K also activates Rac
through interaction with the Rac-specific GEF Tiam1 [225], and PTEN−/− cells are more
motile and contain higher levels of Rac-GTP and Cdc42-GTP than WT cells [226]. In some
studies, it was observed that even though PI3K is the main mediator, different Ras isoforms
activate different Rho family members. For example, in Caco2-cells, oncogenic K-Ras
enhances cell migration and filopodia formation through Cdc42, and oncogenic H-Ras
induces EMT characteristics and promotes migration and invasion through Rac1 [227].

Inhibition of PI3K activity halts Ras induction of membrane ruffling, while activated
PI3K is sufficient to induce membrane ruffling, acting through Rac [228]. Disruption of
Ras binding to PI3K impairs migration in MEFs in response to EGF, FGF2, insulin, and
oncogenic Ras, but not in response to PDGF, which has a diminished ability to activate
Rac [115]. Furthermore, in response to EGF, cells deficient in Ras–PI3K interaction migrated
in a disorderedly manner, suggesting a defect in polarization, and showed reduced invasion
ability. The Ras–Raf scaffold protein Sur8 plays an important role in mediating motility
and invasive potential of cells predominantly through the PI3K pathway via activation
of Rac and MMPs, with a minor contribution of the Erk pathway [229]. Although PI3K
activation is mainly linked to Rac activation, it has been reported that PI3K can also activate
RhoA [83,230]. For example, endothelial cells with reduced PI3Kα activity have defects in
migration, correlating with reduced levels of active RhoA [83].

Ras–PI3K interaction also regulates non-cell-autonomous cancer cell motility. Co-
culture of Ras-transformed epithelial cells and normal epithelial cells showed that the
majority of Ras-transformed cells are extruded towards the basal side of the surrounding
normal cells, which is concomitant with enhanced motility [231]. The basally extruded
Ras cells exhibited motility when surrounded by normal cells, but were non-motile when
cultured alone, indicating that a non-cell-autonomous mechanism is at play. Inhibition
of PI3K suppresses basal extrusion of oncogenic Ras cells, suggesting that the PI3K/AKT
pathway is involved in the extrusion of oncogenic Ras cells to the basal side of normal
epithelial cells. This data indicates that the role of Ras–PI3K in the regulation of metastasis
is more complex than initially thought and therefore a complete characterization of the
paracrine effects of K-Ras-mutant cancer cells would be valuable to fully understand its
role in this process and to identify tumor specificities.

5.2. Ras–PI3K Signaling in Therapy Resistance

Drug resistance is the main limiting factor for achieving cures in cancer patients [232].
Activation of the AKT pathway is one of the major mechanisms involved in intrinsic and
acquired resistance to radiotherapy and chemotherapy agents [233,234] (Figure 2). Due to
the central role of AKT in cell survival, protein synthesis, and proliferation, an increase
in AKT activity can evade the cytotoxic effect of chemotherapeutic agents, leading to
chemoresistance [79]. This may be due to protecting cells from drug-induced apoptosis
through the intrinsic pathway (e.g., by inactivating BAD and caspase 9 and stimulating
anti-apoptotic proteins MCI-1) or through upregulation of survivin as an inductor of
apoptosis [235,236].

Radiotherapy induces phosphorylation of AKT through PI3K activation [237–239],
and the level of phosphorylation is radiation-dose dependent [240]. Double strain breaks
(DSBs) are the major cause of IR-induced cell death in radiotherapy, and clinical data
exists indicating the prognostic value of AKT activation levels for radiotherapy response
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in some tumor types [241,242]. Activated AKT stimulates the repair of radiation-induced
DSBs [80,81,238,243] and the C-terminal domain of AKT interacts with the DNA-dependent
protein kinase catalytic subunit (DNA-PKcs), the major component in non-homologous
end-joining repair of DSB, and phosphorylates it, stimulating function of DNA-PKcs in
DSB repair. Hyperactivation of AKT due to deregulation of RTKs, PI3K, Ras, or PTEN
leads to efficient DSB repair and the appearance of radiotherapy resistance [244–248].

Although the specific contribution of Ras in the activation of PI3K/AKT leading
to therapy resistance is not always addressed, in some cases it is known to play a rel-
evant role [249]. For example, in lung carcinoma cell lines A549 and H460, targeting
EGFR, PI3K [250], and AKT [244] enhances repair of DNA-DSBs and induces DNA-PKcs–
dependent radiosensitization. These reports are supported by data from Choi et al., who
showed that in the same cell lines, silencing the expression of K-RasK-Ras induces radiosen-
sitization due to a reduction of IR-induced phosphorylation of DNA-PKcs and impaired
repair of DNA-DSBs in a PI3K-AKT–dependent manner [251] due to enhanced autocrine
production of EGFR ligands and activation of the Ras/PI3K axis [247]. This effect was not
observed in K-RasK-Ras wild type cells.

Platinum-based agents, such as cisplatin, carboplatin, and oxaliplatin, are used in
the treatment of a variety of cancers [79,252,253]. They are DNA-intercalating agents
that interfere with DNA replication and RNA transcription through the crosslinking of
DNA. Cisplatin also induces mitochondrial ROS, further increasing DNA damage and the
cytotoxic properties of the drug. This results in the formation of DNA adducts, driving
tumor cells to apoptosis [254,255]. There are many resistance mechanisms associated with
cisplatin, including the involvement of oncogenicK-RasK-Ras mutations [256–259] and
the hyperactivation of the PI3K-AKT pathway. K-RasK-Ras mutations induce NRF2 tran-
scription and pathway upregulation, resulting in the overactivation of the anti-oxidative
stress pathway, rendering tumor cells resistant to cisplatin-induced ROS [257,260]. In lung
cancer cell lines, SHP2 mediates cisplatin-resistance-related phosphatase in a process that
involves the inhibition of apoptosis by the activation of Ras/PI3K/AKT/survivin signaling
pathway, and, consequently, the inhibition of SHP2 was associated with reduced expression
of Ras, AKT, AKT activation, and survivin [261]. In ovarian cancer cell lines, crosstalk
between STAT3 and Ras/p53 activated PI3K and ERK pathways, which in turn inhibited
endoplasmic reticulum stress (ERS)-associated molecules, blocking cellular autophagy and
inducing cisplatin resistance [262].

ERK activation is a common feature of tumors with a K-Ras, N-Ras, or B-Raf muta-
tion [263], and the inhibition of the Raf/MEK/ERK pathway was supposed to be effective
in cancers harboring mutations in these genes [264]. However, a portion of patients devel-
oped drug resistance mechanisms and no longer responded to Raf or MEK inhibitors [265].
Upregulation of PI3K pathway was found to be a major mechanism of resistance to Raf
and MEK inhibitors [266–268]. The activation of PI3K after ERK pathway inhibition comes
from different mechanism that include RTK reactivation [268,269], activating mutations
in Pi3kca or loss of PTEN [270], or activating a positive feedback loop composed of GAB1,
Ras, and PI3K, which induces the bypass of the ERK signal to the PI3K signal [271].

Recently, small molecules against K-Ras G12C mutations have been developed, and the
first drug targeting this mutation has been approved by FDA [272]. However, therapeutic
resistance to K-Ras G12C inhibition has been observed in preclinical tumor models and
also in the clinic [273–275]. The PI3K pathway may be implicated in the resistance to
K-Ras G12C inhibitors [276] as preclinical studies have shown failure to inactivate the
PI3K signaling pathway after treatment with G12C inhibitors [274,277,278]. Importantly,
combination of G12C and PI3K pathway inhibitors was effective in vitro and in vivo on
models that are resistant to single-agent G12C inhibitor [274], or significantly improved
antitumor activity of G12C inhibitors [277,279], which could be explained by a concomitant
inhibition of p-ERK (due to G12C inhibition) and p-AKT [274,277]. This combination could
avoid the toxicity associated with the inhibition of MEK and PI3K, while the efficacy of
inhibiting both pathways in tumor cells is maintained [279].



Genes 2021, 12, 1094 16 of 40

Tyrosine kinase inhibitors (TKIs) are used in a variety of cancers. Upregulation of Ras-
mediated pathways is a common mechanism of resistance to TKIs [280–285], such as those
targeting RTKs including FMS-like tyrosine kinase 3 (FLT3) and EGFR. Jacobsen et al. [286]
showed that AKT pathway activation is a convergent feature in EGFR-mutant PC9 NSCLC
cells with acquired resistance to EGFR TKI. They found that combining an EGFR TKI with
an AKT inhibitor induced significant growth inhibition in vitro and in vivo. They also
examined clinical samples and found that activated AKT was increased in the majority of
EGFR-mutant patients after progression on EGFR TKIs. Moreover, the high levels of phos-
phorylated AKT in patients prior to EGFR TKI treatment correlate with significantly worse
progression free survival (PFS) and overall survival (OS) after first-line EGFR TKI treatment.
Lee and colleagues investigated possible mechanisms responsible for acquired resistance
to HER2-targeted therapy in gastric cancer. They found that lapatinib (a dual EGFR and
HER2 TKI)-resistant HER2-posititve gastric cancer cells upregulated phosphorylation of
EGFR/HER2, and MET appeared to be closely related to the activation of PI3K/AKT
and ERK1/2. Resistance to TKIs can also appear through mutations within the RTK or
mutations within downstream pathways [282,284,285,287]. Given that Ras is activated
downstream of these receptors, any mutations within Ras or its effector pathways will
render the cell resistant to the TKI. Different studies have shown that K-RasK-Ras muta-
tions render patients resistant to Gefitinib, which is used to treat NSCLC patients [288,289].
Similarly, treatment of colorectal cancer with anti-EGFR monoclonal antibodies cetuximab
or panitumumab is only successful in a subset of patients [290] due to the appearance of Ras
mutations and variations in the EGFR extracellular domain, which reduce antibody binding
efficiency, initiating relapse [285]. Thus, combination treatment with PI3K inhibitors may
delay the onset of resistance appearance.

Arginine (Arg) auxotrophy occurs in certain tumor types and is usually caused by
the silencing of argininosuccinate synthetase 1 or arginine lyase genes. Such tumors
are often associated with an intrinsic chemoresistance and thus a poor prognosis [291].
Arginine auxotrophy, however, renders these tumors vulnerable to treatment with arginine-
degrading enzymes. Pegylated arginine deiminase (ADI-PEG20), which converts Arg
to citrulline and ammonia, resulting in Arg deprivation, is used for the treatment of
melanoma, liver cancer, and other types of cancer. ADI-PEG20 has been shown to activate
Ras signaling and, therefore, ERK and PI3K/AKT/GSK-3β kinase cascades, resulting in
the phosphorylation and stabilization of c-Myc by the attenuation of its ubiquitin-mediated
protein degradation mechanism, which induces ADI resistance [292]. PI3K inhibitors
suppress c-Myc induction and enhance ADI-mediated cell killing and in animal models
of argininosuccinate synthetase (AS, the rate-limiting enzyme for arginine biosynthesis)-
negative melanoma, combination therapy using a PI3K inhibitor together with ADI-PEG20
yielded additive antitumor effects as compared with either agent alone.

Many different signaling pathways and associated factors play a critical role in medi-
ating drug resistance through Ras and PI3K pathways. Furthermore, not only can these
pathways contribute to an increased cellular proliferation rate in bulk cancer, but they may
also support the self-renewal and stemness properties of cancer stem cells. Whilst it seems
inevitable that cancer therapy resistance will remain an issue, better targeting of its potential
causes is an imperative, which requires a greater understanding of resistance mechanisms.

6. Ras–PI3K Signaling in the Tumor Microenvironment

Cancer cells dramatically alter their local tissue environment (TME). The clinical
relevance of Ras mutations is due not only to their impact on cancer cells’ autonomous
mechanisms but also to their ability to alter the way tumor cells interact and influence
different components of the TME, from the extracellular matrix (ECM) to endothelial cells,
cancer-associated fibroblasts (CAFs), and inflammatory/immune cells. Neo-angiogenesis,
tumor inflammation, and matrix remodeling are interconnected processes that alter the
expression profile of cancer cells, increasing their aggressiveness, altering their expression
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profile, and eventually contributing to the end-stage of tumorigenesis represented by tumor
dissemination [293].

6.1. Ras–PI3K Interaction in Angiogenesis

Angiogenesis is essential for tumor growth and metastasis to guarantee sufficient
blood supply. The TME is composed of different signaling molecules and pathways that
orchestrate the intricate process of angiogenesis, and tumor cells can tilt the balance toward
proangiogenic factors to stimulate vascular growth. Furthermore, the TME comprises a
plethora of cell types that contribute to angiogenesis. Tumor cells exploit those cells by
releasing cytokines, chemokines, and growth factors to attract them into the TME. Those
recruited cell types, such as myeloid cells and fibroblasts, in turn, release their stores of
proangiogenic factors to facilitate angiogenesis [294].

Ras and PI3K are expressed in both tumor cells and non-malignant cells from the
TME, thereby playing a multifaceted role in the process of angiogenesis. Ras promotion
of tumor-associated angiogenesis has been described a long time ago [295]. Nonetheless,
evidence supporting the different mechanisms underlying Ras stimulation of endothelial
cells and its role on the molecular basis of angiogenesis continue to accumulate.

The mechanisms by which Ras activation initiates and sustains pro-angiogenic pro-
cesses are complex, impinge on the modulation of levels of endothelial growth factors, and
also increase local inflammation and stromal remodeling. The impact of K-Ras on the regu-
lation of the most potent angiogenesis inducer vascular endothelial growth factor (VEGF)
has been extensively studied in different models [296–298]. Oncogenic Ras-mediated up-
regulation of VEGFA involves the activation of multiple signaling cascades that eventually
culminate in the stabilization of HIF-a, boosting its transactivation potential at the VEGFA
promoter [299–301]. Tumor cells bearing Ras mutations can promote tumor-associated
angiogenesis through other mechanisms apart of VEGF secretion, such as secretion of dif-
ferent proinflammatory, angiogenic cytokines, such as IL-8 [302–305], IL-6, and GRO1 (also
known as CXC Motif Chemokine Ligand 1, CXCL1) [306] or repression of antiangiogenic
factors such as thrombospondin-1 (TSP-1) and TSP-2 [307,308]. Under hypoxic conditions,
PI3K is a critical downstream effector of Ras in the induction of VEGF [309–311] and IL8
expression [304] to induce angiogenesis. Once produced, the proinflammatory cytokines
recruit immune cells such as neutrophils and macrophages, which produce angiogenic
growth factors [302,312,313].

Ras can also upregulate VEGFA via the angiogenic enzyme cyclooxygenase 2 (COX2),
which through the production of prostaglandins leads to the enhancement of the cyclic
AMP-dependent transcription of VEGF [295]. COX2 can increase the levels of a plethora
of other endothelial growth factors, such as FGF2 and PDGF, and is required for integrin-
mediated endothelial cell spreading and migration [314,315]. Inhibition of COX2 using cele-
coxib inhibits COX2-dependent angiogenesis via the inhibition of the PI3K/AKT/HIF-1α
axis in a murine hepatocarcinoma model [316], suggesting that, at least in some cases, Ras
activation of COX to induce angiogenesis might be mediated by activation of PI3K pathway.

Ras–PI3K signaling in the microenvironment is capable of orchestrating changes that
promote angiogenesis and survival. Once VEGFR is activated, PI3K participate in the
downstream intracellular signal transduction that induces proliferation of endothelial cells
and increases vessels permeability [317–319]. Subcutaneous tumors formed by B16F10
or LLC1 cells in a Ras–PI3K deficient host grew more slowly than those formed in the
WT host and presented a marked reduction in the amount of blood vessels [320]. The
decrease in vessel density and vessel area in tumors was accompanied by an increase
in necrotic areas of the tumor. The authors demonstrated that endothelial cells lacking
Ras-binding to PI3K were not able to respond to VEGF or FGF-2 and concluded that intact
Ras–PI3K interaction is needed in endothelial cells for new blood vessel formation induced
by either VEGFA or FGF-2 and that disruption of this interaction results in deficient cellular
signaling that translates into a reduced capability to form new vessels. However, since this
model lacks Ras–PI3K interaction in all host tissues, additional mechanisms driven by other
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cellular components of the TME cannot be discarded in the global angiogenic defect. In fact,
tumor-associated macrophages (TAMs) extracted from the tumors of mice lacking Ras–PI3K
interaction had a reduced expression of VEGFA and TGF-β, two important angiogenic
factors [320]. Soler et al. described a similar growth impairment and angiogenic defects on
transplanted tumors in a mouse model heterozygous for expression of a kinase-dead Pik3ca
in all host tissues, although this model presented an increase in the number of vessels, with
reduced lumen size in the mutant [321].

6.2. Ras–PI3K Interaction in Tumor Immune Infiltration

Interplay between cancer cells and the immune microenvironment is important for
cancer progression [322]. K-Ras influences the composition of the immune microenvi-
ronment and promotes the switch from an antitumorigenic to a protumorigenic response
through different mechanisms that include the expression of several inflammatory cy-
tokines (such as IL-6, IL-8, IL-17, and IL-22) [305,323,324], chemokines (CCL2, CXCL2, or
CCL1) [325], and activation of signaling pathways such as NF-κB, which has been consid-
ered fundamental in K-Ras-induced inflammation in solid tumors. The regulation of these
processes is important for the recruitment, activation, and differentiation of immune cells
that eventually promote a protumorigenic environment and induce cancer cell evasion
from anticancer therapies [293,326–328]. Although the specific role played by Ras–PI3K
interaction in the regulation of these processes is not clear, PI3K controls activation of
such proinflammatory pathways. For example, PI3K/AKT regulates the expression of
proinflammatory cytokines such as IL-6, IL-8, IL-17, and granulocyte-macrophage colony-
stimulating factor (GM-CSF) [329,330]. According to these studies, PTEN knock-down in
lung epithelial cells potentiated AKT phosphorylation and enhanced production of IL-6,
CXCL8, CXCL10, CCL2, and CCL5 [331]. Importantly, PI3K-driven cancer activates the
NF-κB-dependent transcriptional profile, increasing expression and secretion of cytokines
and chemokines, especially IL-6, which helps to generate a pro-tumor microenvironment
and facilitate tumor progression [332]. Based on these results, it is possible that PI3K acts
downstream of oncogenic Ras to promote a proinflammatory microenvironment.

K-Ras tumors are usually infiltrated by immune cells. CD8+ T lymphocytes and
natural killer cells (NK) generally have antitumor functions, whereas regulatory T-cells
(Tregs), myeloid-derived suppressor cells (MDSCs), neutrophils, and macrophages are
usually pro-tumorigenic [327]. The presence of TAMs is generally associated with tumor
progression, and this is also valid in K-Ras-induced lung tumors [325,333]. Although the
molecular mechanism is unknown, different studies have established that Ras signaling to
PI3K may regulate macrophage infiltration in cancer. Disruption of Ras binding to PI3K,
either constitutively or just in host tissues, severely impairs the recruitment of F4/80+
macrophages to tumors in K-Ras-driven lung tumors [164,320], and the few TAMs present
in the tumors are closer to an M1 phenotype, which is associated with good prognosis in
context of cancer [320]. Macrophage reliance on PI3K signaling for tumor recruitment is not
limited to the p110α isoform. PI3Kδ-KO macrophages transferred to tumor-bearing NSG
mice (NOD scid γmouse) reduced tumor growth compared to the WT macrophages [334].
Furthermore, the blockade of PI3Kγ in pancreatic ductal adenocarcinoma (PDAC)-bearing
mice reprograms TAMs to stimulate CD8+ T-cell-mediated tumor suppression and to
inhibit tumor cell invasion, metastasis, and desmoplasia [335]. The importance of PI3Kγ
for protumorigenic macrophages function was revealed by Kaneda et al., who showed that
PDAC tumor growth and metastasis depend on macrophage PI3Kγ [335].

PI3K has been found to mediate immune evasion by downregulating major histo-
compatibility complex Class I (MHCI) antigen presentation at the cell surface, therefore
decreasing cancer cell recognition by CD8+ cytotoxic T-cells [336,337]. Activation of PI3K
signaling repressed the induction of MHCI and MHCII in oral carcinoma cells [338], and
PI3K inhibition improved MHCI presentation and rendered tumor cells sensitive to recogni-
tion by CD8+ T-cells [339]. This effect may be, at least partially, regulated by Ras activation
of PI3K, since the inactivation of oncogenic Ras increased MHCI expression in human
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colorectal cell lines [340], and a murine model of oncogenic Ras has been associated with
the downregulation of MHCI surface expression [341]. Another mechanism by which Ras
participates in immune escape is the stimulation of Treg development [342,343]. Tregs may
be required for K-Ras-mediated lung tumorigenesis [344], and oncogenic K-Ras increases
Treg production through the induction of the expression of IL10 and TGFβ1 after the acti-
vation of the MEK–ERK–AP-1 pathway [345]. Although the PI3K pathway was not directly
evaluated, considering that TGFβ is the main cytokine implicated in the Treg induction
phenotype [346] and that PI3K plays a pivotal role in regulation of the TGF-β1 expres-
sion [347–349], it is likely that PI3K signaling downstream of Ras participates in Treg cell
generation. It is also important to consider that the Ras–PI3K pathway in non-oncogenic
cells could modulate Tregs, as PI3K/AKT signals are necessary for Treg development
and function [350]. As an example, PI3Kδ genetic ablation or pharmacological inhibition
reduce Treg infiltration in preclinical mouse tumors and peripheral tissues [351,352], while
PI3Kα/δ inhibition directly promotes durable anti-tumor responses and enhances cytotoxic
T-cell function in vivo [353].

Neutrophils are also described as key drivers of cancer progression [354]. One of the
mechanisms by which tumor-associated neutrophils (TANs) promote tumor progression is
through the generation of ROS that mediates the inhibition of T-cell proliferation, creating
an immunosuppressive environment [355]. Analysis of data from uterine corpus endome-
trial carcinoma (UCEC) patients showed that high expression levels of Pik3ca correlate with
the neutrophil-related pathway Mac1 Integrin signaling, which is the most abundant inte-
grin on neutrophils and is substantially up-regulated on the cell surface upon neutrophil
activation [356]. Consistently, neutrophil-related genes and neutrophils were significantly
altered by Pik3ca expression in UCEC [357].

From a clinical point of view, targeting the immune microenvironment is a promising
area, and several therapies are currently used in clinical practice, such as antibodies target-
ing immune-checkpoint molecules (e.g., programmed cell death 1 (PD-1), programmed
cell death ligand 1 (PD-L1), and cytotoxic T-lymphocyte-associated protein 4 (CTLA-
4)) [328,358]. However, there are tumors that do not respond to immunotherapy, as is
the case for pancreatic cancer [359], and NSCLC patients do not respond to anti-CTLA4
therapy [360]. Thus, there is an urgent need to understand why some patients do not
benefit from immunotherapy. The success of the immune-checkpoint blockade depends
on the immunogenicity of the tumor, so it is critical to understand the molecular mecha-
nisms that dictate tumor cell PD-L1 expression. K-Ras mutations in lung cancer have been
associated with increased PD-L1 expression causing an improved clinical response to anti-
PD1 therapy [328], although the mechanism by which oncogenic K-Ras augment PD-L1
expression is controversial. Some studies indicate that PD-L1 is up-regulated by K-Ras mu-
tation through p-ERK but not p-AKT signaling [361,362]. However, Coelho and colleagues
showed that oncogenic Ras signaling regulates PD-L1 expression through both MEK and
PI3K pathways, with MEK pathway activation stabilizing PD-L1 mRNA through the inhibi-
tion of tristetetrapolin (TTP) and the PI3K pathway only affecting protein expression [363].
In agreement with these data, K-Ras-dependent activation of PI3K/AKT/mTOR in human
lung adenocarcinma and squamous cell carcinomas tightly regulate PD-L1 expression both
in vitro and in vivo. This is further supported by studies carried out on patient samples,
suggesting that oncogenic K-Ras can cause an immune escape by AKT/mTOR pathway
via PD-L1 [364]. Importantly, PI3K has been shown to regulate PD-L1 immunosuppressive
function even in the absence of oncogenic Ras. MDSCs activate the PI3K/AKT/NF-κB
pathway in B-cells via the PD-1/PD-L1 axis and drive immunosuppressive effects in breast
cancer [365]. K-Ras activation in pancreatic cancer is also associated with increased PD-1 ex-
pression, although immunotherapy has limited clinical success in this indication [328,359].
The abundance and complexity of the TME in pancreatic cancer may explain the lack of
effectiveness of conventional immunotherapy treatments. Thus, combinatorial strategies
targeting the immune system (e.g., PD-L1) and the TME complexity (e.g., with inhibitors
of colony stimulating factor receptor 1(CSFR1) or chemokine C-X-C receptor 4 (CXCR4))
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are in clinical trials, and it is expected that the reprograming of the TME will improve the
benefit of classical immunotherapy treatment [328,359].

6.3. Ras–PI3K in CAFs and ECM Remodeling

CAFs are one of the most abundant stromal cell types in the tumor microenvironment
and contribute to several aspects of the malignant phenotype [366]. The relevance of Ras
and PI3K signaling in CAFs is, by far, less understood than in cancer cells, but different
studies have validated the role played by PI3K in the protumoral functions of CAFs. For
example, CAF-derived TGF-α promotes the metastatic colonization of ovarian cancer
cells via activation of AKT, epidermal growth factor receptor (EGFR), and extracellular
signal-regulated kinase (ERK)-1/2 signaling pathways [367]. Activation of PI3K due to
loss of PTEN in stromal fibroblasts accelerated initiation, progression, and malignant
transformation of mammary epithelial tumors due to the induction of genes involved in
ECM remodeling and the recruitment of macrophages, including Mmp9 and Ccl3 [368].
PI3Kγ has been shown to regulate TNF-mediated secretion of matrix metalloproteinases
(MMPs) from fibroblasts, which is crucial for the migration of tumor cells [369]. Ziqian Li
et al. reported that in colorectal carcinoma and melanoma, CXCL5 derived from the CAFs
activated PI3K/AKT signaling pathway and promoted the expression of PD-L1 in tumor
cells [370].

CAFs constitute a heterogeneous population of cells, and their origin is still under
debate. The most widely accepted view is that CAFs are early developmental precursors of
cells with different origins that respond to signals derived from cancer cells [371]. Among
these signals, some are Ras–PI3K-mediated, such as TGF-β, HGF, EGF, and FGF2 [372].
Thus, it is plausible that Ras–PI3K signaling has a prominent role in CAFs expansion and
function and that its inhibition may influence tumor growth and progression, although
additional studies addressing the relevance of this signaling pathway in CAF functionality
are required.

Modulation of cancer-associated fibroblasts by K-Ras mutational changes through
Hedgehog signaling (Hh) has been suggested as an important mediator of CAF activation in
PDAC models [373–377]. SHh originated from cancer cells was responsible for changes on
the fibroblast proteome, promoting the synthesis of ECM components, such as collagen, and
matrix metalloproteinases (MMPs) [376]. Cancer-derived Hh also promoted the expression
of growth factors such as IGF1 and GAS6 by fibroblasts, which reflected back on cancer
cells. Additionally, fibroblast-derived signals significantly alter the phosphoproteome of
PDAC cells, not only promoting an increase in the usual cell-autonomous alterations but
also activating pathways that are not autonomously triggered. Recently, it was shown that
the conditioned medium of K-RasV12-overexpressing colorectal cells strongly increased
the migration of intestinal fibroblasts without affecting their proliferation rate and their
differentiation status [378]. Together, these studies suggest that oncogenic Ras in cancer
cells can alter the behavior of fibroblasts, which in turn affects the microenvironment
through ECM changes and growth factor signaling, contributing to tumor progression.

The ECM is mainly secreted by CAFs in the TME and provides structural scaffolding
for the surrounding cells as well as biochemical and biomechanical cues for cell differen-
tiation, proliferation, and migration. Within the tumor stroma, not only the cancer cells
but also the resident fibroblasts, which differentiate into CAFs, modify the ECM. Growth
factors and chemokines, which are tethered to and released from the ECM, as well as
metabolic changes of the cells within the tumor bulk, add to the tumor-supporting tumor
microenvironment. CAF-mediated ECM remodeling is a highly responsive process of
receiving, processing, and responding to the cellular, molecular, and mechanical signals
in the TME. The lysyl oxidase (LOX) family and MMPs represent two major types of
remodeling enzymes produced by CAFs with a high relevance in tumor progression. As a
highly adaptive and mechanically responsive stromal cell type, CAFs sense and respond to
the ECM stiffness in a LOX/MMP-dependent manner and further fine-tune the CAF-ECM
interactions [379]. LOX is a secreted amine oxidase that modifies the primary tumor mi-
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croenvironment by crosslinking collagen and elastin in the ECM [380,381] and has been
linked to metastasis of CRC cells such as SW480 and its patient-matched metastatic clone,
SW620 [382,383]. LOX expression is enhanced by co-expression of Ras G12V through the
activation of PI3K/AKT and concomitant accumulation of the hypoxia-inducible factor
(HIF)-1α [384,385]. Treatment of cancer cells carrying activated Ras with Kobe0065 [386] (a
small-molecule inhibitor of Ras) or a siRNA targeting Ras downregulates the expression of
LOX, which has been implicated in metastasis. Moreover, Kobe0065 effectively inhibits
not only migration and invasion of cancer cells carrying the activated ras genes but also
lung metastasis SW620 carrying the K-Ras G12V mutation. Similarly, in a murine model
of pancreatic cancer driven by oncogenic Ras (KPC mice), the targeting of LOX leads
to a remarkable increase in survival, especially when combined with gemcitabine. LOX
inhibition was associated with increased tumor vascularization, immune cell infiltration,
and drug efficacy [387].

Plasticity of the ECM is exploited by tumors during the multi-step process, leading to
the acquisition of more aggressive and invasive features [388]. ECM degradation promotes
tissue invasion by removing the physical barriers that contain the tumor and prevents its
migration towards vessels. The MMP family of proteases degrades ECM proteins and is
often deregulated in cancer. Increasing evidence links PI3K/AKT signaling to the control
of MMP production in normal and cancer cells [332,369,389–394], which is not entirely
surprising considering that factors known to be regulated by Ras–PI3K, such as growth
factors (TGF-β, EGF, PDGF and FGF-2) and inflammatory cytokines (IL-1, IL-6 and TNF-α),
are regulators of MMP levels [395]. Most of our current knowledge on PI3K regulation of
CAFs comes from tumor cells, but there is a concerning lack of understanding of how PI3K
activation in CAFs influenced by tumor cells regulates MMPs to drive ECM remodeling
and tumor cell spread.

A direct role of mutant K-Ras in the modulation of ECM properties has also been
described. In K-Ras G12V-driven lung cancer, epithelial cells secreted higher levels of
activated MMP-9 [396], and in pancreatic cancer mouse models, increased expression of
MMP3 cooperates with K-Ras activation to shape the stromal microenvironment, not only
by stimulating immune cell influx but also as a primary proteolytic activator of MMP-
9 [397]. Additionally, in pancreatic cancer cells, mutational activation of K-Ras induced
the expression of the eukaryotic translation initiation factor 5A (eIF5A) and consequent
stimulation of ROCK1 and ROCK2 [398]. ROCK activation and signaling ultimately results
in ECM remodeling and collagen degradation by MMPs, thereby enabling invasive tumor
growth through elimination of physical restraints [399].

It is now evident that Ras signaling not only exerts its activity to drive cell growth
and sustain survival in cancer cells, but also modulates microenvironmental changes. In
stromal cells, Ras signaling contributes to directing the response to a multitude of cues that
cancer cells produce to modify their microenvironment. It is, thus, an important area to
explore, not only from basic knowledge, but also from a therapeutic point of view.

7. Targeting Ras and PI3K in Cancer

K-Ras is a major clinical target, as it is by far the most significant form of RAS in
terms of cancer incidence. Regardless of the tremendous attempts in the past decades to
develop inhibitors, Ras was considered undruggable for decades [400]. Recently, several
small molecules (AMG510, MRTX849, JNJ-74699157, and LY3499446) have been devel-
oped to specifically target K-Ras G12C, culminating with the FDA approval of Sotorasiv
(AMG510) [401]. Further discussion of the different approaches used over the past decades
to inhibit oncogenic Ras is provided by a recent review from Molina-Arcas et al. [402].

Hyperactivation of the PI3K pathway in cancer, and its vital function in cell survival
and proliferation, have made it an ideal target for treatment. Furthermore, the inhibition
of Ras-effector pathways has for years been considered the most effective approach to
target Ras-driven tumors [402,403]. Results from clinical trials with PI3K inhibitors in solid
tumors have been, however, largely disappointing [404]. Reasons for this failure include
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drug resistance, aberrant activation of parallel signaling pathways that in turn stimulate the
PI3K pathway, and intolerable toxicity due to lack of specificity, especially with pan-PI3K
inhibitors [74,405], while isoform-specific inhibitors seem to have better therapeutic efficacy
and an improved toxicity profile [406]. So far, only five PI3K inhibitors have been approved
to use in clinical practice. One of them is Alpelisib, a PI3Kα inhibitor approved for breast
cancer treatment and investigated in combination with a range of targeted therapies and
chemotherapies in multiple clinical trials [407]. The other PI3K inhibitors are used in the
treatment of hematological cancers: idealisib, a PI3Kδ inhibitors [404], copanslisib, the
only pan-PI3K inhibitor approved [408], duvelisib, a dual inhibitor of the PI3Kδ and PI3Kγ
isoforms [409], and umbralisib, a dual inhibitor of PI3Kδ/casein kinase-1εr (www.fda.gov,
(accessed on 20 May 2021) [410]).

Considerable efforts have been made to improve the clinical efficacy of PI3K inhibition
and to reduce adverse effects. The generation of isoform-selective PI3K inhibitors may
reduce the intrinsic toxicity associated with pan-PI3K inhibition, allowing the exploration
of combination therapies. In line with the evidence for isoform-specific PI3K targeting in
preclinical models, pivotal clinical trials indicate new opportunities for p110α-selective
inhibition in selected patient populations. Results from clinical trials with taselisib show
that this p110α specific inhibitor can more effectively suppress the PI3K signaling pathway,
resulting in greater anti-tumor activity and an improved therapeutic index [411,412]. Since
different PI3K isoforms have different expression patterns and activation mechanisms,
inhibition of specific PI3K isoforms involved in specific tumors appears to be a way to
circumvent toxicity issues. An example of success is the PI3Kδ-specific inhibitor idelalisib,
approved for the treatment of B-cell lymphoid malignancies [413]. These promising effects
are likely due to the concomitant action of the drug in both tumor and TME.

The emerging roles of Ras and PI3K in shaping the tumor microenvironment provide a
new awareness of how kinase inhibitors may contribute to enhancing antitumor immunity
and their application in combination therapy to improve the outcome of immunotherapy.
For example, PI3Kα or PI3Kβ inhibitors impair tumor cell growth and induce changes
in the tumor microvasculature, which correlates with antitumor activity and, more im-
portantly, potentiates the anticancer activity of current cytotoxic therapy [319,321,414,415].
Furthermore, PI3Kβ inhibition could improve the efficacy of immunotherapy by increasing
T-cell infiltration in melanoma with PTEN loss [416]. Additionally, in leukemic B-cells,
PI3Kδ blockade impairs pro-survival signaling and induces tumor cell death. On the
other hand, the inhibition of PI3Kδ in monocyte-derived cells of the lymph node stroma
blocks the secretion of pro-survival chemokines sensed by tumor cells, potentiating the
pro-apoptotic effect of the drug [417].

The same principle could be applied to PI3Kγ and PI3Kδ specific inhibitors used for
the treatment of solid tumors. PI3Kδ inactivation protects against the development of a
broad range of cancers, which is mainly associated with the disruption of the function
of Tregs and possibly of MDSCs [351]. The anticancer activity of PI3Kγ seems to be
associated with its effects on tumor macrophages, which translates into the stimulation
of T-cell recruitment and reduced tumor growth [335]. Important results with PI3Kδ and
PI3Kγ inhibitors, used alone or in combination with standard anticancer therapy, have
been obtained in murine models of pancreatic cancer, a tumor that is highly resistant
to chemotherapy and radiation therapy and does not respond to immune checkpoint
inhibitors [98,335,351,418,419]. For example, the deletion of PI3Kγ improved survival and
responsiveness to standard-of-care chemotherapy in animal models of PDAC [335], and the
dual inhibition of PI3Kγ and CSF-1/CSF-1R reduced the tumor infiltration of MDSCs and
inhibited tumor growth [420]. Importantly, PI3Kγ inhibition can synergize with anti-PD-1
to reduce tumor growth, extending survival [421,422], and pan-PI3K inhibition can be used
to overcome resistance to immune checkpoint inhibitors [423].

As we expand our understanding of the role of PI3K inhibitors in anticancer and
procancer immunity, concerns are raised over the implication of isoform-unspecific PI3K
inhibitors in anticancer immune response. Although most PI3K inhibitors show a boosting
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effect on anticancer immunity, it is anticipated that selective PI3K inhibitors can maximally
enhance host immunity against cancer and minimize deleterious effects on normal tissues.

8. Conclusions

Signaling networks that are triggered by oncogenic Ras within the cell are complex
and highly dynamic. Enormous efforts have been made to elucidate the role of different
effector pathways in Ras-controlled functions. In the last few years, our capacity to study
the in vivo ramifications of the expression of oncogenic Ras has been constantly improving
due to the development of sophisticated genetically engineered mouse models that feature
activating mutations of Ras. By achieving tissue- and cell-specific expression in a time-
controlled and reversible manner, these models often recapitulate the genetic and biological
evolution of human cancers, increasing our understanding of the crucial mediators of
RAS-driven oncogenesis and also being instrumental to testing and developing novel
targeting strategies directed at Ras.

We now know that activation of K-Ras on cancer cells reshapes the tumor microenvi-
ronment, both by oncogenic signaling coming from tumor cells affecting other cells of the
stroma, but also by normal signaling within stromal cells. This effect will, in turn, affect
tumor cells’ behavior. A complete characterization of the paracrine effects of K-Ras-mutant
cancer cells in models with mutant K-Ras would be valuable to obtain an overall view of
these effects, identify tumor specificities, and point to possible combination therapies with
stromal modulatory approaches. Since metastatic outgrowth relies on the recruitment of
non-cancer cells, such as myeloid cells, endothelial cells, fibroblasts, and ECM remodeling,
a better understanding of the paracrine effect of Ras signaling would help address the
specific role played by mutant K-Ras cancer cells in the regulation of these stromal compo-
nents and how this would impact on the establishment of metastatic lesions. Additionally,
because different K-Ras mutations have distinct transforming potential and preferentially
activate different effector pathways, it would be relevant to understand whether they
impact the interaction between cancer cells and the microenvironment differently and
which signaling pathways have a prevalent role in each process. This would be relevant
for the development of mutation-specific therapeutic approaches.

Considering that cancer cell communication with the microenvironment is dynamic
and not a unidirectional process and that mutual regulation of cancer cells and ECM exists,
understanding the role of Ras in the integration of external signaling and the subsequent
cancer cell response will be essential to identifying key molecules that mediate this cross-
talk and will undoubtedly impact the design of new combinatorial therapeutic strategies
aimed at targeting tumor cells:microenvironment dependencies.
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