Expansion of interferon inducible gene pool via USP18 inhibition promotes cancer cell pyroptosis

Kei-ichiro Arimoto¹, Sayuri Miyauchi¹, Ty D. Troutman², Yue Zhang³, Mengdan Liu³, Samuel A. Stoner¹, Amanda G. Davis¹, Jun-Bao Fan¹, Yi-Jou Huang³, Ming Yan¹, Christopher K. Glass^{2,4}, and Dong-Er Zhang^{1,5*}

- ¹Moores UCSD Cancer Center, University of California San Diego, La Jolla, USA
- ²Department of Medicine, University of California San Diego, La Jolla, USA
- ³ Division of Biological Sciences, University of California San Diego, La Jolla, USA
- ⁴Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, USA
- ⁵Department of Pathology, University of California San Diego, La Jolla, USA
- *Correspondence: <u>d7zhang@health.ucsd.edu</u>

Supplementary Information

Supplementary Fig.1

Supplementary Fig.2

Supplementary Fig.3

Supplementary Fig.4

Supplementary Fig.5

Supplementary Fig.6

Supplementary Fig.7

Supplementary Fig.8

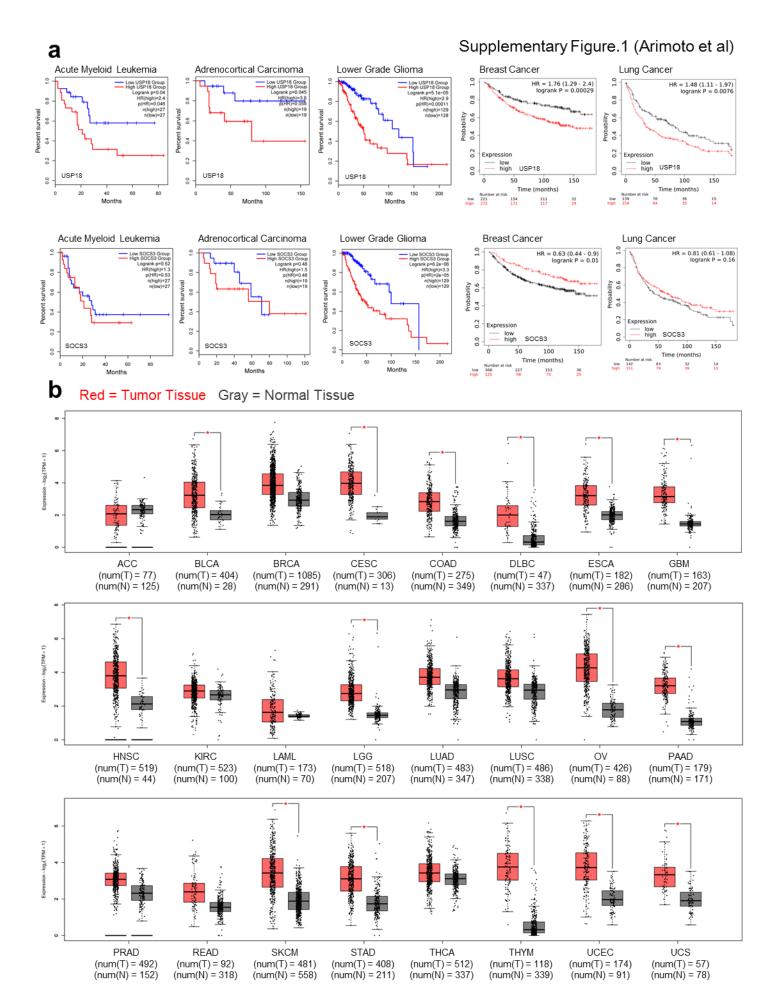
Supplementary Fig.9

Supplementary Fig.10

Supplementary Fig.11

Supplementary Fig.12

Supplementary Table 1


Supplementary Table 2

Supplementary Table 3

Supplementary Table 4

Supplementary Table 5

Supplementary Table 6

USP18 expression and associated clinical outcomes

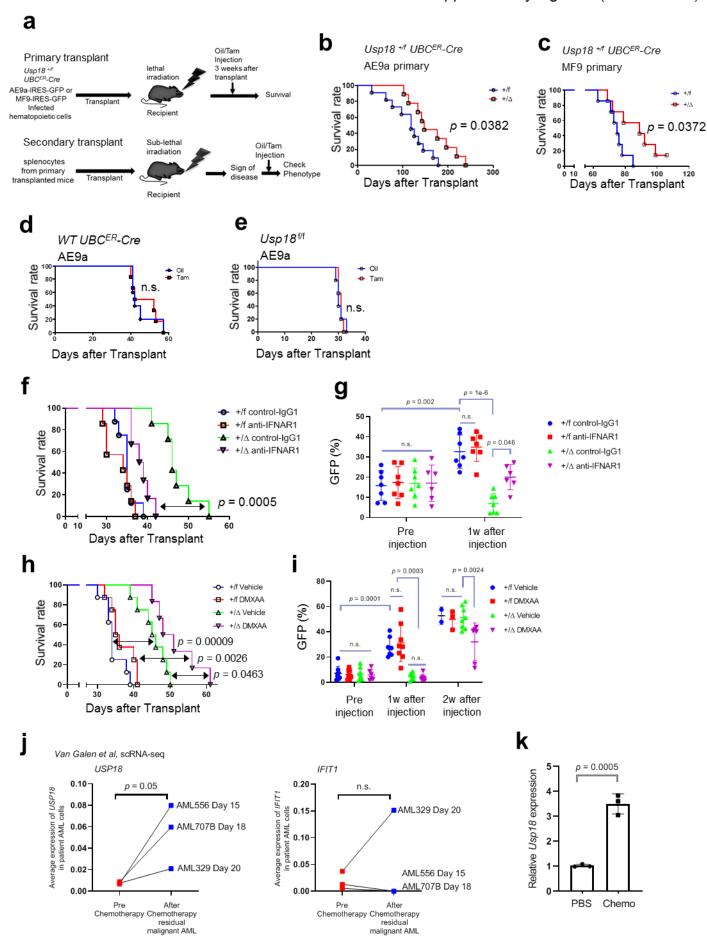
a; Kaplan Meier survival curves for USP18 (Top) and SOCS3 (Bottom) of the indicated TCGA datasets: KmPlot analysis for Breast Cancer and Lung cancer. HR; Hazard Ratio b; USP18 expression in numerous cancers compared to normal tissue from GEPIA2 data set including GTEx and TCGA data. Expression (Y axis) is derived from RNA-seq on Log2 scale. Boxplot center represents median, bounds represent 25 and 75%, and whiskers show the minimum or maximum no further than 1.5 times interquartile range from the bound. p value was determined by one-way ANOVA. * shows p -value < 0.05.

Supplementary Figure.2 (Arimoto et al) b a β-estradiol MW (kDa) Wild-type 500 bp A3-SC1 **Conditional KO** (flox) Exon2 Exon3 Exon4 Exon5 - Free ISG15 500 bp 300 bp - USP18 100 bp f d g е 14.5 dpc E12.5 Fetal liver ■G 40 ■ GM 30 ■ GEMM 20 ■ M Cell numbers 10 +/+ (n=3) +/-(n=4) (n = 3) (n = 4) (n = 3) ρ = 1e-5 ρ = 1e-6 p = 0.0004 h Usp18 +/f Usp18 +/∆ Usp18 ^{∆/∆} n.s. LAK cell number x 10⁴ cells fetal liver S 6o-ki LAK % in lin' +/_{\(\Delta\)} \(\Delta\)/_{\(\Delta\)} AA4.1 k p = 0.0034m p = 0.0161p = 0.0515 LT-HSC frequency (%) within LSK Usp18 +/f Usp18 +/∆ Usp18 △△ frequency (%) ■ G 20 ■ GM 0.4 C-kit 15 ■ GEMM LSK M 10 ■E 5 +/_ +/+ +/_{\Delta} \(\Delta \frac{1}{\Delta} \) 0 +/<u>\(\Delta\)</u> (n=3) Sca-1 Δ/Δ (n=3) p = 0.0209 +/f (n=3) n p = 0.0223p = 0.0030p = 0.0149100 p = 0.0212ST-HSC frequency (%) within LSK 00 01 02 Cell numbers from total colonies CD150 x 10⁵ CD48 50 +/_ +/+ +/_{\Delta} \Delta/_{\Delta} +/+ 0 +/f +/_{\Delta} \(\Delta \I \Delta \) (n = 3) (n = 3) (n = 3) p PEP3 (CD45.1) + (50%/50%) 80-Usp18 +/f CD45.2 (%) in PB Usp18 $^{+/\Delta}$ C57BL/6 (CD45.2) **▲** Usp18 ^{Δ/Δ} p = 0.00002Usp18⁺f Usp18⁺f UBC^{ER}-Cre Usp18⁻f UBC^{ER}-Cre 20

(Week)

†

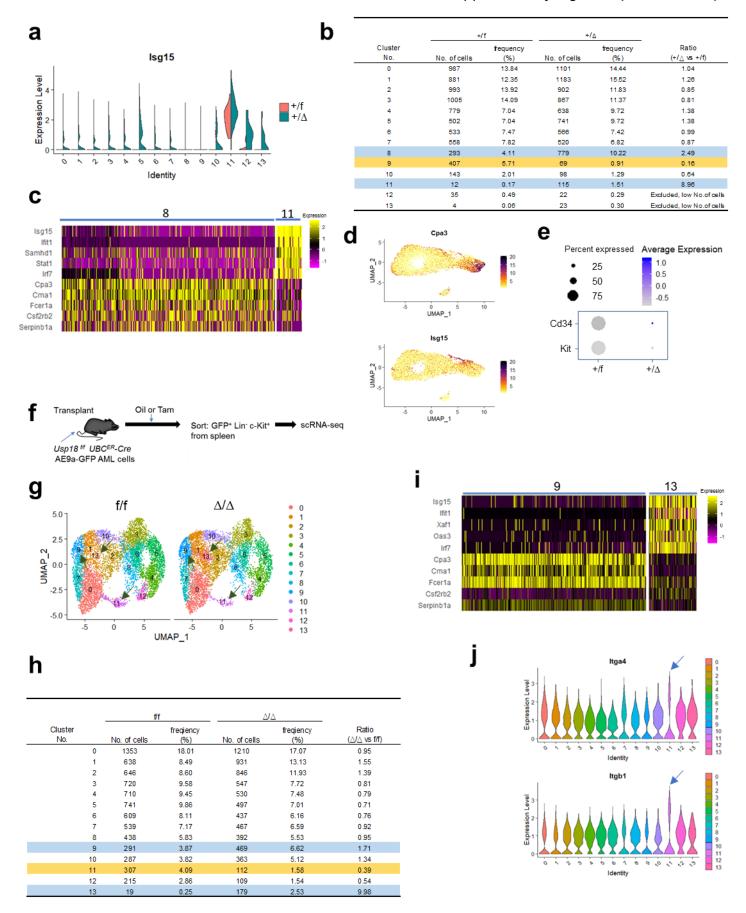
10


15

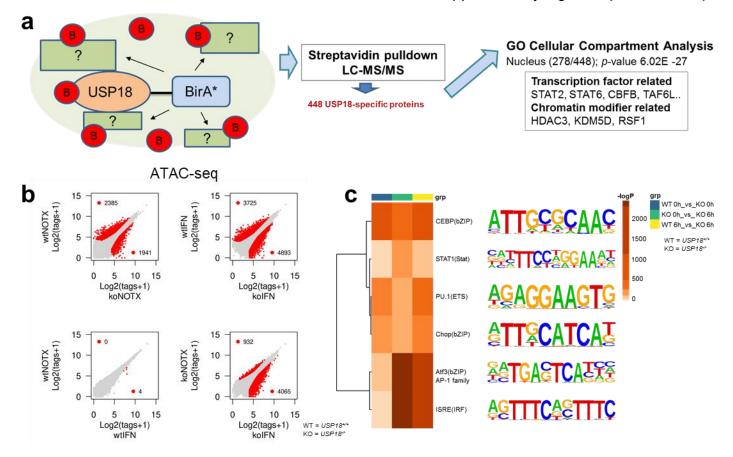
Weeks after BMT

25

Two alleles of *Usp18* is required for normal HSC maintenance.


- a; Schematic of the strategy for conditional *Usp18* deletion.
- b; Verification of the *Usp18* deletion in *Usp18* ff conditional KO by genotyping PCR.
- c; Verification of the USP18 deletion in $Usp18^{\ell\ell}$ conditional KO bone marrow cells by western blot.
- d; Quantification of fetal liver cells in WT, Usp18+/- and Usp18-/- mice (E12.5: +/+, +/-, -/-, n =
- 5, 9, 7, E13.5: n = 4, 5,3, E14.5: n = 2, 3, 4).
- e; Representative hematoxylin-Eosin (HE) staining for WT, $Usp18^{+/-}$ and $Usp18^{-/-}$ fetal liver at E12.5.
- f; Colony assay for WT (n = 3), $Usp18^{+/-}$ (n = 4) and $Usp18^{-/-}$ (n = 3) total fetal livers at E12.5.
- g; Quantification of total cell number from fetal liver derived colonies of (f).
- h; Representative FACS plot of LAK (Lin-AA4.1+ c-Kit +) for Usp18 +/f (+/f) (n = 6), Usp18
- +/f Vav-iCre (+/ Δ) (n = 6), and $Usp18^{f/f}$ Vav-iCre (Δ/Δ) (n = 4) fetal liver cells.
- i; The frequencies of LAK cells for (h).
- j; The absolute number of LAK cells for (h).
- k; Representative FACS plot of HSCs from $Usp18^{+/f}$, $Usp18^{+/\Delta}$ and $Usp18^{-\Delta/\Delta}$ 8 weeks old mice.
- l; The frequencies of LSK, and the frequencies of LT-HSC, ST-HSC and MPP within LSK cells in bone marrow cells from $Usp18^{+/f}$ (n = 3), $Usp18^{+/\Delta}$ (n = 3) and $Usp18^{-\Delta/\Delta}$ (n = 6) mice.
- m; Colony assay for BM LT-HSC of $Usp18^{+/f}$ (n = 3), $Usp18^{+/\Delta}$ (n = 3) and $Usp18^{-\Delta/\Delta}$ (n = 3) mice.
- n; Quantification of total cell number from derived colonies of (m).
- o; Competitive bone marrow transplantation experimental schematic. Bone marrow cells from PEP3 (CD45.1) competitor and C57BL/6 (CD45.2) background $Usp18^{+/f}$ (n = 4), $Usp18^{+/f}$ UBC^{ER} -Cre (n = 4) or $Usp18^{+/f}$ UBC^{ER} -Cre (n = 5) mice was mixed as 50%:50%, followed by transplanted to recipient PEP3 mice.
- p; Contribution of CD45.2-expressing (donor) cells to PB in reconstituted mice for (o).
- All p-values were determined by one-way ANOVA test. All data represent mean \pm s.d, except where indicated. n.s. Source data are provided as a Source Data file.

Inducible Usp18 deletion delays cancer development in mouse models


- a; Schematic strategy for heterozygous deletion of *Usp18* in leukemia primary and secondary transplantation mouse models.
- b; $Usp18^{+/f}$ UBC^{ER} -Cre fetal liver cells were infected with MSCV-IRES-GFP AE9a retrovirus and transplanted (i.v.) into lethally irradiated recipient mice. Three weeks after transplantation, oil or tamoxifen was injected (i.p.) daily for 5 days (Oil (+/f) n = 10, Tam (+/ Δ) n = 9).
- c; Same procedure as (a) using MSCV-IRES-GFP MLL-AF9 retrovirus (+/f n = 7, +/ Δ n = 7).
- d; Survival of sub-lethally irradiated recipient mice transplanted with WT UBC^{ER} -Cre AE9a GFP splenocytes from primary bone marrow transplanted mice (n = 5 mice each). After confirming that the mice become sick, oil or tamoxifen was injected 5 times.
- e; Same procedure as (d) using $Usp18^{ff}$ AE9a GFP splenocytes (n = 5 mice each).
- f; Survival for recipients of $Usp18^{+/for} +/\Delta UBC^{ER}$ -Cre AE9a GFP AMLs with once control IgG1 or anti-IFNAR1 antibody injection (i.v.). (+/f /control IgG1 n = 7, +/f /anti-IFNAR1 n = 7, +/ Δ /control IgG1 n = 7, +/ Δ /anti-IFNAR1 n = 6).
- g; The percentage of GFP+ cells in the PB from (f) were analyzed before and 1 week after oil or tamoxifen injection.
- h; Survival for recipients of $Usp18^{+/f \text{ or } +/\Delta}$ UBC^{ER} -Cre AE9a-GFP AMLs with once vehicle or DMXAA injection (i.v.). (+/f/vehicle n = 8, +/f/DMXAA n = 8, +/ Δ /vehicle n = 8, +/ Δ /DMXAA n = 6).
- i; GFP % of (h) in PB were analyzed.
- j; scRNA-seq of three AML patients who had been given standard chemotherapy were analyzed. The average expressions of *USP18* and *IFIT1* in AMLs pre- and post-chemotherapy (~ Day 20) are shown.
- k; Soon after PBS or chemotherapy were given to AE9a GFP AML bearing mice, GFP+ cells were sorted and the expression of *Usp18* was analyzed by qRT-PCR.
- p-value for all survival analysis in Supplementary Fig.3 was determined by log-rank test. One-way ANOVA test for Supplementary Fig.3g, i, two-tailed Student t-test for Supplementary Fig.3j-k were used for p-values. All data represent mean \pm s.d, except where indicated. n.s. = not statistically significant. Source data are provided as a Source Data file.

Supplementary Figure 4 (Arimoto et al)

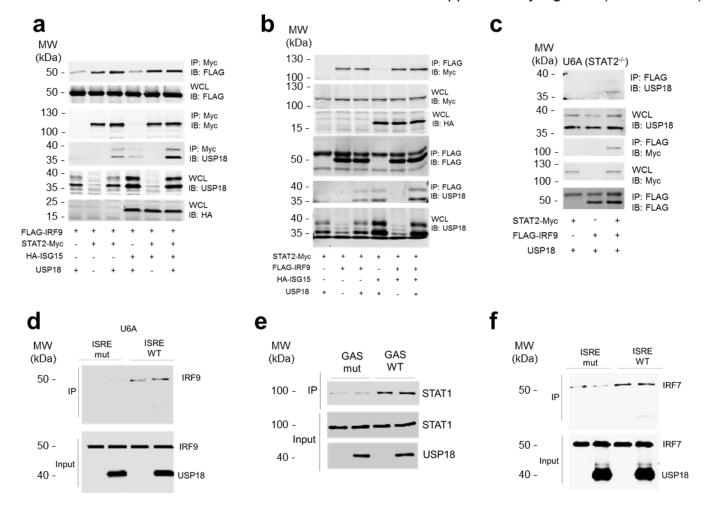
Single cell RNA-seq analysis of $Usp18^{+/f}$ and $Usp18^{+/f}$ or $Usp18^{f/f}$ and $Usp18^{A/d}$ AE9a recipient mice

- a; Violin plots of Isg15 expression in all clusters with or without Usp18 suppression in scRNA seq analysis of $Usp18^{+/f}$ and $Usp18^{+/f}$.
- b; Table displaying the number of cells in each cluster, frequency among all clusters, and ratio describing changes in cluster frequencies between the two groups of mice (+/f vs +/ Δ).
- c; Heatmap of phenotypic gene expression in clusters 8 and 11 in scRNA seq analysis of $Usp18^{+/f}$ and $Usp18^{+/d}$.
- d; Feature plots for representative genes in clusters 8 and 11 in scRNA seq analysis of $Usp18^{+/4}$ and $Usp18^{+/4}$.
- e; Dot plot of Cd34 and Kit expression in cluster 9 before and after Usp18 deletion in scRNA seq analysis of $Usp18^{+/f}$ and $Usp18^{+/f}$.
- f; Single cell RNA-seq of GFP+Lin⁻c-Kit⁺ cells from $Usp18^{f/f}$ and $Usp18^{A/A}$ AE9a recipient mice ($Usp18^{f/f}$ n = 3, $Usp18^{A/A}$ n = 3 mice each pooled).
- g; UMAP of sorted GFP+Lin c-Kit+ cells from $Usp18^{ff}$ and $Usp18^{4/4}$ AE9a recipient mice. Arrows indicates clusters 9, 11 and 13.
- h; Table displaying the number of cells in each cluster, frequency among all clusters, and ratio describing changes in cluster frequencies between the two groups of mice (f/f vs Δ/Δ).
- i; Heatmap of phenotypic gene expression in clusters 9 and 13 in scRNA seq analysis of $Usp18^{\ell\ell}$ and $Usp18^{2\ell}$.
- j; Violin plots for Itga4 and Itgb1 in all clusters.

H3K27Ac ChIP peaks (WT (USP18+/+) IFN vs KO (USP18-/-) IFN)

da nacca		0/ T/	Deet
de novo	P-	% Targ/	Best
Motif	Value	% Bkgd	match
SAAAŞIGAAAŞIŞ	1e-556	23.81/6.37	ISRE (IRF)
STGATGRAATE	1e-120	8.26/2.94	Chop/ATF4
<u>etreeace</u> ta	1e-45	1.76/0.40	NKX3-2
IGGAAATICCÇA	1e-40	2.95/1.09	NF-κB-p65-Rel

d

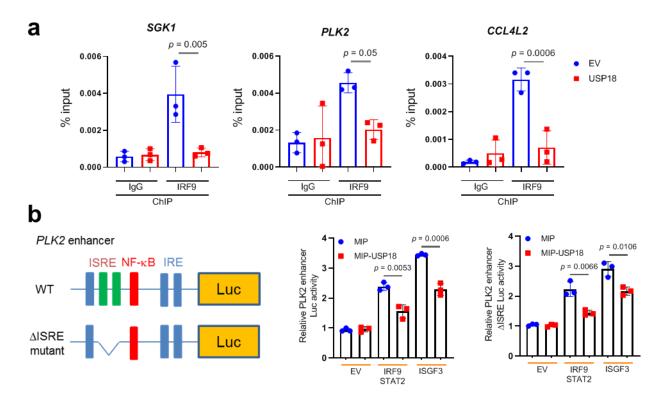

Nuclear USP18 plays a role in ISG expansion

a; Schematic of the strategy for performing proximity-based biotin labeling in the U5A cell line. Three independent replicates were submitted for mass-spectrometric analysis and 408 unique, high-confidence USP18-proximal proteins were identified. Gene Ontology (GO) cellular compartment analysis was performed on this group of proteins.

b; Scatter plot of ATAC tag counts at genomic regions marked by significant ATAC in WT vs $USP18^{-/-}$, WT vs WT IFN, WT IFN vs $USP18^{-/-}$ IFN, and $USP18^{-/-}$ vs $USP18^{-/-}$ IFN THP-1

cells. Red data points refer to peaks with >2-fold change.

- c; Comparative motif enrichment defined by ATAC-seq in the comparison from (b). *p*-value was determined by two-tailed Hypergeometric test adjusted with Benjamini-Hochberg approach.
- d; Top 4 de novo motifs at enhancer regions defined by differential H3K27ac (WT IFN vs $USP18^{-}$ IFN). p-value was determined by two-tailed Hypergeometric test adjusted with Benjamini-Hochberg approach.

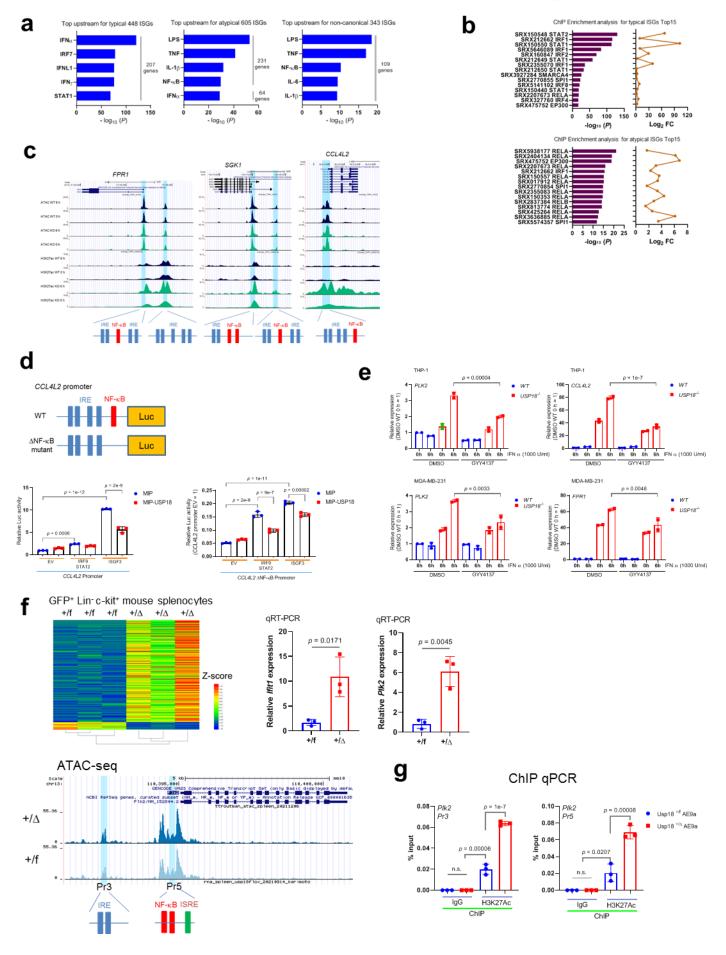

Supplementary Fig. 6 USP18 inhibits ISRE or IRE-IRF9 binding in a STAT2 dependent manner

a; 293T cells were transfected with plasmids encoding FLAG-IRF9, STAT2-Myc, HA-ISG15, and USP18 as indicated. Cell lysates were immunoprecipitated with anti-Myc antibody and immunoblotted with FLAG, Myc, and USP18 antibodies. Whole cell lysates were also analyzed with FLAG, USP18, and HA antibodies.

b; 293T cells were transfected with plasmids encoding FLAG-IRF9, STAT2-Myc, HA-ISG15, and USP18 as indicated. Cell lysates were immunoprecipitated with anti-FLAG antibody and immunoblotted with FLAG, Myc, and USP18 antibodies. Whole cell lysates were also analyzed with Myc, USP18, and HA antibodies.

c; U6A cells were transfected with plasmids encoding FLAG-IRF9, STAT2-Myc, and USP18 as indicated. Cell lysates were immunoprecipitated with anti-FLAG antibody and immunoblotted with FLAG, Myc, and USP18 antibodies. Whole cell lysates were also analyzed with Myc, and USP18 antibodies.

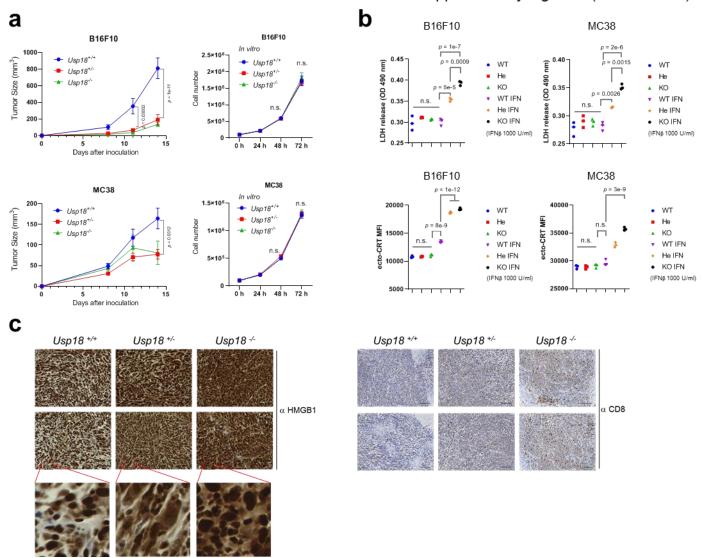
- d; DNA pulldown assay in U6A cells. ISRE-IRF9 binding was not affected by USP18 expression.
- e; DNA pulldown assay. GAS-STAT1 binding was not affected by USP18 expression.
- f; DNA pulldown assay. ISRE-IRF7 binding was not affected by USP18 expression. Source data are provided as a Source Data file.



USP18 regulates enhancer activity of hidden atypical ISGs and non-canonical atypical ISGs a; IRF9 ChIP qPCR for *SGK1*, *PLK2*, and *CCL4L2* in empty vector (EV) or USP18 expressing THP-1 cells. n = 3 independent samples. *p*-value was determined by one-way ANOVA test.

b; Relative firefly to renilla luciferase activity in U5A (IFNAR2) cells transfected with the indicated luciferase reporter construct with or without USP18 co-expression. n = 3 independent samples. p-value was determined by one-way ANOVA test.

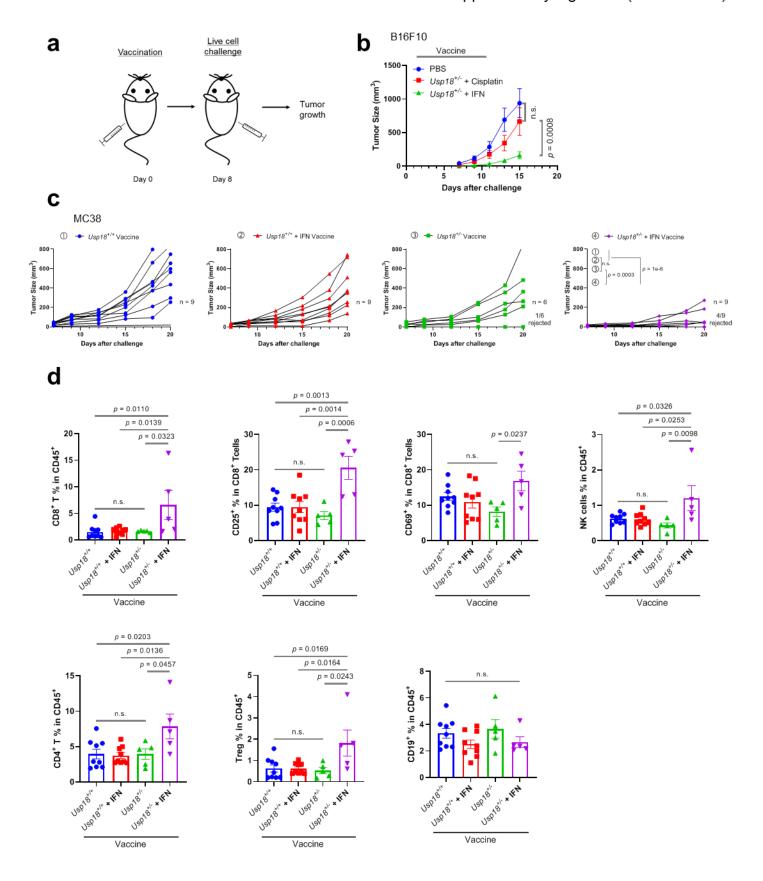
All data represent mean \pm s.d.


Source data are provided as a Source Data file.

NF-κB (p65) is involved in the induction of atypical ISGs

- a; IPA upstream analysis of typical, atypical, and non-canonical ISGs. p-value was determined by right-tailed Fisher's exact test adjusted with Benjamini-Hochberg approach.
- b; ChIP-Atlas Enrichment analysis for typical and atypical ISGs. *p*-value was determined by two-tailed Fisher's exact probability test adjusted with Benjamini-Hochberg approach.
- c; Genome browser tracks depicting ATAC and H3K27ac peaks in CCL4L2, SGK1, and FPR1.
- d; Relative firefly to renilla luciferase activity in cells co-transfected with the indicated *CCL4L2* promoter luciferase construct and the indicated combinations of IRF9, STAT2, p65, and USP18. p-value was determined by one-way ANOVA test.
- e; qRT-PCR analysis of *PLK2* and *CCL4L2* expression in parental or *USP18*^{-/-} THP-1 cells with the indicated combination of IFN, DMSO, and GYY4137 (100 μM) treatments. Cells were pre-treated with DMSO or GYY4137 2 hours before IFN treatment. *p*-value was determined by one-way ANOVA test.
- f; Paired bulk RNA-seq and ATAC-seq data from GFP+Lin⁻c-Kit⁺ splenocytes from *Usp18*^{+/f} and *Usp18*^{+/d} AE9a recipients (*Top and bottom*). Increased *Ifit1* and *Plk2* expressions in GFP+Lin⁻c-Kit⁺ splenocytes from *Usp18*^{+/d} AE9a recipients were also validated by qRT-PCR (*Top Right*). *p*-value was determined by two-tailed Student *t*-test.
- g; H3K27ac ChIP qPCR was performed with primers in promoter/enhancer locus of Plk2 in GFP+Lin·c-Kit+ splenocytes from $Usp18^{+/f}$ and $Usp18^{+/d}$ AE9a recipients. p-value was determined by one-way ANOVA test. All data represent mean \pm s.d, except where indicated. n.s. = not statistically significant. Source data are provided as a Source Data file.

Supplementary Figure 9 (Arimoto et al)

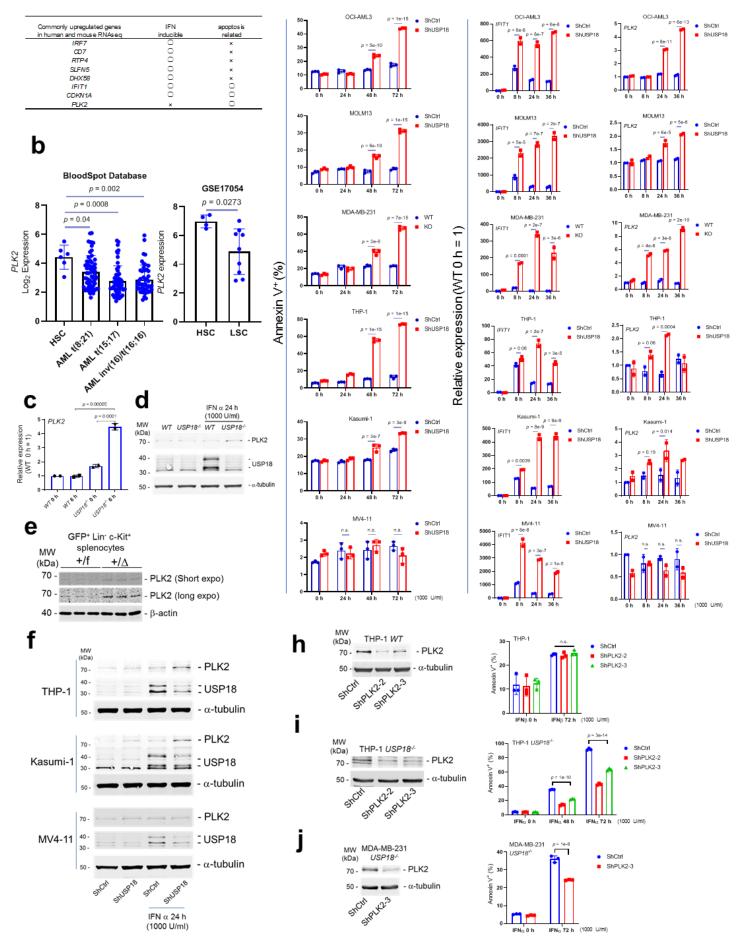

Supplementary Fig. 9

USP18 loss delay tumorigenesis and induce ICD in solid cancer mouse models

a; Tumor volume derived from subcutaneous injection (s.c.) of $USP18^{+/+}$ (n = 5), $USP18^{+/-}$ (n = 5), or $USP18^{+/-}$ (n = 5) B16F10 or $USP18^{+/+}$ (n = 6), $USP18^{+/-}$ (n = 5), or $USP18^{+/-}$ (n = 5) MC38 cells into C57/BL6 mice. Tumor volume were calculated from the length (a) and width (b) by using the following formula; volume (mm³) = $ab^2/2$. Data are presented as mean values \pm SEM. p-value was determined by two-way ANOVA test (left). Growths of these cells $in\ vitro$ are also shown (right) (n = 3 independent samples each). n.s. = not statistically significant. b; LDH release assay and MFI of surface-exposed calreticulin (ecto-CRT) of $USP18^{+/-}$, $USP18^{+/-}$, or $USP18^{+/-}$ B16F10 or MC38 cells treated with or without murine IFN β (1000U/ml) for 48 hours. (n = 3 independent samples each). p-value was determined by oneway ANOVA test. Data are represented as mean \pm s.d, except where indicated. n.s. = not

statistically significant.

c; Immunohistochemistry analysis of tumors from $USP18^{+/+}$, $USP18^{+/-}$, or $USP18^{+/-}$ MC38 cells injected mice stained with either anti HMGB1 or CD8 antibody and nuclear hematoxylin staining (blue) (HMGB1; Bar = 50 μ m, CD8; Bar = 100 μ m). Source data are provided as a Source Data file.


IFN treated USP18 depleted cancer cell vaccine induces anti-tumor response

- a; A schematic depiction of the in vivo vaccination assay treatment schedule for assaying immunogenic cell death.
- b; Tumor volume resulting from mice vaccinated with dying $USP18^{+/-}$ B16F10 cells via cisplatin or IFN β treatment and subsequently challenged with live B16F10 murine melanoma cells. PBS injection was also done for control vaccination. PBS (n = 6), $USP18^{+/-}$ B16F10 + cisplatin (n = 7), $USP18^{+/-}$ B16F10 + IFN β (n = 7). Data are presented as mean values \pm SEM. p-value was determined by two-way ANOVA test.
- c; Tumor volume resulting from mice vaccinated with or without IFN β treated $USP18^{+/+}$ or $USP18^{+/-}$ MC38 cells were subsequently challenged with live MC38 murine colon cancer cells. Tumor growth from all mice are shown. $USP18^{+/+}$ (n = 9), $USP18^{+/+}$ + IFN β (n = 9), $USP18^{+/-}$ + IFN β (n = 9). p-value was determined by two-way ANOVA test.
- d; Lymphocytes infiltration in challenged tumors of (c) was analyzed by FACS. NK (CD3⁻NK1.1⁺), Treg (CD4⁺CD25⁺Foxp3⁺). *p*-value was determined by one-way ANOVA test.

Data are represented as mean \pm s.d, except where indicated. n.s. = not statistically significant.

Source data are provided as a Source Data file.

PLK2 is downregulated in human AML patients and is one of the critical atypical ISGs that contributes to IFN treated USP18KD cell lethality

- a; Genes commonly upregulated (RNA-seq analysis) in $USP18^{-/-}$ + IFN human cell lines and Usp18 knockdown murine AML cells.
- b; Expression analyses of *PLK2* in healthy human hematopoietic stem cells (HSC) and AML patients (left) (n = 6, 60, 54, 47) or leukemic stem cells (n = 4, 9) (LSC) (right).
- c; qRT-PCR analysis for PLK2 in WT and $USP18^{-/-}$ THP-1 cells with or without IFN α (1000U/ml) treatment for 6 h (n = 3 independent samples each).
- d; Western blot analysis of WT and *USP18*^{-/-} THP-1 cells were treated with or without IFN for 36 hours.
- e; Western blot analysis of sorted GFP+Lin⁻c-Kit⁺ splenocytes from $Usp18^{+/f}$ and $Usp18^{+/f}$ AE9a recipient mice (n = 3 each).
- f; Western blot analysis of ShCtrl or ShUSP18 expressing THP-1, Kasumi-1, and MV4-11 cells were treated with IFNα (1000U/ml) for 24 hours.
- g; FACS analysis of ShCtrl or ShUSP18 expressing OCI-AML3, MOLM13, MDA-MB-231, THP-1, Kasumi-1, and MV4-11 cells treated with IFN α (1000U/ml) for the indicated times. The same cells were treated with IFN for the indicated times. *IFIT1* and *PLK2* expression were analyzed by qRT-PCR (n = 3 independent samples each).
- h; PLK2 expression of THP-1 WT cells infected with ShCtrl, ShPLK2-2, and, ShPLK2-3 lentiviruses (*Left*). The percentage of Annexin V⁺ cells was also measured in these cells after IFN β (1000U/ml) treatment for the indicated times (n = 3 independent samples each) (*Right*). i; PLK2 expression of *USP18*^{-/-} THP-1 cells infected with ShCtrl, ShPLK2-2, and, ShPLK2-3 lentiviruses (*Left*). The percentage of Annexin V⁺ cells was also measured in these cells after IFN α (1000U/ml) treatment for the indicated times (n = 3 independent samples each) (*Right*).
- j; PLK2 expression of $USP18^{-}$ MDA-MB-231 cells infected with ShCtrl and ShPLK2-3 lentiviruses (Left) and percentage of annexin V+ cells after IFN α (1000U/ml) treatment was analyzed by FACS (n = 3 independent samples each) (Right). All p-values in Supplementary Fig.11 were determined by one-way ANOVA test, except for 11b right (two-tailed Student t-test). All data represent mean \pm s.d, except where indicated. n.s. = not statistically significant. Source data are provided as a Source Data file.

Supplementary Figure 12 (Arimoto et al) a Single cells Single cells Lin- c-Kit+ GFP+ Annexin V+ SSC-W ₫ FSC-A FSC-H SSC-H GFP Lin Annexin V b CD45+ Live cells CD11b+ Treg Zombie N-IR SSC-A CD45.2 CD4 CD3 FSC-A FSC-A FSC-A CD3 CD4 CD25 ↓ CD8+CD69+ ▼ CD8+CD25+ V CD8⁺CD71⁺ GFP+ CD19+ ♥ Single cells FSC-H CD19 CD69 CD71 FSC-A GFP CD3 CD8a CD8a CD8a C Single cells Live cells SSC-A FSC-H ₫ FSC-A FSC-A CRT FSC-A d Single cells GFP+ Live cells FSC-H Count FSC-A FSC-A FSC-A CRT GFP е CD45+ Live cells ÇD11b⁺ CD8+ Zombie N-IR Treg Foxp3 CD3 CD4 FSC-A FSC-A CD3 CD4 FSC-A CD25 CD19+ CD8+CD69+ Single cells NK CD8+CD25+

CD8a

₹ -

CD3

CD8a

CD19

CD3

FSC-H

FSC-A

Gating strategies in this study.

- a; Gating strategy to analyze Annexin V⁺ cells in GFP⁺Lin⁻c-Kit⁺ $Usp18^{+/\!\!/}$ leukemia cells; associated with Fig 1d.
- b; Gating strategy to analyze immune populations in viable splenocytes in recipients of $Usp18^{+/\!\Delta}$ AML cells; associated with Fig 1e.
- c; Gating strategy to analyze ecto-CRT in cell lines; associated with Fig 6d, 7b, 7l, 7o, 7t, 8c, 8f and Supplementary Fig 9b.
- d; Gating strategy to analyze ecto-CRT in AML cells from mice; associated with Fig 6j
- e; Gating strategy to analyze tumor immune filtrating cells to evaluate vaccine effect of dying *Usp18*^{+/-} cells; associated with Supplementary Fig 10d.

Table 1 : Genotype analysis of *USP18* heterozygous intercross progeny.

		Genotype				
	Usp18 ^{+/+}	Usp18 ^{+/+} Usp18 ^{+/-} Usp18 ^{-/-}				
			Alive	Dead		
E12.5	14	24	14	0		
E13.5	13	20	6	0		
E14.5	6	15	1* * dying	6		

Ifnar1-/- Usp18-/-; All alive

Supplementary Table 1

Genotype analysis of Usp18 heterozygous intercross progeny.

 $Usp18^{-}$ are embryonic lethal.

Table 2. Embryonic lethality of USP18 knockout mice is due to the blood system problem

Usp18 +/f CMV-Cre X			Usp18 ^{+/f} Vav-iCre X			Usp18 +/f UBC ^{ER} -Cre x	
Usp18 ^{-/f}		(n = 43)	Usp18 ^{-/f}		(n = 34)	Usp18 -/f	(n = 32)
CMV-Cre -			Vav-iCre -			UBC ^{ER} -Cre -	
	f/f	9		f/f	4	f/f	4
	-/f	4		-/f	2	-/f	6
	+/f	6	-	+/f	9	+/f	3
	+/-	7	+	+/-	6	+/-	3
CMV-Cre +			Vav-iCre +			UBC ^{ER} -Cre +	
	f/f	0		f/f	0	f/f	7
	-/f	0		-/f	0	-/f	3
	+/f	8		+/f	5	+/f	1
	+/-	9	-	+/-	8	+/-	5

Supplementary Table 2

Embryonic lethality of Usp18 deficient mice is due to the blood system problem.

Survival of $Usp18^{f/f, -/f, +/f, \text{ or } +/-}$ CMV- $Cre^{-\text{ or } +}$ (n = 43), Vav- $iCre^{-\text{ or } +}$ (n = 34), and UBC^{ER} - $Cre^{-\text{ or } +}$ (n = 32) mice were examined.

Table 3. Usp18 depletion in mice leads to leukopenia like phenotype

Hematological Values	Usp18 ^{f/f}	Usp18∆∆	Usp18 ^{-/f}	Usp18⁻/∆
WBC (x 10 ³ /μl)	6.5±1.2	1.6±0.4	8.5±1.2	2.7±1.7
$NE (x 10^3/\mu I)$	1.5±0.2	0.4±0.0	2.0±0.1	0.7±0.4
LY (x 10 ³ /μl)	4.7±1.1	1.0±0.4	6.1±1.3	1.4±1.6
MO (x $10^{3}/\mu l$)	0.3±0.2	0.1±0.0	0.3±0.0	0.1±0.1
EO (x $10^{3}/\mu l$)	0.03±0.02	0.04±0.04	0.11±0.07	0.09±0.06
BA (x $10^{3}/\mu l$)	0.01±0.01	0.01±0.01	0.01±0.01	0.01±0.00
RBC(x 10 ⁶ /μl)	9.7±0.8	10.0±1.2	9.3±0.4	9.5±0.4
HB (g/dL)	12.0±0.7	13.6±1.7	11.6±0.9	11.6±0.7
HCT (%)	48.3±5.0	55.3±8.0	44.8±1.3	45.9±2.7
MCV (fl)	49.5±1.7	50.8±2.1	48.4±0.8	48.5±0.9
MCH (pg)	12.3±0.6	12.5±0.4	12.5±1.4	12.3±1.2
MCHC (%)	24.9±1.2	24.6±0.6	25.8±2.5	25.5±3.0
PLT (x 10 ³ /μl)	2336.3±171.8	1462±323.7	1811.0±363.4	1473.0±432.4
n	3	3	3	3

WBC (x $10^3/\mu$ l) : White blood cells

NE (x 10³/ μ I) : Neutrophils LY (x 10³/ μ I) : Lymphocytes MO (x 10³/ μ I) : Monocytes EO (x 10³/ μ I) : Eosinophils BA (x 10³/ μ I) : Basophils RBC (x 106/ μ I) : Red blood cells

HB (g/dL): Hemoglobin HCT (%): Hematocrit

MCV (fl): Mean corpuscular volume MCH (pg): Mean corpuscular hemoglobin

MCHC (%): Mean corpuscular hemoglobin concentration

PLT (x $10^3/\mu$ l) : Platelets

Supplementary Table 3

Usp18 deletion in mice leads to leukopenia like phenotype.

Peripheral blood counts were analyzed at day 5 for $Usp18^{ff}$, $Usp18^{ff}$ UBC^{ER} -Cre, $Usp18^{-ff}$ UBC^{ER} -Cre and $Usp18^{-ff}$ UBC^{ER} -Cre mice after 3 consecutive times tamoxifen injection. Data are the mean \pm s.d.; n=3 per genotype.

Table 4. Guide RNA sequence primers

USP18 gRNA	
Primers	Sequence
gRNA set1	F:5'-CACCGAAGTCGTGCTGTCCTGAACG-3'
	R:5'-AAACCGTTCAGGACAGCACGACTTC-3'
gRNA set2	F:5'-CACCGAGCAGCCCAGAGAGCGTCCC-3'
	R:5'-AAACGGGACGCTCTCTGGGCTGCTC-3'
mUsp18 gRNA	
Primers	Sequence
gRNA set1	F:5'-CACCGTGCCAGAGGACGACTGGTTA-3'
	F:5'-AAACTAACCAGTCGTCCTCTGGCAC-3'
gRNA set2	F:5'-CACCGGCCGCAGCAGTACTCAGCGC-3'
	F:5'-AAACGCGCTGAGTACTGCTGCGGCC-3'
PLK2 sgRNA	
Primers	Sequence
gRNA set	F:5'-CACCGACGATAATCCGCGAGATCTC-3'
	F:5'-AAACGAGATCTCGCGGATTATCGTC-3'
GSDMD sgRNA	
Primers	Sequence
gRNA set1	F:5'-CACCGTGGGTCCCTGCACCACGCTC-3'
	F:5'-AAACGAGCGTGGTGCAGGGACCCAC-3'
gRNA set2	F:5'-CACCGGAGCCGGATGCCGCGGAACC-3'
	F:5'-AAACGGTTCCGCGGCATCCGGCTCC-3'
GSDME sgRNA	
Primers	Sequence
gRNA set	F:5'-CACCGGAAGACCAATTTCCGAGTCC-3'
	F:5'-AAACGGACTCGGAAATTGGTCTTCC-3'

Supplementary Table 4

Guide RNA sequence primers

In formation for guide RNA sequences for Crispr in this study.

Table 5. RT-qPCR primers

	primers		

Primers	Sequence
lsg15	F:5'-GACTAACTCCATGACGGTG-3'
	R:5'-AACTGGTCTTCGTGACTTG-3'
lfit1	F:5'-TGGCGACCTGGGGCAACTGTG-3'
	R:5'-TGGGCTGCCTGTTTCGGGATGTC-3'
lrf7	F:5'-CAGCGAGTGCTGTTTGGAGAC-3'
	R:5'-AAGTTCGTACACCTTATGCGG-3'
Oasl2	F:5'-TTGTGCGGAGGATCAGGTACT-3'
	R:5'-TGATGGTGTCGCAGTCTTTGA-3'
Dhx58	F:5'-CCAGAAAGACCAGCAGGAAG-3'
	R:5'-TTGCACTGAGCGATATCCAG-3'
Rtp4	F:5'-GGAGCCTGCATTTGGATAAG-3'
	R:5'-TTCTGCAGCATCTGGAACAC-3'
Xaf1	F:5'-GCCTGCGCTTCATAGTCCTTT-3'
	R:5'-GGTGCACAACTTCCATGTGCT-3'
Plk2	F:5'-CATCACCACCATTCCCACT-3'
	R:5'-TCGTAACACTTTGCAAATCCA-3'
Cd80	F:5'-ACCCCCAACATAACTGAGTCT-3'
	R:5'-TTCCAACCAAGAGAGAGCGAGG-3'
Cdkn1a	F:5'-CTGGGAGGGGACAAGAG-3'
	R:5'-GCTTGGAGTGATAGAAATCTG-3'
Zmat3	F:5'-GACTCGGAAAGAAGGGAGTG-3'
	R:5'-AGTAAGGGCCTGAATTGCTC-3'
Eda2r	F:5'-CACACTGCATAGTCTGCCCTC-3'
	R:5'-GCCTTCTGGACCCGATTGA-3'
Tnfsf4	F:5'-GTTCTGCACCTCCATAGTTTGA-3'
	R:5'-GGATGCTTCTGTGCTTCATCT-3'
Slfn5	F:5'-TTCTGCTGTGCGGTGTTTGCCA-3'
	R:5'-CTGGAGAACCATCTCAGGACAC-3'
Cxd9	F:5'-TCCTTTTGGGCATCATCTTCC-3'
	R:5'-TTTGTAGTGGATCGTGCCTCG-3'
Gapdh	F:5'-AAGGTCATCCCAGAGCTGAA-3'
	R:5'-CTGCTTCACCACCTTCTTGA-3'

DT a	DCD	primers	E' 3' for	human	aonoc
RIQ	PCK.	primers	2-2 101	numan	genes

Primers	Sequence
IFIT1	F:5'-AAGGCAGGCTGTCCGCTTA-3'
	R:5'-TCCTGTCCTTCATCCTGAAGCT-3'
PLK2	F:5'-GACCCTATGGGACTCCTCTTT-3'
	R:5'-GTATGCCTTAGCCTGTTCTGG-3'
FPR1	F:5'-CCTCCACTTTGCCATTC-3'
	R:5'-AGCAGAGCCATCACCC-3'
SGK1	F:5'-GACAGGACTGTGGACTGGTG-3'
	R:5'-TTTCAGCTGTGTTTCGGCTA-3'
CCL4L2	F:5'-AAAACCTCTTTGCCACCAATACC-3'
	R:5'-GAGAGCAGAAGGCAGCTACTAG-3'
GAPDH	F:5'-GCCAAAAGGGTCATCATCT-3'
	R:5'-ATGGATGACCTTGGCCAG-3'

Supplementary Table 5

RT-qPCR primers

Information for RT-qPCR primers in this study.

Table 6. Primers for ChIP-qPCR

IRF9 ChIP qPCR

Sequence	
F:5'-TGAGAATTGCCACCATGCCCCTCAT-3'	
R:5'-AGCATACGCCGAGCCGGTCTTTGA-3'	
F:5'-GTGTCTCAAATACTTCCAGCA-3'	
R:5'-TGGACTTGCCCTGCACTCTTTA-3'	
F:5'-AAGCCACTTGTAGCAGGTGT-3'	
R: 5'-CA GGGCGATGTCATCATA-3'	
	R:5'-AGCATACGCCGAGCCGGTCTTTGA-3' F:5'-GTGTCTCAAATACTTCCAGCA-3' R:5'-TGGACTTGCCCTGCACTCTTTA-3' F:5'-AAGCCACTTGTAGCAGGTGT-3'

p65 ChIP qPCR

Primers	Sequence	
SGK1	F:5'-TCAAAGACCGGCTCGGCGTAT-3'	
	R:5'-AAGGGCGGGCCACTTCTCACTGT-3'	
PLK2	F:5'-GTCTTTGCTGTCACTTCCGT-3'	
	R:5'-CTTATTCCATCCCTGACAATCT-3'	
CCL4L2	F:5'-A CTCCTCA CTCAGCTA GCTT-3'	
	R:5'-CTCTGAGGCCTAGGACAAAT-3'	

H3K27ac ChIP qPCR

Prim ers	Sequence	
Plk2 Pr3	F:5'-A TTGGGA TTCGGGCACTA AA GTC-3'	
	F:5'-GTTCTACCAAAAAGATACAGGC-3'	
Plk2 Pr5	F:5'-TTCCGCAAGGCCGGCCACTGA-3'	
	F:5'-TGCCCTGACTTTGGACGT-3'	

Supplementary Table 6

${\bf Primers\ for\ ChIP\text{-}qPCR}$

Information for ChIP-qPCR primers in this study.