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ABSTRACT

Background/Aims: Hepatocellular carcinoma (HCC) is a prevalent cancer that significantly contributes to mortality globally, primarily
due to its late diagnosis. Early detection is crucial yet challenging. This study leverages the potential of deep learning (DL) technologies,
employing the You Only Look Once (YOLO) architecture, to enhance the detection of HCC in computed tomography (CT) images, aiming
to improve early diagnosis and thereby patient outcomes.

Materials and methods: We used a dataset of 1290 CT images from 122 patients, sesgmented according to a standard 70:20:10 split for
training, validation, and testing phases. The YOLO-based DL model was trained on these images, with subsequent phases for validation
and testing to assess the model's diagnostic capabilities comprehensively.

Results: The model exhibited exceptional diagnostic accuracy, with a precision of 0.97216, recall of 0.919, and an overall accuracy of
95.35%, significantly surpassing traditional diagnostic approaches. It achieved a specificity of 95.83% and a sensitivity of 94.74 %,
evidencing its effectiveness in clinical settings and its potential to reduce the rate of missed diagnoses and unnecessary interventions.

Conclusion: The implementation of the YOLO architecture for detecting HCC in CT scans has shown substantial promise, indicating
that DL models could soon become a standard tool in oncological diagnostics. As artificial intelligence technology continues to evolve,
its integration into healthcare systems is expected to advance the accuracy and efficiency of diagnostics in oncology, enhancing early
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detection and treatment strategies and potentially improving patient survival rates.
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INTRODUCTION

Hepatocellular carcinoma (HCC) is the most common
type of primary liver cancer, predominantly arising in
patients with underlying chronic liver disease and cir-
rhosis.” It represents a significant global health burden,
ranking as the sixth most common cancer and the fourth
leading cause of cancer-related deaths worldwide. The
high mortality rate associated with HCC is largely attrib-
utable to late-stage diagnosis and the asymptomatic
nature of the disease in its early stages.*®

Early detection of HCC is vital. When diagnosed at an early
stage, HCC can often be treated effectively with curative
options such as surgical resection, liver transplantation,
and ablative therapies.>'2 However, the window for such
treatments is narrow, and early-stage tumors often go
undetected due to their asymptomatic nature and the

limitations of current diagnostic modalities. Computed
tomography (CT) scans are widely used for the diagno-
sis and surveillance of HCC. They are crucial for detect-
ing, staging, and guiding the treatment of liver lesions.
However, CT scans have limitations, especially in identify-
ing smaller tumors and early stage HCC."*-'® These limita-
tions are more pronounced when CT scans are performed
for indications other than HCC surveillance, as small liver
tumors can be easily missed. Moreover, diagnosing HCC
based solely on CT images can be complex due to the
variable appearance of tumors, often leading to potential
additional diagnostic workup and resulting in delays in
diagnosis and definitive treatment.'®

Deep learning (DL), a subset of artificial intelligence (Al),
has shown significant promise in medical imaging."®
By utilizing advanced algorithms and large datasets, DL
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models can identify patterns and anomalies in medical
images with high accuracy. For instance, a study devel-
oped a hierarchical fusion strategy of DL networks to
detect and segment HCC from dynamic CT images,
achieving a global dice score of 82.8%.'"® Another research
effort reviewed the diagnostic performance of DL meth-
ods based on medical images for HCC, reporting a pooled
sensitivity of 89% and specificity of 90%.2° Among vari-
ous DL models, the You Only Look Once (YOLO) object
detection algorithm stands out for its efficiency and
accuracy in real-time image analysis. Example applica-
tions of YOLO show great potential in the domain.2'-2
You Only Look Once's ability to rapidly identify and local-
ize objects within an image makes it particularly suited
for medical imaging tasks like detecting liver tumors in CT
scans. For example, a study proposed a flexible 3-dimen-
sional hetero-phase CT HCC detection algorithm based
on YOLO, demonstrating its adaptability across various
imaging phases.?*

This study aims to develop a DL-based diagnostic tool
utilizing YOLO for the detection of HCC in CT scans. Our
hypothesis is that this model will show excellent precision
in identifying even smaller liver tumors, facilitating early
and accurate HCC detection. Recognizing that histopa-
thology is the gold standard for HCC diagnosis, our study
employs stringent selection criteria. We include patients
whose diagnoses have been confirmed through post-
operative histopathological examination. This approach
ensures that the training and validation of our DL model
are grounded in the most reliable diagnostic benchmark,
enhancing the model’s accuracy and clinical applicability.

Main Points

Hepatocellular carcinoma (HCC) is the most common type
of primary liver cancer, predominantly arising in patients
with underlying chronic liver disease and cirrhosis.
Computed tomography is one of the most commonly used
imaging modalities in the diagnosis of HCC.

Due to the variable tumor structure of HCC, diagnosis is
sometimes difficult, additional diagnostic methods are
needed, and there are delays in diagnosis and treatment.
By integrating state-of-the-art artificial intelligence tech-
niques with a rigorous, histopathology-validated approach,
this study aims to set a new standard in HCC diagnostics,
potentially transforming early detection and improving
patient outcomes significantly.

Our study illustrates the significant promise of DL models
in the diagnosis of HCC, setting a foundation for future
research and implementation in clinical practice.

By integrating state-of-the-art Al techniques with a rig-
orous, histopathology-validated approach, this study
aims to set a new standard in HCC diagnostics, poten-
tially transforming early detection and improving patient
outcomes significantly.

MATERIALS AND METHODS

This retrospective study included 250 patients who
underwent liver surgery at Department of General
Surgery of Kocaeli University Faculty of Medicine from
2009 to 2023. Kocaeli University Faculty of Medicine
Non-Interventional Clinical Research Ethics Committee
approval was obtained (December 19, 2023, 2023/401).
Written informed consent was given by the patients who
agreed to participate in the study. Patients were eligible
for inclusion if they were over 18 years of age and had
undergone liver tumor resection, metastasectomy, or
ablation surgery, with histopathological specimens col-
lected during the procedures. Exclusion criteria included
incomplete preoperative evaluations, external imaging
and laboratory tests, or follow-ups conducted outside our
center. Ultimately, 122 patients met the inclusion criteria,
comprising 34 with HCC and 88 with other liver lesions.

Data Preparation and Annotation

The dataset consisted of 1290 CT images divided into
training (70%), validation (20%), and testing (10%) sets.
Images were annotated using Labellmg, with bounding
boxes marking liver lesions. Two experienced hepatobil-
iary surgeons performed the initial annotations, with a
third surgeon independently verifying them for accuracy
and consistency. All lesions were categorized as "HCC" or
"other” based on histopathological confirmation.

Model Selection and Architecture

The YOLOvV8 model was selected for its optimal bal-
ance between real-time object detection efficiency and
high accuracy. Its capability to rapidly identify and local-
ize small, clinically ambiguous lesions made it particularly
suitable for HCC detection. The model selection process
involved an iterative evaluation of multiple architectures,
including YOLOV5, YOLOv7, and YOLOVS, based on preci-
sion-recall metrics and computational efficiency bench-
marks, ensuring the chosen model met the demands of
both accuracy and performance.

Data and Image Preprocessing
Data preprocessing plays a critical role in enhancing
model performance. In this study, various preprocessing
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techniques were applied to improve the model’s robust-
ness and generalizability. All images were resized to 512
x 512 pixels to standardize input dimensions. Random
horizontal and vertical flips, along with rotations, were
used to increase image variability. Additionally, brightness
and contrast adjustments were applied within a speci-
fied range to simulate different imaging conditions, while
random changes in hue further enhanced the model's
resilience to color variations. Collectively, these prepro-
cessing techniques augmented the dataset, enabling the
model to perform more effectively across diverse imaging
scenarios.

Training Process

The training process utilized the preprocessing tech-
niques described above to augment the dataset and
improve model generalization. The Adam optimizer was
employed, optimizing a composite loss function that
combined object classification, localization, and confi-
dence loss to enhance detection accuracy. The model was
trained for 100 epochs, with early stopping implemented
if the validation loss plateaued for 10 consecutive epochs
to prevent overfitting. A batch size of 16 was maintained
throughout the training to balance computational effi-
ciency and model performance.

Hyperparameters

The YOLOV8 model was trained using the following
default hyperparameters: a learning rate of 0.01, a batch
size of 16, an Intersection over Union (loU) threshold
of 0.7 for bounding box regression, and a confidence
threshold of 0.5. These hyperparameters were chosen to
balance optimal detection accuracy with computational
efficiency, ensuring the model's effectiveness in identify-
ing and localizing liver lesions.

Evaluation Metrics
Performance was assessed using standard metrics:

Precision, recall, and F1 score: Evaluating classification
and detection balance.

Mean average precision (mAP): Computed at loU thresh-
olds ranging from 0.50 to 0.95.

Furthermore, sensitivity, specificity, positive predictive
value (PPV), and negative predictive value (NPV) were
calculated using MedCalc software.?® These measures
provided additional insights into the model's diagnostic
performance in real-world clinical settings, distinguishing

its effectiveness from standard deep learning perfor-
mance metrics.

RESULTS

From the cohort of 122 patients, we compiled a dataset
of 1290 CT images. These images were associated with
postoperative histopathological data, providing a robust
foundation for our study. The dataset was stratified into
training (70%), validation (20%), and testing (10%) sets.
Over 100 training epochs, our convolutional neural net-
work (CNN) model, based on the YOLO architecture,
was rigorously trained and iteratively refined to optimize
its performance in detecting various liver lesions on CT
images.

The model underwent extensive training using the des-
ignated training dataset, where it learned to recognize
and classify HCC lesions accurately. After the training
phase, the model's ability to generalize was evaluated on
a randomized validation dataset. This phase assessed the
model’s precision and recall, which are critical metrics for
understanding its efficacy in lesion detection.

The model demonstrated a high precision of 0.97216,
crucial for minimizing false positives and ensuring reliable
lesion detection. It also achieved a recall of 0.919, effec-
tively identifying true positives and thereby reducing the
likelihood of missed lesions. The mAP at an loU threshold
of 0.50 (MAP50) was recorded at 0.94997, indicating the
model’'s precision in accurately localizing lesions when
the predicted bounding boxes overlap by at least 50%.
Additionally, the mAP from loU threshold 0.50 to 0.95
(mAP50-95) was 0.61855, assessing the model's robust-
ness in lesion localization under stricter conditions.

Furthermore, the model exhibited a sensitivity of 94.74%
(95% ClI: 85.38%-98.90%) and a specificity of 95.83%
(95% CI: 88.30%-99.13%), illustrating its capacity to
accurately detect true positives and correctly iden-
tify negatives, thereby avoiding unnecessary medical
interventions. The PPV and NPV were notably high at
94.74% (95% Cl: 85.58%-98.20%) and 95.83% (95%
Cl: 88.42%-98.58%), respectively, affirming the model's
reliability in clinical predictions. The model also demon-
strated excellent diagnostic differentiation with a positive
likelihood ratio of 22.74 (95% Cl: 7.50-68.96) and a nega-
tive likelihood ratio of 0.05 (95% CI: 0.02-0.17), enhanc-
ing diagnostic certainty. Overall, the model achieved an
accuracy of 95.35% (95% Cl: 90.15%-98.27%), under-
scoring its superior capability in correctly classifying CT
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images. The disease prevalence in the studied test popu-
lation was estimated at 44.18%.

The comprehensive results, including statistical analyses,
model performance metrics, and a demonstration of the
testing phase, are detailed in Table 1 and illustrated in
Figures 1 and 2.

DISCUSSION

In this study, we employed the YOLO architecture to
develop a DL model tailored for the detection of HCC in
CT images. This model benefits from YOLO's efficiency in
real-time object detection, making it particularly adept at
identifying and localizing liver lesions. Compared to other
CNN architectures, YOLO offers substantial improve-
ments in speed and accuracy, making it ideal for clinical
environments where rapid decision-making is critical. Its
application in our study has shown not only feasibility but
also significant diagnostic improvements, particularly in
the early detection of HCC. To our knowledge, this study
represents the first application of a YOLO-based model
specifically designed for detecting HCC lesions.

Our study adopts a unique protocol by exclusively utiliz-
ing cases with confirmed histopathological diagnoses,
enhancing the reliability of our results. Histopathology is
considered the gold standard for diagnosing conditions
such as HCC. One of the primary challenges in diagnosing
HCC is the misdiagnosis or failure to visualize early or diffi-
cult-to-detect lesions using traditional imaging methods.
The prevalent reliance on morphological analysis from CT
images, as seen in much of the existing literature, may
not effectively address these challenges.”® In contrast,
our approach leverages postoperative histopathological

Table 1. Comprehensive Results of the Model

Statistic Value 95% ClI
Sensitivity 94.74% 85.38%-98.90%
Specificity 95.83% 88.30%-99.13%
Positive likelihood ratio 2274 7.50-68.96
Negative likelihood ratio 0.05 0.02-0.17
Disease prevalence on 4418%

dataset

Positive predictive value 94.74% 85.58%-98.20%
Negative predictive 95.83% 88.42%-98.58%
value

Accuracy 95.35% 90.15%-98.27%

data as the definitive ground truth. This allows us to
explore novel patterns that might be discernible in CT
scans when analyzed with a DL model designed to pre-
dict surgical outcomes. Our method posits that radiologi-
cal data, often intricate and laden with subtle patterns,
can reveal more when examined with advanced Al tech-
nologies than what might be immediately obvious to the
human eye. Furthermore, current research often relies on
open-source datasets that primarily focus on radiological
reports. By contrast, our study emphasizes the creation of
a dataset that includes complex and challenging images,
particularly those that may initially confound traditional
diagnostic methods. Our dataset is notably diverse, con-
taining primary tumors of various sizes and appearances,
and spans a range of lesion-to-background contrasts
(hyper-/hypo-dense), enriching our analysis and providing
a robust testbed for our DL model. This approach aims to
enhance the diagnostic accuracy for early or ambiguous
HCC lesions, potentially leading to improved outcomes
through earlier and more precise intervention.

In our study, we opted to use CT scanning as the primary
diagnostic tool for detecting HCC due to its widespread
availability and lower cost compared to magnetic reso-
nance imaging (MRI), which, despite its higher diagnos-
tic accuracy, is more expensive and less accessible.?®
Computed tomography scans are frequently performed
for various indications, which can fortuitously allow for
the early detection of HCC, a potential not always pos-
sible with MRI due to its specialized use. Additionally, in
patients with known risk factors for HCC development,
CT scanning is often employed following the detection of
suspicious features in ultrasound examinations, provid-
ing a more definitive assessment. This widespread appli-
cability and diagnostic utility of CT scanning motivated
our decision to develop a DL model based on abdominal
CT imaging, aiming to enhance the early detection and
diagnosis of HCC in both routine and high-risk patient
screenings. In the literature, there are various studies that
use either CT or MRI for detecting liver tumors, yielding
similar results in terms of diagnostic effectiveness. Our
choice of CT over MRI aligns with these findings, empha-
sizing the practicality and accessibility of CT in a broader
range of clinical settings while maintaining comparably
similar diagnostic accuracy in DL modalities.

Our study’'s application of the YOLO architecture for
detecting HCC in CT images has demonstrated satisfac-
tory diagnostic performance. We achieved a precision of
0.97216 and a recall of 0.919, indicative of our model's
capability to minimize false positives and effectively
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Figure 1. Model performance metrics.

identify true positives. The mAP at an loU threshold of 0.50
(mAP50) was recorded at 0.94997, showcasing precise
lesion localization. Additionally, our model exhibited high
sensitivity (94.74%) and specificity (95.83%). The overall
accuracy of 95.35% underscores the model's superior-
ity in correctly classifying CT images. Comparatively, Kim

Figure 2. Computer tomography image of hepatocellular carcinoma.

et al** employed a DL model with hepatobiliary phase MRI,
achieving a sensitivity of 87% and specificity of 93%.
Despite MRI's generally higher diagnostic efficacy, our
CT-based approach demonstrated superior performance,
highlighting the effectiveness of the YOLO-based model
in HCC detection. In another study, Wang et al developed
a deep-learning Al system analyzing liver CT imaging
data.?® Their model achieved an accuracy of 81.0% and
sensitivity of 78.4% on the internal test set, with slightly
better performance on the external test set. Gao et al
introduced a DL model that differentiates between malig-
nant hepatic tumors using multi-phase CT and clinical
features, achieving a sensitivity of 0.865 and specificity
of 0.868 for HCC.26 While their study incorporates clinical
features for diagnosis, our focused approach on imaging
alone still offers comparable diagnostic accuracy. Lastly,
Hamm et al's research with a custom CNN for classify-
ing hepatic lesions on MRl demonstrated a high accuracy
of 92% and specificity of 98%.27 While their findings are
significant, they focus on MRI, which is traditionally more
sensitive than CT for certain diagnoses. However, the
success of our CT-based model underscores the poten-
tial of DL in enhancing diagnostics even with modalities
considered less sensitive in specific contexts. Overall,
our findings not only align with but often surpass out-
comes from some other advanced studies, emphasizing
the potential of Al, particularly DL models like YOLO and
some novel approaches like curating surgically proven,

128



Sahin et al. Deep Learning in Hepatocellular Carcinoma

Turk J Gastroenterol 2025; 36(2): 124-130

complex datasets. This suggests a promising direction
for future research and practical applications, where such
Al models could become standard tools, enhancing the
accuracy and efficiency of oncological diagnostics across
various imaging modalities.

Despite its strengths, our study has limitations due to its
retrospective design and single-center dataset, which
may affect the generalizability of the findings. Future
multicentric studies could expand the dataset to enhance
the model's broader efficacy and include a more holistic
approach to liver health. By aiming to detect any liver
lesions with precision and correlating imaging findings
with true histopathological diagnoses, such studies would
not only validate the effectiveness of the model across
different populations but also improve diagnostic accu-
racy for a variety of liver diseases.

This study highlights the potential of DL models, par-
ticularly YOLOVS, in the diagnosis of HCC. The model
demonstrated high precision, sensitivity, and specificity,
effectively detecting small and early-stage liver lesions
often missed by conventional imaging techniques. These
results underline the transformative role of Al in improv-
ing early detection, guiding timely interventions, and
enhancing patient outcomes in oncology.

Despite these promising findings, there are critical chal-
lenges to address. Future research should focus on lever-
aging multicentric big data to train and validate DL models.
Data from multiple centers, encompassing diverse imag-
ing protocols, patient demographics, and equipment, will
ensure the robustness and generalizability of Al systems.
Differences among centers, such as varying imaging qual-
ity and diagnostic practices, pose significant challenges
but also offer opportunities to improve model adaptability
in real-world clinical environments. Moreover, the integra-
tion of multimodal data—combining imaging with clini-
cal, laboratory, and genomic information—could enhance
diagnostic accuracy and enable personalized treatment
strategies. This approach aligns with the principles of
precision medicine, where Al can help tailor interven-
tions based on individual patient profiles. In addition to
technical improvements, the development of explainable
Al frameworks is essential. Transparency in model deci-
sion-making will foster trust among clinicians, facilitat-
ing broader adoption. Addressing ethical considerations,
including data privacy and security, will also be crucial for
the responsible implementation of Al in healthcare.

In conclusion, while our findings demonstrate the prom-
ise of DL in HCC diagnosis, addressing data heterogeneity,

inter-center variability, and clinical integration will be
key to fully realizing its potential in transforming oncol-
ogy care.
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