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Abstract

Various address georeferencing (AG) tools are currently available. But little is

known about the quality of each tool. Using data from the EPIPorto cohort we

compared the most commonly used AG tools in terms of positional error (PE) and

subjects’ misclassification according to census tract socioeconomic status (SES), a

widely used variable in epidemiologic studies. Participants of the EPIPorto cohort

(n52427) were georeferenced using Geographical Information Systems (GIS) and

Google Earth (GE). One hundred were randomly selected and georeferenced using

three additional tools: 1) cadastral maps (gold-standard); 2) Global Positioning

Systems (GPS) and 3) Google Earth, single and in a batch. Mean PE and the

proportion of misclassified individuals were compared. Google Earth showed lower

PE than GIS, but 10% of the addresses were imprecisely positioned. Thirty-eight,

27, 16 and 14% of the participants were located in the wrong census tract by GIS,

GPS, GE (batch) and GE (single), respectively (p,0.001). Misclassification

according to SES was less frequent but still non-negligible 214.4, 8.1, 4.2 and 2%

(p,0.001). The quality of georeferencing differed substantially between AG tools.

GE seems to be the best tool, but only if prudently used. Epidemiologic studies

using spatial data should start including information on the quality and accuracy of

their georeferencing tools and spatial datasets.

Background

Health-related events, such as births, diseases and deaths, as well as environmental

hazards and socially vulnerable areas, can be located on a map using a terrestrial
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reference, that is, they can be georeferenced. The exact location of such events help

health scientists, in particular epidemiologists, to answer questions involving the

word ‘‘where?’’: ‘‘where are people born and where do they live, get sick and die?’’,

‘‘where are the sources of exposure?’’, ‘‘where can policy makers intervene to

reduce risks or improve access to health services?’’

The link between health and geography is not recent. Indeed, one of the first

known disease maps dates back to 1789 and was made by Seamon and Pascalis,

who georeferenced yellow fever cases in New York [1]. In 1854, John Snow’s well-

known map of cholera deaths in London became a milestone in modern

epidemiology [2].

For centuries maps were almost exclusively produced by cartographers and

geographers. The increased use of Geographical Information Systems (GIS) since

the late 1980s, plus the larger availability of environmental, socioeconomic and

health data, now allows any professional to easily access user-friendly tools to

georeference, visualize and analyze spatial data. Address georeferencing (AG) tools

have also increased – some are expensive, others freely available, some

tremendously complicated and others straightforward. Thus, users need to weigh

up the pros and cons of each tool and choose the tool that best suits their research

goals. But, at present, there is no complete assessment of the quality of the most

widely used AG tools.

The risk of biased findings derived from the inappropriate use of cartographic

tools increases proportionally, and directly, with the number of GIS users and

spatial epidemiological studies [3, 4]. Errors are particularly frequent during the

integration of data from diverse sources, e.g., intersecting address locations with

ecological variables. Despite the familiarity of epidemiologists and public health

practitioners with concepts such as bias, error and confounding, they have

frequently lacked knowledge of the basic concepts of cartography, which

(depending on how one deals with them) can ‘‘make or break’’ a GIS investigation

[5].

In the present study we aim to compare the different address georeferencing

(AG) tools that are currently available with a gold-standard. We evaluate their

positional accuracy but, particularly, the frequency of individuals’ misclassifica-

tion using a widely used variable in epidemiologic studies – area-level

socioeconomic status. These assessments are conducted using data from a

population-based cohort of Porto municipality (Northern Portugal).

Some basic concepts of cartography and quality of spatial data

Georeferencing is usually the first stage in the process of spatial data analysis and

it consists of converting a description of a location – for instance an address – to a

position on the earth’s surface. Georeferencing an address can be made by a pair

of coordinates obtained from field survey, either using GPS (Global Positioning

System) receivers or topographic instruments, which tend to be more accurate but

also time-consuming and expensive; or through computerized systems, using

street maps (GIS or online mapping tools such as Google Earth, GE).
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that no competing interests exist.
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Spatial datasets, like any type of data, are prone to errors. Thus, three

fundamental concepts have to be kept in mind – precision, bias and accuracy.

Precision refers to the dispersion of positional random errors and it is usually

expressed by a standard deviation. Bias, on the other hand, is associated with

systematic errors and is usually measured by an average error that ideally should

equal zero. Accuracy depends on both precision and bias and defines how close

features on the map are from their true positions on the ground [6]. So, despite

being frequently confused concepts, high precision does not necessarily mean high

accuracy. But both depend greatly on the map scale.

All maps have inherent positional errors, which depend on the methods used in

the construction of the map. The scale is the ratio between a distance on the map

and the corresponding distance on the ground. The maximum acceptable

positional error (established by cartographic standards) is determined by the map

scale. Therefore, the choice of map must take into consideration the scale in which

it was created in order to guarantee a positional accuracy that meets the objectives

of the study. Some less informed users believe that by zooming in a map they are

improving its accuracy and precision. That is not true: accuracy and precision are

tied to the original map scale and by zooming in a map within a GIS users are

increasing its inherent positional errors.

Address georeferencing also has associated bias, precision and accuracy and its

quality depends on the combination of two factors: positional accuracy and

completeness [7, 8]. Poor positional accuracy might perturb cluster detection and

affect the magnitude of regression coefficients – random errors will push

coefficients towards the null, whereas systematic ones will underestimate/

overestimate associations. Completeness is the proportion of records that could

be georeferenced and it is evaluated using match rates. Low match rates might

reduce statistical power and, eventually, produce biased results due to so-called

non-random missingness (match rates differ throughout geographic areas and

population strata) [9]. High match rates depend on accurate and detailed address

information (known as attribute accuracy and precision) and reference street

map.

Some health studies have been conducted using GPS receivers. Be aware,

however, that the characteristics of the receivers influence the quality of

georeferencing too: the more precise and accurate (positional errors under

1 mm), mostly used in army, engineering and cartography are highly expensive;

whereas the most affordable, widely used in epidemiologic studies, have a

considerable positional error ranging from 10 to 20 meters.

Knowing the limitations of each spatial dataset is imperative but not enough;

usually researchers want to assess the relationships between health data and

exposures from the physical and socioeconomic environment, profiting from the

potential to combine different spatial data using GIS. GIS inherits the errors from

each layer of information. For instance, if the positional accuracy of the AG is 20

meters and we want to overlay a census tract map with a positional accuracy of 5

meters, we could easily fail to pinpoint the participant’s address to its actual

census tract, as the highest achievable accuracy is that of the least accurate spatial
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dataset. Eventually, that could lead to so-called cascading, as errors propagate

from a layer to another, amplifying their effects. Such unpredictable impacts are

carefully addressed in the remainder of this article.

Methods

Setting

Located in the northwest of Continental Portugal, Porto municipality has

approximately 250,000 inhabitants distributed across 41.7 km2. It is near the

Atlantic coast, along the Douro River estuary (Figure 1). Historically, Porto is an

industrial and port city and is the second-largest of Portugal. Porto is a

homogeneous city in terms of socioeconomic status (SES) - 50% of the

population lives in medium SES areas (Figure 1). The spatial distribution of the

areas by SES follows a pattern – areas with similar SES tend to be close to each

other. Porto also presents a compact urban design (relatively high residential

density with mixed land uses).

Data

We used data from the EPIPorto cohort, which started in 1999 and comprises a

random sample of 2485 adults (>18 years old) living in Porto [10]. Each

participant’s address of residence was recorded and used for AG. To improve the

original address quality, and subsequent georeferencing match rate, all addresses

were screened, standardized and parsed.

All subjects gave written informed consent to participate at the time of

enrolment. The EPIPorto study protocol was approved by the Local Ethics

Committee (São João Hospital) and is in accordance with the Helsinki

Declaration principles.

Porto digital map with street centerlines was used as the street reference map

for GIS-based AG. Each street segment comprised the following components:

direction (‘to’ and ‘from’ node), door number range, name, type (avenue, road,

square, etc.) and zip code. Additionally, we acquired a digital map of the census

tracts (neighbourhood equivalent) in Porto, then classified according to three

discrete classes (from most to least deprived) of socioeconomic status (SES) [11] (

Figure 1).

Briefly, that classification was built upon a set of 47 variables available in the

2001 Census at the census tract level. After careful selection (based on statistical

criteria and meetings with specialists) the final SES classification included 11

variables relating to the population’s age distribution, education level, occupation,

and housing conditions (see table below).

To create a summary measure that captured area-level SES, latent class analysis

models were run to identify census tracts with similar characteristics. The number

of classes was defined according to the Bayesian information criterion, the Akaike

information criterion, entropy and interpretability.
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Figure 1. Study Area Location – Porto, Northern Portugal.

doi:10.1371/journal.pone.0114130.g001
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Class 1 (least deprived) accounted for 23% of the total number of census tracts.

These areas were composed of younger and highly educated populations. Housing

conditions were good and housing expenditure was high, whereas unemployment

rate was low. Class 2 (medium deprived) accounted for 47% of the census tracts.

These areas were composed by older populations with medium education levels.

They were characterized by intermediate proportions of damaged buildings, levels

of attractiveness and housing expenditure. Finally, class 3 (most deprived)

accounted for 30% of the census tracts. These areas were characterized by a

medium ageing index and low values of education attainment, employment,

attractiveness and housing expenditure.

Census tract’s map was used for point-in-polygon overlay operations, in which

we attributed a census tract of residence (and corresponding SES) to each

participant according to its point positions determined by the different AG tools

used.

Address georeferencing using GIS

All participants, for which addresses were available, were georeferenced using GIS

ArcView 9.0 [12] which, by interpolation, places the address in the corresponding

street segment and assigns a pair of coordinates.

Addresses were georeferenced in three phases: 1) automatic, when street map

names and the address table names fully matched (spelling score .80%); 2) semi-

automatic when the spelling score was ,80% and georeferencing was done by

interactively selecting from a list of possible locations; 3) manual, when the

remaining addresses were georeferenced by searching them in analog maps,

placing them in the digital map and retrieving their coordinates. If these

approaches failed, participants were contacted to provide correct address

information or spatial reference points.

Google Earth

Addresses were also georeferenced using GE. Three approaches were followed: 1)

one address at each time (single GE) in which the user can intervene and pinpoint

the address; 2) in a batch (batch GE) using an application which assigns a code to

each georeferenced address according to the AG accuracy (exact address, street

centroid, building or residential complex centroid or municipality centroid); and

3) in a batch GE without the previous application.

We chose to utilize multiple approaches to consider an important limitation of

GE georeferencing: when this tool cannot locate a certain address, it automatically

(without alerting the user) searches through other geographical levels (street,

municipality, country), until it finds a match, and assigns a pair of coordinates

from the centroid of such area. Contrary to what was done for GIS-based AG,

addresses that GE could not find and/or precisely georeference were not

georeferenced again using manual techniques.
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GPS measurements and field survey

To compare different AG tools in terms of positional error (PE) and

misclassification frequency, we selected a random sample of 100 participants from

the EpiPorto cohort. Beyond GIS and GE (single and batch), two alternative AG

tools were chosen: using GPS receivers and using cadastral maps (ground truth)

during field survey. Addresses were distributed evenly by the team and

georeferenced using hand-held GPS receivers.

The ground truth location of each address (called here, gold-standard) was

assessed by identifying the location on a cadastral map of the city (scale 1/2000).

Cadastral maps are detailed maps, which show both natural and built features and

are produced with high accuracy standards compatible with large scales (usually

between 1/1000 and 1/5000).

Regarding the 100 addresses that were georeferenced by the four AG tools,

estimates of the time spent using each tool were quite varied. The assessment of

ground-truth and GPS location took 7 days (8 hours each), totaling about

Figure 2. Point position of two participants according to address georeferencing method.

doi:10.1371/journal.pone.0114130.g002
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56 hours. Address georeferencing using Google Earth batch tool and Geographic

Information Systems took a few minutes, since these are completely automatic

tools. Finally, to georeference addresses using Google Earth manual tool,

investigators needed about 15 hours.

By way of example, Figure 2 depicts the location of two participants according

to the AG method.

Statistical analysis

PE was defined as the Euclidian distance (d), in meters, between the gold standard

(x1, y1) and the locations obtained using the ith other georeferencing tools

standard (xi, yi) (expression 1).

d~ x1�xið Þ2z y1�yi

� �2
h i1=2

ðexpression 1Þ

To characterize PE distributions, descriptive statistics (mean, median, and

standard deviation) and boxplots were used. The Friedman test for repeated

measures was used to compare median positional error between the different AG

tools. Post-hoc analysis with Wilcoxon signed-rank tests was conducted with a

Bonferroni correction applied. Cochran’s Q test was employed to compare the

proportion of misplaced (census tracts) and misclassified (census tract socio-

economic status) individuals between AG tools.

Results

Completeness

The EpiPorto baseline database had a total of 2423 addresses, 5 of which were not

georeferenced due to incomplete/incorrect addresses, resulting in a match rate of

99.8%. Using GIS, the majority of the records were automatically georeferenced

(71.0%) with a smaller proportion by the semi-automatic (13.1%) or manual

methods (15.9%).

Using batch GE AG, 84.6% of the addresses were automatically pinpointed in

the exact position and 1.9% could not be georeferenced. The remaining addresses

Table 1. Results from Google Earth address georeferencing.

Georeferenced No. (%)

Exact address 2050 (84.6)

Street centroid 209 (8.6)

Building or residential complex centroid 51 (2.1)

Municipality centroid 66 (2.7)

Not georeferenced 47 (1.9)

Total 2423 (100.0)

doi:10.1371/journal.pone.0114130.t001

Tools for Address Georeferencing - Limitations and Opportunities

PLOS ONE | DOI:10.1371/journal.pone.0114130 December 3, 2014 8 / 13



were georeferenced at different precision levels (Table 1). Notice that nearly 10%

of them were approximately placed (street and municipality centroids).

Positional Error

We detected statistically significant differences in PE between AG tools (p,0.001)

(Table 2 and Figure 3). Compared with all alternative AG tools, median PE using

GIS was significantly larger, 16 meters (p,0.001). On the contrary, GE (single)

exhibited the best performance, significantly better than GPS (p,0.001).

Positional error of methods using a batch of addresses showed highly skewed

distributions with maximum positional errors reaching 704 m and 1240 m using

GIS and automatic GE, respectively.

Table 2. Summary statistics of positional errors (in meters) according to address georeferencing method.

Median Mean (SD) Minimum Maximum

GISa 16.1 52.0 (100.7) 0.70 704.0

GPSb 7.2 7.4 (3.9) 0.34 20.5

Google Earth batchc 5.3 30.4 (133.2) 0.1 1240.3

Google Earth singled 4.0 5.4 (4.7) 0.0 33.1

aGeographic Information System address georeferencing tool.
bGlobal Positioning System.
cIn a batch using Google Earth address georeferencing tool.
dAddress by address using Google Earth address georeferencing tool.

doi:10.1371/journal.pone.0114130.t002

Figure 3. Distribution of positional errors (log-scale) according to address georeferencing method.

doi:10.1371/journal.pone.0114130.g003
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Misclassification

Thirty-eight, 27, 16 and 14% of the participants were located in the wrong census

tract using GIS, GPS, GE (batch) and GE (single) respectively (p,0.001).

However, misplaced participants were almost always (more than 96%, regardless

the method) positioned in a census tract in the first-order neighborhood, i.e., in a

contiguous census tract.

Consequently, because Porto is a homogeneous city, misclassification in census

tract SES was less frequent: 14.4, 8.1, 4.2 and 2% using GIS, GPS, GE (batch) and

GE (single), respectively (p,0.001). Again, GIS georeferencing showed the worst

performance, whereas AG using GE (single) stood out as the best method.

The spatial distribution of misclassified individuals (results not shown) showed

no spatial pattern. Misclassification in census tract SES also did not appear

differential: the proportion of individuals that were wrongly georeferenced in a

less deprived census tract was comparable to the proportion of those that were

georeferenced in a more deprived census tract.

Discussion

In the present study we compared a number of different address georeferencing

tools and characterized them according to the following quality criteria:

completeness (match rates) and accuracy (positional error and misclassification).

Results showed that GE (single) had the highest match rates and the highest

accuracy – lower positional error and misclassification – followed by its automatic

version (GE batch), GPS and GIS (ArcGis).

Comparing our findings with the literature on this topic was an arduous task:

one single European study was found and the remaining were from the USA; they

were from large and heterogeneous urban settings; and different AG tools and

datasets types were under comparison. Despite such limitations, the positional

error we found for GIS AG fell within the previously reported ranges: estimates

varied between 200 meters to 10 meters based on mean and median values, always

with some extreme outliers [7, 13–16]. Notice, however, that most previous

studies have used the coordinates obtained using hand-held GPS receivers as the

gold-standard – accuracy around 10–20 meters – rather than cadastral maps,

which are much more accurate – accuracy of 1 meter for a 1/2000 scale map.

Regarding the recently available GE batch AG tool, to our knowledge, only one

study addressed its positional error (still relative to GPS measurements) [17].

Authors reported a median error of 22 meters, slightly higher than our estimate.

No investigation was undertaken to explore the positional accuracy of single GE

(that is, searching addresses one at a time with intervention of the operator) or

GPS georeferencing.

Statistics on match rates are much more frequent. Most of the studies reported

values around the recommended threshold of 80%; lower match rates are

considered unacceptable for epidemiological analysis. However, diverse match

rates have been described – from 40 to 99% depending on the type of AG
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[3, 4, 8, 18–23]. AG processes running exclusively in a batch usually lead to low

match rates, unless lenient matching options were defined, which would inevitably

compromise positional accuracy. In our study, we achieved a match rate (in a

batch) of 71% and 85%, respectively for GIS and GE. When GIS AG was used, the

80% requirement was achieved only after semiautomatic and manual approaches.

GE match rates, albeit higher, masked important inaccuracies. When we examined

the results from the batch GE AG tool, which assigns a code to each address

according to the georeferencing accuracy, a reasonable proportion (10%) of the

addresses were only approximately placed (street and municipality centroids),

leading to extreme outliers of positional error.

Very few studies reported the percentage of misclassified or misplaced

addresses. In our analysis we found that a large number of addresses were placed

in the wrong census tract, reaching 38% using GIS, which is in accordance with

similar studies [4, 24]. Obviously, area misplacements depend on how coarse or

fine our territorial units are. Misclassification can be extremely important when

using micro-areas, like ours, but inconsequential when using large administrative

divisions. Moreover, even when using micro-areas, a non-differential misclassi-

fication might not compromise the study findings (although might lead to

underestimation of associations), but differential misclassification might lead to

biased findings. For instance, in our study, we found no spatial pattern in the

position of misclassified individuals and, comparing the SES of the participants’

census tracts attributed using GIS and GE (batch) AG, the SES changes were quite

random.

Misclassification in census tract (neighborhood) SES was lower, but still non-

negligible (14% using the GIS). We found no similar study assessing the

misclassification of exposures based on point-in-polygon processes. In our study

we observed no differential misclassification, that is, the proportion of individuals

that were wrongly georeferenced in a less deprived census tract was comparable to

the proportion of those that were georeferenced in a more deprived census tract.

However, investigations attempting to determine to what extent misclassification

of contaminant exposure affects epidemiological analysis found that the

misclassification is extremely high for this kind of small area analysis [7, 13].

Some limitations of our study must be highlighted. Firstly, our findings are

based on a single urban setting. Porto is a relatively homogeneous city in terms of

the physical and socioeconomic environment. This means that results could be

generalizable to other medium-sized urban settings, but not to larger cities or

rural areas. However, our study fills a gap in the scientific literature of studies

undertaken in medium sized urban settings, especially in Europe, where space is

more fragmented and geographical units are, consequently, much smaller. Also

hampering generalization, our reference data (street centerlines and census tracts)

have their own positional accuracy, which will undoubtedly differ from the ones

employed in other contexts. The same extends to the georeferencing tools we

used. Secondly, we only examined the misclassification for a single environmental

determinant – neighbourhood SES, composed of three levels with a patterned

spatial distribution across the municipality. Nevertheless, neighborhood SES is
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considered in almost every multilevel epidemiological study and the distribution

of neighborhood SES tends to be spatially patterned in most urban settings

(deprived areas stand near each other like the affluent areas). Our findings are

therefore useful for the critical evaluation of results from these studies.

Conclusions

In the present study we aimed to inform epidemiologists and public health

practitioners about the fundamental concepts of cartography and demonstrate the

advantages and drawbacks of some currently available address georeferencing

techniques. Address georeferencing tools differed significantly and the recently

available Google Earth batch tool was revealed to be a valuable alternative method

relative to GIS, but only if prudently used. There were a considerable amount of

misclassified and misplaced addresses, which were universal to all address

georeferencing tools. Our results also suggest misclassification errors were

random, i.e., non-differential. However, future studies should assess the effect of

AG inaccuracies in determining exposures to other area-level determinants (e.g.

air pollution, noise, ambient temperature), especially in Europe where spatial

analysis has become frequent, but has not been accompanied by methodological

assessments on spatial data quality. Further studies are also needed to evaluate the

impact of participant’s misclassification (regarding a wide range of variables from

the physical and socioeconomic environment) on subsequent statistical analysis

and conclusions.
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