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ABSTRACT

Transcription factors (TFs) and their target genes
have important functions in human diseases and bi-
ological processes. Gene expression profile analy-
sis before and after knockdown or knockout is one
of the most important strategies for obtaining tar-
get genes of TFs and exploring TF functions. Hu-
man gene expression profile datasets with TF knock-
down and knockout are accumulating rapidly. Based
on the urgent need to comprehensively and effec-
tively collect and process these data, we devel-
oped KnockTF (http://www.licpathway.net/KnockTF/
index.html), a comprehensive human gene expres-
sion profile database of TF knockdown and knock-
out. KnockTF provides a number of resources for
human gene expression profile datasets associated
with TF knockdown and knockout and annotates TFs
and their target genes in a tissue/cell type-specific
manner. The current version of KnockTF has 570
manually curated RNA-seq and microarray datasets
associated with 308 TFs disrupted by different knock-
down and knockout techniques and across multiple
tissue/cell types. KnockTF collects upstream path-
way information of TFs and functional annotation re-
sults of downstream target genes. It provides details
about TFs binding to promoters, super-enhancers
and typical enhancers of target genes. KnockTF con-
structs a TF-differentially expressed gene network
and performs network analyses for genes of interest.
KnockTF will help elucidate TF-related functions and
potential biological effects.

INTRODUCTION

Transcription factors (TFs) can activate or repress expres-
sion of genes that are proximal or distal to their DNA bind-
ing sites (1). A lot of studies have shown transcriptional
control of TFs by binding to promoters or enhancers of
downstream target genes (2,3). TFs and their target genes
are important in human diseases and biological processes
(4). Upstream signaling pathways further regulate TFs and
alter the expression levels of downstream target genes (5).
With the emergence of high-throughput techniques, Chro-
matin immunoprecipitation coupled with next-generation
sequencing (ChIP-seq) technique and gene expression pro-
file analysis technique before and after knockdown or
knockout have become the two most important strategies
for obtaining target genes of TFs and exploring TF func-
tions. For example, ChIP-seq was used to identify STAT1
targets in human HeLa cells (6) and MyoD binding sites in
skeletal muscle cells (7). ChIP-seq based on direct ultrahigh-
throughput DNA sequencing was used to map in vivo bind-
ing of the neuron-restrictive silencer factor REST to its
locations in the human genome (8). The locations of the
sequence-specific TFs Nanog, Oct4, STAT3, Smad1, Sox2,
Zfx, c-Myc, n-Myc, Klf4, Esrrb, Tcfcp2l1, E2f1 and CTCF
and transcription regulators p300 and Suz12 were gener-
ated using high-throughput ChIP-seq datasets, which were
known to play different roles in embryonic stem cell biology
(9). To systematically determine the target genes of TFs, the
Encyclopedia of DNA Elements (ENCODE) consortium
generated 424 ChIP-seq profiles including >120 human TFs
from various cell lines (10). A large number of studies show
that gene expression profile analysis before and after knock-
down or knockout effectively helps identify target genes
of TFs and explore TF functions. Examples are 269 TF
knockout microarrays used for genome-scale investigation
of eukaryotic gene regulation (11), Gata1 knockout to iden-
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tify GATA1-responsive genes (12), and tumor cell-specific
Twist1 knockout to study the effect of Twist1 on breast tu-
mors in vivo (13). More than 200 gene expression profiles for
TF knockdown or knockout are provided by ENCODE, in-
volving 145 human TFs from four cell lines (14). These stud-
ies demonstrate the importance and widespread utility of
TF ChIP-seq and knockdown/knockout techniques for ad-
dressing key issues associated with cancer biology and dis-
ease development.

Numerous databases have ChIP-seq as a central method
for mapping and analyzing TFs and their binding sites at
genome-wide scale, such as GTRD (15), DPRP (16), db-
CoRC (17), Cistrome Cancer (18), ENCODE (14), ReMap
(19), ChIP-Atlas (20) and Factorbook (21). These TF ChIP-
seq databases provide valuable data and effective platforms
for deciphering the mechanisms of transcriptional regula-
tion. However, up to now, gene expression profile databases
of TF knockdown and knockout, as another type of the
important strategy for obtaining target genes of TFs and
exploring TF functions, are still not built. With the devel-
opment of studies on human diseases and biological pro-
cesses, TF knockdown and knockout data are accumulat-
ing rapidly. Human gene expression profile datasets of TF
knockdown and knockout create an urgent need to com-
prehensively and effectively collect and process these data.
More importantly, a large number of studies show that up-
stream pathways and downstream target genes of TFs are
strongly associated with TF biological functions (22). In ad-
dition, information about TF binding to promoter, super-
enhancer (SE) and typical enhancer (TE) regions of target
genes is crucial (23). Therefore, detailed information on TFs
such as their upstream pathways, downstream target genes,
and binding to promoters, SEs and TEs of genes should be
provided for explaining and analyzing the regulation mech-
anism of TFs.

Motivated by the lack of available resources, we de-
veloped a comprehensive human gene expression pro-
file database of TF knockdown and knockout. KnockTF
(http://www.licpathway.net/KnockTF/index.html) provides
a large number of available resources for human gene ex-
pression profile datasets associated with TF knockdown
and knockout and annotates TFs and their target genes in
a tissue/cell type-specific manner. The current version of
KnockTF has 570 manually curated RNA-seq and microar-
ray datasets associated with 308 TFs disrupted by differ-
ent knockdown and knockout techniques and across differ-
ent tissue and cell types. KnockTF provides comprehensive
gene expression information about target genes of TFs of
interest and collects upstream pathway information of TFs
and various functional annotation and analysis results of
downstream target genes, including Gene Set Enrichment
Analysis, Gene ontology enrichment, KEGG pathway en-
richment, hierarchical clustering analysis and differentially
expressed analysis. KnockTF also provides detailed infor-
mation about TFs binding to promoters, SEs and TEs of
target genes. In addition, a TF-differentially expressed gene
network is constructed and used to perform network anal-
yses for gene sets of interest. KnockTF provides a conve-
niently, user-friendly interface for querying, browsing, an-
alyzing and downloading detailed information about hu-
man gene expression profile datasets of TF knockdown and

knockout. KnockTF will be helpful for elucidating TF-
related functions and exploring potential biological mecha-
nisms.

DATA SOURCE AND PROCESSING

Collection and treatment of TF knockdown/knockout
datasets

A list of >1300 TFs was collected from AnimalTFDB (24),
TcoF-DB (25) and ENCODE (14) (Figure 1). We manually
assigned two generic-level classifications (superclass and
class) to TFs according to TFClass, which classifies eukary-
otic TFs according to DNA-binding domains (26). TFs that
were not classified by TFClass were further classified ac-
cording to TcoF-DB (25) and ENCODE (14). We searched
NCBI GEO (27) and ENCODE (14) databases to retrieve
TF knockdown and knockout data using a list of key-
words, such as ‘knockdown’, ‘knockout’, ‘shRNA’, ‘siRNA’
and ‘CRISPR’. Data were manually checked to ensure high
quality. Preliminary screening results were further traversed
in title, summary and protocol for samples to classify TF
datasets with different knockdown or knockout techniques
and across different tissue or cell types. As a result, 364
datasets were collected from the NCBI GEO database, for
185 TFs from 266 series and 51 platforms. From the EN-
CODE database, 206 datasets were collected. These datasets
involved six knockdown and knockout techniques, includ-
ing shRNA (28), siRNA (29), esiRNA (30), CRISPRko
(31), CRISPRi (32) and CRISPRedit (33). Thus, we man-
ually curated 570 RNA-seq and microarray datasets associ-
ated with 308 TFs disrupted by six knockdown and knock-
out techniques and across multiple tissue and cell types
(Supplemental Table S1).

We downloaded all the gene expression profiles corre-
sponding to the 570 datasets from GEO and ENCODE.
For each GEO expression profile, probes were mapped
to gene symbols. Probes mapped to multiple gene sym-
bols were deleted and multiple probes mapped to the same
gene symbol were merged by averaging expression values.
From ENCODE, we downloaded gene quantification files
for knockdown/knockout and control samples, and merged
them for gene expression profiles. For each gene expression
profile, Ensembl IDs were mapped to gene symbols. Genes
with zero values in all knockdown/knockout or control
samples were deleted. Log2 transformation was performed
for gene expression profiles with raw expression values and
fold change (FC) was computed for each gene. Statistical
significance for differential expression was computed for
gene expression profiles in datasets with the number of sam-
ples ≥3 by limma, a common, effective R/Bioconductor
software package for differential expression analyses (34).

Analysis of TF knockdown/knockout datasets

In KnockTF, we annotated upstream pathways of TFs
and conducted functional annotations and analyses of
downstream target genes before and after TF knockdown
or knockout, including Gene Set Enrichment Analysis
(GSEA) (35), Gene ontology (GO) enrichment (36,37),
KEGG pathway enrichment (38), hierarchical clustering
analysis and differentially expressed analysis. First, genes
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Figure 1. Database content and construction. KnockTF has a large number of manually curated human gene expression profile datasets of TF knockdown
and knockout and a user-friendly interface to query, browse, analyze and download detailed information about these datasets.

in each TF knockdown or knockout dataset were ordered
in a ranked list based on FC values. GSEA was used to
determine if genes from particular pathways were statis-
tically significant for different phenotypes (35). Using the
results, KnockTF listed the top 20 up-regulated pathways
and the top 20 down-regulated pathways with enrichment
score, normalized enrichment score, nominal P-value and
FDR. Second, GO enrichment and KEGG pathway en-
richment analyses of the top 100, 200, 300, 400 and 500
downstream target genes ranked by FC values were de-
termined by hypergeometric test. KnockTF displayed en-
riched GO terms, KEGG pathways and corresponding –
log10 P-values. Then, the top 100 up-regulated and down-
regulated genes for each TF knockdown/knockout dataset
were used for unsupervised hierarchical clustering. Gene ex-
pression profiles were shown as heatmaps with correspond-
ing dendrograms. Finally, KnockTF performed differen-
tially expressed analyses under the threshold of FC ≥3/2
& FC ≤2/3 and showed up-regulated and down-regulated
genes and other genes as scatter diagrams with FC values.

TF-differentially expressed gene network

KnockTF constructed a TF-differentially expressed gene
(DEG) network. First, for each TF knockdown or knock-
out dataset, we extracted DEGs under the threshold of
FC ≥3/2 & FC ≤2/3 and formed TF-DEG pairs that were
ranked based on significant levels of DEGs. Second, we
combined all TF-DEG pairs for the 570 TF knockdown
and knockout datasets. If a TF-DEG pair appeared multi-
ple times in different TF knockdown or knockout datasets,
we removed duplications and retained its minimum rank.
Then, we reordered all nonredundant TF-DEG pairs and
constructed a TF-DEG network with TFs and their DEGs
as nodes and TF-DEG pairs as edges. The rank of TF-
DEG pairs represented the importance of the regulatory
intensity of TFs on target genes. TF-target relationships
supported by the ChIP-seq data were also marked and
recorded for TF-DEG pairs. Topological features such as
degree, betweenness and closeness of all nodes in the TF-
DEG network were computed. By mapping genes of in-
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terest to the TF-DEG network, KnockTF located a sub-
network and computed topological features of subnetwork
genes. The subnetwork consisted of genes of interest and
their one-step neighbors within the TF-DEG network. TF-
target gene relationships supported by the ChIP-seq data
were represented as bold edges in the subnetwork. The size
of the subnetwork could be adjusted by filtering the number
of the most important TF-DEG pairs. KnockTF can also
compute hypergeometric test between genes of interest and
DEGs regulated by each TF to obtain the most important
TFs regulating the genes.

Annotation of TF binding regions of target genes

KnockTF defines the promoter region of a gene as a basal
domain of −2 kb to +2 kb around the transcription start
site. More than 330 000 SE regions and 6 500 000 TE re-
gions involving 542 tissue/cell types were obtained from
SEdb, which was previously developed by our group (39).
KnockTF mapped SE and TE regions for every gene us-
ing four linking strategies: closest active genes, overlapping
genes, proximal genes and closest genes (40,41).

To identify TFs binding to promoters, SEs, and TEs of
genes, we collected 1137 TF ChIP-seq datasets from EN-
CODE containing 457 TFs and >25 000 000 TF binding
sites in 106 cell or tissue types (Supplemental Table S2).
TF binding peaks overlapping with the promoter, SE or TE
regions of genes in all TF knockdown/knockout datasets
were identified using BEDTools (v2.25.0) (42). To iden-
tify TF motifs in promoter, SE or TE regions, >3000
DNA binding motifs for ∼700 TFs were collected from the
TRANSFAC (43) and MEME (Multiple Em for Motif Elic-
itation) suite (44). Motif occurrences within the promoter,
SE or TE regions of genes were identified using FIMO (Find
Individual Motif Occurrences) with a threshold of P < 1e–5
(45).

DATABASE USE AND ACCESS

Search interface for conveniently retrieving TF
knockdown/knockout datasets

KnockTF provides four kinds of inquiry modes: ‘Search by
TF’, ‘Search by Target Gene’, ‘Search by Knock-Method’
and ‘Search by Tissue Type’ (Figure 2A). In TF-based in-
quiry mode, users input a TF of interest or select a TF
according to TF class or superclass of interest. Clicking
‘Search’ gives users TF knockdown or knockout datasets
associated with the TF. In target gene-based inquiry mode,
users input a gene using Gene Symbol, Entrez ID or En-
sembl ID, then use FC ≥2 & FC ≤1/2 or FC ≥3/2 &
FC ≤2/3 to filter TF knockdown or knockout datasets in
which the input gene is significantly expressed. In knock-
method-based inquiry mode, users query related TF knock-
down or knockout datasets by selecting a knock-method,
data source and biosample type. In tissue type-based in-
quiry mode, users input a tissue type, biosample name,
biosample type and data source to query the related TF
knockdown or knockout datasets.

Brief search results are presented as a table in the re-
sult page (Figure 2B). Users click ‘Dataset ID’ to view de-
tails about TF knockdown or knockout datasets, such as

TF overview, TF-target gene network and target gene infor-
mation before and after TF knockdown or knockout (Fig-
ure 2C). In the table of target gene information, an inter-
active table describes target gene; TF; mean expression of
control samples; mean expression of knockdown/knockout
samples; FC; log2FC; rank; P-value computed by limma;
TFs binding to promoter, SEs, and TEs identified by ChIP-
seq/motif and the number of these TFs (Figure 2D). In
addition, KnockTF lists more detailed information about
upstream pathway information of TFs and various func-
tional annotation and analysis results of downstream tar-
get genes, including GSEA, GO enrichment, KEGG path-
way enrichment, hierarchical clustering analysis and differ-
entially expressed analysis (Figure 2E). Detailed descrip-
tions for each gene are shown on new page after click-
ing ‘Target Gene’ in the table of target gene information.
Descriptions include gene overview, differentially expressed
target gene (FC≥3/2 & FC≤2/3)-TF pairs and annota-
tion of TF binding regions of target genes of interest (Fig-
ure 2F). KnockTF also provides gene expression atlas from
different sources, such as GTEx (46), CCLE (47), TCGA
(https://cancergenome.nih.gov/) and ENCODE (14).

User-friendly interface for browsing TF knockdown/knocko
ut datasets

The ‘Browse’ page is organized as an interactive table for
quickly searching for TF knockdown or knockout datasets
and customizing filters using ‘Data Source’, ‘Biosample
Type’, ‘Tissue Type’, ‘TF Superclass’ and ‘TF’. Users can
click ‘Show entries’ in a dropdown menu to change the num-
ber of records displayed per page. To view details of a TF
knockdown or knockout dataset, users click on ‘Dataset
ID’ (Figure 2G).

Effective online tool for TF–target gene network analysis

To interactively analyze and view TF–target gene interac-
tions, KnockTF constructs a TF–DEG network and pro-
vides network analysis tools, including subnetwork loca-
tion, topological analysis and hypergeometric enrichment
(Figure 2H). Using the ‘Subpathway Analysis’ tool, users
submit a gene list to locate a subnetwork. The subnet-
work consists of submitted genes and their one-step neigh-
bors within TF–DEG network. TF–target gene relation-
ships supported by the ChIP-seq data have bold edges in the
subnetwork. Users can choose subnetwork size displays by
filtering the number of the most important TF–DEG pairs.
KnockTF also provides topological features of subnetwork
genes including degree, betweenness and closeness. Using
the ‘TF Enrichment’ tool, users can submit a gene list and
set (FDR-adjusted) P-value for TF enrichment. KnockTF
maps submitted genes to the TF–DEG network and per-
forms hypergeometric test between submitted genes and all
DEGs regulated by each TF. A result table lists TFs, in-
tersection genes, the number of intersection genes and P-
values for hypergeometric test. These TFs are under the
threshold of (FDR-adjusted) P-value user sets that are con-
sidered the most important TFs that significantly regulate
the submitted genes. KnockTF also provides the results of
hypergeometric enrichment as Venn diagrams.

https://cancergenome.nih.gov/
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Data download and statistics

KnockTF allows data downloading in ‘.txt’ format, mainly
including gene expression profile of each dataset; differen-
tial expression information of genes; the promoter, SE, and
TE regions; and TF binding information of target genes.
In addition, KnockTF supports export of query results for
each search result page. In the ‘Statistics’ page, KnockTF
provides statistics on TFs by data source and statistics of
datasets by knock-method and biosample type (Figure 2I).
The number of DEGs (FC ≥ 3/2 & FC ≤ 2/3) for each TF
knockdown or knockout dataset is also provided.

Data submission

KnockTF encourages sharing TF knockdown/knockout
data. We recommend that users submit TF, knock-method
and biosample name, as well as a link to their data source.
To ensure data quality, we check the submitted data be-
fore updating. Finally, we update the database dynamically
based on the number of new datasets to ensure timely data
release.

DISCUSSION

The field of TFs is progressing fast and is one of the most
investigated research areas (48). Identification of TFs and
their target genes is pivotal for understanding the mecha-
nisms of disease development and biological processes (4).
Human gene expression profile datasets of TF knockdown
and knockout are accumulating rapidly. These datasets are
informative for obtaining target genes of TFs and eluci-
dating TF biological functions. Based on the urgent need
to comprehensively collect and process these data, we de-
veloped KnockTF, the first human gene expression pro-
file database of TF knockdown and knockout with the
largest number of TF knockdown and knockout expression
data and the most comprehensive annotation information.
KnockTF has 570 manually curated RNA-seq and microar-
ray datasets associated with 308 TFs disrupted by differ-
ent knockdown/knockout techniques and across different
tissue/cell types. It provides a convenient database platform
for exploring expression information of TFs and their reg-
ulated genes. As two most important TF research strate-
gies, ChIP-seq and knockdown/knockout methods provide
complementary analysis of TFs. Compared to existing TF
databases that are based on data mainly from ChIP-seq,
KnockTF effectively collects human gene expression pro-
file data of TF knockdown and knockout. Thus, KnockTF
is a new type of TF database that complements existing
TF databases with its interest in TF knockdown/knockout
data.

We established this database prompted by a great need
of cell/molecular biologists, geneticists and data scien-
tists to understand TF functions. Researchers can focus
on genes that are differentially expressed before or af-
ter TF knockdown or knockout and further explore un-
derlying mechanisms and biological functions. KnockTF
mainly provides the following information to show our
advantages: (I) differential expression analysis of genes
before and after knockdown or knockout of TFs of in-
terest; (II) TF-target gene network for visually display-

ing a TF of interest and target genes with the most up-
regulated/down-regulated/differential expression; (III) im-
portant up-regulated and down-regulated pathways associ-
ated with genes before and after knockdown or knockout of
TFs of interest; (IV) enriched GO terms and KEGG path-
ways; (V) upstream pathway annotation of TFs of interest;
(VI) heatmaps from unsupervised hierarchical clustering;
(VII) scatter diagram of DEGs; and (VIII) detailed infor-
mation about TFs binding to promoters, SEs, and TEs of
target genes. Furthermore, KnockTF has an online network
analysis tool to help users understand the relationship be-
tween genes of interest and TF knockdown/knockout data.

The current version of KnockTF stores the most abun-
dant human gene expression profile datasets of TF knock-
down and knockout. However, much TF knockdown and
knockout data may be available about other species in other
data sources. In the next version of KnockTF, we will man-
ually curate more TF knockdown and knockout data with
more species and we will enrich the kinds of species. We en-
courage users to share TF knockdown/knockout data refer-
ring to different species. KnockTF aims to explore potential
regulatory functions of TFs at the transcriptional regula-
tion and epigenetic modulation levels. Continuous efforts
will be made to update useful data and improve the func-
tionality of the KnockTF database. Overall, the goal of the
KnockTF database is to be a valuable resource for the sci-
entific community for using TF knockdown and knockout
data and exploring gene expression and transcriptional reg-
ulation in human diseases and biological processes.
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