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Background: The input image of a blurry glioma image segmentation is, usually, very

unclear. It is difficult to obtain the accurate contour line of image segmentation. The main

challenge facing the researchers is to correctly determine the area where the points on

the contour line belong to the glioma image. This article highlights the mechanism of

formation of glioma and provides an image segmentation prediction model to assist

in the accurate division of glioma contour points. The proposed prediction model of

segmentation associated with the process of the formation of glioma is innovative and

challenging. Bose-Einstein Condensate (BEC) is a microscopic quantum phenomenon

in which atoms condense to the ground state of energy as the temperature approaches

absolute zero. In this article, we propose a BEC kernel function and a novel prediction

model based on the BEC kernel to detect the relationship between the process of

the BEC and the formation of a brain glioma. Furthermore, the theoretical derivation

and proof of the prediction model are given from micro to macro through quantum

mechanics, wave, oscillation of glioma, and statistical distribution of laws. The prediction

model is a distinct segmentation model that is guided by BEC theory for blurry glioma

image segmentation.

Results: Our approach is based on five tests. The first three tests aimed at confirming

the measuring range of T and µ in the BEC kernel. The results are extended from −10

to 10, approximating the standard range to T ≤ 0, and µ from 0 to 6.7. Tests 4 and 5 are

comparison tests. The comparison in Test 4 was based on various established cluster

methods. The results show that our prediction model in image evaluation parameters of

P, R, and F is the best amongst all the existent ten forms except for only one reference

with the mean value of F that is between 0.88 and 0.93, while our approach returns

between 0.85 and 0.99. Test 5 aimed to further compare our results, especially with CNN

(Convolutional Neural Networks) methods, by challenging Brain Tumor Segmentation

(BraTS) and clinic patient datasets. Our results were also better than all reference tests.

In addition, the proposed prediction model with the BEC kernel is feasible and has a

comparative validity in glioma image segmentation.
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Conclusions: Theoretical derivation and experimental verification show that the

prediction model based on the BEC kernel can solve the problem of accurate

segmentation of blurry glioma images. It demonstrates that the BEC kernel is a more

feasible, valid, and accurate approach than a lot of the recent year segmentation

methods. It is also an advanced and innovative model of prediction deducing from micro

BEC theory to macro glioma image segmentation.

Keywords: image processing, brain glioma image segmentation, prediction model, quantum mechanics, Bose-

Einstein Condensate

INTRODUCTION

Background
In brain image segmentation, the input brain image is provided,
and the precision of the segmented object contour output may
be judged by manual observation. However, the segmentation
procedure between the input and output stage is not a fixed
process. It may be based on predicting or applying a theory
borrowed from other research fields. For example, several
experimental studies show that the predictions used in the
transfer process from input to output are correct when they
are associated with the brain image segmentation. In that case,
we propose a new prediction model based on the theory of
the Bose-Einstein Condensate (BEC) to improve the process
of segmentation.

The BEC is a quantum ground state discovered by Bose
and Einstein describing the statistical distribution of bosonic
atoms when cooling to a shallow temperature (1). This external
temperature is called the quantum critical point and is associated
with a divergence of particle density (2). The quantum necessary
is different from the crucial classical point because as the
temperature decreases, density increases, and more particles
are forced into a single state (3). In addition, BEC has five
characteristics: (1) it does not behave independently, (2) has
dynamics properties of atomic condensate, (3) exhibits a change
of the symmetry with the gas density, (4) collapses into a
single state, and (5) may be described by a single and uniform
wave function (4). In BEC applications, most researchers have
focused on testing the dynamic processes of stability and phase
transition, the change of symmetry, wave function, etc. (5–
12). For example, Rajagopal and Muniandy (13) focused on
the dynamic processes of atomic condensate to couple with the
distinct dual reservoirs. Guo and Li (14) describes symmetry
and topology in a fractional non-linear Schrodinger system by
applying a wave function. In a change of symmetry application,
Haag et al. (15) used symmetry to analyze the processes of
pumping and absorption in optical waveguide systems. Tsatsos
and Lode (16) applied the change of the symmetry of gas density
to describe the appearance of resonances, that is, peaks in the
total energy appeared when the stirring frequency was increased.
In summary, the analysis of symmetry and wave function has
led to a wide range of applications in many technical and
scientific research fields. Here we take another BEC-important
feature of the dynamic processes of stability and phase transition
to offer essential characteristics in terms of image processing

that differ from the classical techniques used before. It raises a
crucial question: could the dynamical processes of stability and
phase transition of the BEC help us propose a novel prediction
model or method, especially in challenging application of brain
image segmentation?

The Concept of BEC and Glioma
Bose-Einstein Condensate (BEC) is a macroscopic quantum
phenomenon that is also called a dynamic single matter state.
When a Bose gas is cooled to temperatures close to absolute
zero, such as near 0(K) or −273.15(◦C), more and more bosons
atoms are moved into one lowest quantum state (17). The BEC
motion state was predicted by Satyendra Nath Bose and Albert
Einstein in 1924. As illustrated by Figure 1 (18), the left displays
the state before the appearance of a BEC, while the center
shows the state after the condensate formation, and the right
indicates the state of a nearly pure condensate. This reveals
that BEC is composed of three phases. The colors in Figure 1

indicate the number of particles at different speeds of orbit.
In the beginning of BEC condensation, some particles are in
the green region, represented by the low-speed orbit. During
the condensation process, the number of particles decreases in
the blue region, representing them at the lower speed orbit.
When the condensation is formed, all particles condense into
a single particle in the light blue region of the lowest speed
orbit. A peak on the right image indicates that the BEC
effect exists, while no peak on the left indicates that the BEC
effect does not exist. The velocity distribution can be given
by the width of the trough in the curvature formula. The
smaller the width of the trough is, the closer it approaches the
BEC condensed state. Therefore, based on both the color of
peak and shape of the trough, we can determine the stage of
BEC condensation.

Glioblastoma is the most common malignant brain tumor,
with about 40–60%. The average survival time of glioma patients
is 6–9 months (19). The image shape characteristic of a glioma
is an unclear contour with, at best, a visible cystic or ring
enhancement (20). According to recent animal studies, along
with limited epidemiological evidence, radiofrequency radiation
leads to an increased risk of brain glioma, especially in the case
of mobile phone addiction or long-term cell phone use (21).
It is because radiation with low energy can influence the wave
frequency of electrons outside the nucleus and the binding force
between particles, such as atoms and ions (22).
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FIGURE 1 | Bose-Einstein Condensate (BEC).

The Similarity Between BEC and Glioma
Glioma is one type of tumor that is caused by irritant factors,
such as radiation and nuclear, chemical, and microbial pollution.
In the following section, we will analyze the similarity between
the BEC and glioma according to two respective causes: a group
comprised of nuclear, chemical, microbial pollution, and another
comprised of electromagnetic radiation.

In mainstream quantum theory, the BEC has considered the
experimental proof of wave function collapse. It demonstrates
that the eigenstates of superposition collapse into a single
matter state. The quantum mainstream theory of superposition
collapse is relevant to microscopic particles. The human body is
composed of tiny particles that have a system of wave functions
(23). According to the Grand Unification Theory (GUT), the
decay of light rays is similar to wave function collapse (24). The
destruction of glioma, caused by radiation, also focuses on the
wave function collapse, as described by the BEC (25, 26). For
example, when atoms are approaching absolute zero, they move
much slower than at average temperatures. David Hudson has
speculated that the characteristics of a brain tumor at natural
temperatures have very close features to that at absolute zero (27–
29). Consequently, a glioma may cause the formation of the BEC
at room or higher temperatures.

In addition, an artificial synthetic cell might be considered
as a quantum-based electron molecular, with self-assembly and
metabolism change according to quantum electron excitation
and tunneling equations (30–32). In that case, the charge transfer
in the simulated cell may be viewed as a quantum particle-wave
trace (33). Living organisms under nuclear, chemical, and

microbial pollution might be simulated by quantum mechanical
theory (34). Tumor cells are abnormal in metabolism, structure,
and function. Their proliferation is greater than that of normal
cells. The hyperplasia of some tumor cells is thought to be caused
by irritant factors (35), such as nuclear, chemical, and microbial
pollution. Tumor cells might have similar properties to the
artificial cells, and so might be simulated by quantummechanical
theory. Therefore, we postulate that the image segmentation of
glioma can benefit from applying the principles and theory of
quantum mechanics, such as in the case of the BEC.

In the following section, we investigate the similarities
between glioma and the BEC through the analysis of their shape.
Figure 2A is a typical image of glioma1 and Figure 2B is a 2D
image of a BEC2. We can immediately see that the shape of the
glioma is similar in appearance to that of the BEC. For example,
all atoms tend to stick together when a BEC of a million atoms is
achieved under a shallow temperature. When a one million atom
BECs at the lowest temperature, all atoms tend to stick together.
According to the formula of quantum mechanics, the shape of
BEC condensation process can be expressed by an equation.
Similarly, due to irritant factors, if brain cells cannot balance
growth and division, a gliomamay develop into a shape similar to
that of the BEC. Therefore, we predict and assume that the glioma
shape might have the same quantum mechanics formulation as
that of the BEC.

1https://en.wikipedia.org/wiki/Glioma
2http://www.jupiterscientific.org/sciinfo/boseeinstein.html
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FIGURE 2 | Similarities between glioma and BEC. (A) glioma of T2W1, (B) 2D image of BEC. a: before the appearance of a BEC. b: just after the appearance of the

condensate. c: nearly pure condensate.

FIGURE 3 | The framework of the proposed method.

Figure 2 highlights similar properties in the shape of Bose-
Einstein Condensate (BEC) and glioma.

In the next section, we introduce our research on representing
the image segmentation prediction model for glioma using
BEC theory.

METHODS

Based on the similarity between BEC condensation and glioma
in appearance contour, this section explains the principle
and formula of BEC condensation to propose a contour
segmentation model that describes glioma. It proves the
similarity and representability between BEC condensation and
glioma formation in accordance with relevant theories.

In this section, first we study the formulation of the BEC and
propose a prediction model of brain image segmentation using
a BEC kernel. Second, we discuss the relationship between the

BEC kernel and quantummechanics and analyze the relationship
between the BEC kernel and the glioma features. Third, we
validate the BEC kernel approach using a Laplace distribution
and by Poisson distribution. Finally, we affirm the advantages of
the prediction model with the BEC kernel.

The framework of the proposed method is shown in Figure 3.

The Formulation of BEC
The BEC forming conditionmeans that the Boudreau wavelength
of the particle should exceed the distance between the particles.
Here, Bose-Einstein statistics are used to describe the equilibrium
state that any ideal gas should obey. The critical temperature
and critical particle density might be determined by the equation
below3. We assume that there is a perfect gas composed of N
bosons in the container of volume V when N bosons are in

3https://en.wikipedia.org/wiki/Bose%E2%80%93Einstein_condensate
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FIGURE 4 | The components of a pendulum.

balance; they satisfy the equation of Bose-Einstein statistics:

n(εi) =
1

exp[(εi−µ)/kBT] − 1
(1)

where n(εi) represents the number of particles with εi energy
in a balanced state. µ gives chemical potential, µ ≤ 0 and KB

represents Boltzmann’s constant, KB = 1.3806488× 10−23 (J/K).
T is the temperature of particles and Tc is the quantum critical
temperature, Tc = 0(K) or −273.150(C). If there is T ≤ Tc, the
BEC state occurs.

The BEC formula above is described by a square one negative
exponential function, and the square two exponential functions
express the Radial basis function (Gaussian) kernel for image
segmentation. It raises the question of whether there are some
relations between the two processes. The next part discusses
the two functions and proposes the prediction model for brain
image segmentation.

The Prediction Model With the BEC Kernel
Generally, the segmenting hyper-plane in image segmentation
is often represented by a separating kernel, such as the
Radial basis function (Gaussian) kernel or S kernel function
(36). The Gaussian kernel is a variant of the mathematical
approach, expressed by the square two exponential function, as
shown below:

G (x1, x2) = exp

(

‖x1 − x2 − µ‖
2

2σ 2

)

(2)

Typically, the variance σ = 0.125 and µ is the expected value.
Compared with Formula (1), we know that the distinction
between BEC and Gaussian functions is the number of the power
in the exponent. Particles of εi might instead be represented by a
node pixel x1 − x2 in the glioma image, so Equation (2) can be
rewritten as follows and named our BEC kernel:

G (x1, x2) =
1

exp
(

‖x1−x2−µ‖
KBT

)

− 1
(3)

Two super-parameters might be changed in the BEC kernel,
T and µ. The parameter T refers to the BEC temperature.

Its value in image segmentation can be determined after
experimentations. T value may be negative, while its suggested
range is from 0 to 10 based on the degree of BEC occurring. The
lower T value is, the more the phenomenon of the BEC appears.
The other parameter, µ, might be decided by experiment,
and its range is suggested to be from 0 to 7 based on BEC
physical features.

Similarly, for our BEC kernel for brain image segmentation,
we use this prediction model because the kernel arises from the
process of BEC formulation, which is a natural principle inside
a quantum mechanical theory that reveals the forming state in
microscopic particles, including the living cells. The BEC kernel
is raw and foresighted, and we believe it indicates and predicts an
utterly novel model. As a macroscopic world model, we omit the
magnitude of values in Formula (3) of 1.38 × 10−23 by replacing
it with 1.38.

The prediction model of brain image segmentation is:

G (x1, x2) =
1

exp
(

‖x1−x2−µ‖
1.38×(T)

)

− 1
(4)

where x1 − x2 indicates the position of a node. Initially, T is
the temperature of the particle and µ represents a chemical
potential. Here, in image segmentation, T and µ are parameters
determined according to the type of image. The prediction model
with the BEC kernel is the critical contribution of this article. The
differences between the kernels we proposed by using the BEC
and Gaussian are: (1) the quantum-mechanics theory informs the
BEC kernel function of the BEC. It follows from a similar forming
process, both for the glioma cell and BEC. The proposed BEC
kernel function is novel, predictive, and fits more with the laws of
nature than the Gaussian kernel. (2) The BEC is an exponential
function (1nth power, Linear) instead of an exponential function
(2nth Power) of the Gaussian kernel. It means that our method
has a lower time complexity and higher efficiency. It is required
for any image processing algorithm to be as efficient as possible.
Therefore, the execution time should be reasonable. It should be
polynomial and not factorial.

The detailed running steps and the algorithm of a prediction
model with the BEC kernel in image segmentation are
as follows:

(1) Input an original medical image
(2) Convert the points pixel (m, n) of the original image into a

one-dimensional matrix (x1, x2, . . . . . . )
(3) Use BEC kernel function: G (x1, x2) = 1

exp
(

||x1−x2−µ||
1.38×(T)

)

−1
to

train the dimensional matrix
(4) Classify (x1, x2,. . . . . . ) matrix into (0, 0, . . . . . . ) and (1, 1,

. . . . . . ) parts
(5) Output the part of the (0, 0,. . . . . . ) as the background and the

part of (1, 1, . . . . . . ) as the target region.

The Relationship Between BEC Kernel and
Quantum Mechanics
For over 40 years, quantum mechanics, especially string theory,
has been considered an ideal candidate to represent the laws
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FIGURE 5 | BEC kernel and Gaussian kernel with SVM for random nodes. (A) BEC kernel. (B) Gaussian kernel.

FIGURE 6 | BEC image (Left), Glioma image (Middle), and BEC kernel in SVM (Right).

of nature, including the composition of materials and life itself
(37). For example, Wei Tong, a Fields Medal winner, said, “All
the great ideas of physics are the by-product of superstring
theory” (38). This is based on the proposition that all around
us is composed of tiny vibrating strings and not particles (39).
So, vibrating strings and superstrings are the core theory of
quantum mechanics.

In essence, the vibrating string appears like the movement of
a pendulum (40). The vibrating pendulum shown by Figure 4

includes a mass m1 connected with m2 with a straight rod and
radius A. The other end of that rod is fixed in space and associated

with the center O of a cylinder with radius B, where the rod length
is l= b–a. Thus, the disk vibrates around point O. The equipment
takes the point B as the standard potential energy V:

V = g(b− a)
(

m1 +
m2

2

)

(1− cosθ) (5)

The formula above shows that string vibration can be presented
by an equation that includes the function of cos θ, namely, a string
vibrating move in the form of a cosine wave.

With the development of the string vibration theory, some
essential features of moduli stabilization are represented by
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FIGURE 7 | BEC kernel (Left) and Gaussian kernel (Right) for random nodes.

FIGURE 8 | BEC kernel (Left) and Gaussian kernel (Right) for Fisheriris nodes.

the KKLT (Kachru-Kallosh-Linde-Trivedi) model (41). First, the
KKLT moduli are installed in a de Sitter vacuum, for which the
super-potential energy of KKLT is:

W = W0 + AeaT , |W0 ≪ 1| (6)

whereW0 is flux and rendered constant, the a indicates the mass,
and T is the Käahler modulus. Thus, string theory, as described
by the KKLT moduli, is coupled. Being composed of a solid
interacting hidden sector of proportion A, and a tree-level Kahler
potential, K = −2 ln (Tb + Tb∗) 3/2, the scalar potential energy

of KKLT moduli is formed as:

V (t) = −a2A2e−2at/6t (7)

The equation above shows that a formula that includes the
negative exponent can present quantum mechanics movement.

In summary, quantum mechanics theory can be used to
represent the laws of nature, including the law of life, and it can
be described in the form of a cosine wave or function of a negative
exponent. The BEC kernel includes a negative exponent, as is also
the case for the KKLT model. The BEC kernel with its negative
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TABLE 1 | Values of T and µ for group 1.

T1W1_1 T5µ6 T5µ3 T-9µ3 T-9µ6 T6µ1

R 0.9973 0.9973 0.9973 0.9973 0.9972

P 0.7731 0.7724 0.7708 0.7689 0.7567

F 0.8710 0.8705 0.8696 0.8683 0.8605

T1W1_2 T4µ3 T7µ3 T-7µ5 T4µ6 T7µ6

R 0.9972 0.9972 0.9972 0.9972 0.9972

P 0.7457 0.7446 0.7430 0.7383 0.7367

F 0.8533 0.8526 0.8515 0.8485 0.8474

T2W1_1 T5µ4 T-7µ5 T-5µ1 T5µ5 T-7µ3

R 0.9972 0.9972 0.9972 0.9972 0.9971

P 0.9104 0.9081 0.9048 0.8937 0.8845

F 0.9518 0.9505 0.9478 0.9426 0.9380

T2W1_2 T-7µ4 T-4µ3 T6µ6 T-7µ2 T-5µ6

R 0.9973 0.9973 0.9973 0.9973 0.9972

P 0.9083 0.9010 0.8923 0.8873 0.8715

F 0.9507 0.9467 0.9419 0.9391 0.9301

exponent could also represent nature’s laws, especially for the
natural law of life.

The Relationship Between the BEC Kernel
and the Glioma Features
Several exciting questions now follow: Do material waves and
glioma have some common relationships? What are the internal
motions and deformations of materials? The different properties
of the material are generalized by other waves and might be
represented by the different wave equations (42). To solve these
problems, physicists create various wave equations according
to the various internal structures. High-frequency waves can
“order” nuclear spins to a specific oscillation. Usually, particles
of all physical nature behave like waves, and a wave function
describes their state. The wave function of a dimensional
harmonic oscillator is

ψ (ξ , t) =
∑

n
αne

−ξ2/2Hn (ξ) e
i(n+1/2)ωt (8)

A wave function with the oscillator above indicates the role of a
plural exponent. The latter may take the form of a Hamiltonian
with the self-adjoint operator in quantum mechanics. All the
eigenfunctions within Hamiltonian have the characteristic of
complete orthogonal basis (43). Defined in range (0, 2π), the
eigenfunction f (x) is:

f (x) =
∑

n=0
a cos nx+ b sin nx (9)

The factor of e∧i[(n+1)/2]ωt in Equation (8) might be written as:

ei(n+1/2)ωt = cos

(

n+
1

2

)

ωx+ isin(

(

n+
1

2

)

ωx) (10)

There is a connection between Equations (9) and (10) as of
e∧i[(n+1)/2]ωt and f(x) = acos(nx) + bsin(nx), because that

cos(nx) + bsin(nx) is the real part as a plural of e∧i((n+1)/2)ωt.
Both can represent the oscillation movement of particles. Our
previous research patent on the protein folding process proved
that f(x) = acos(nx) + bsin(nx) could represent the oscillation
of protein folding in a cell (44). Matthew Fisher et al. noted
a quantum coherence on macroscopic time scales while small
molecules and ions rapidly entangle in a surrounding wet
environment (45). Nuclear spins in molecules are also weakly
coupled to their environmental degrees of freedom. However, in
the case of brain cells, there is a prolonged phase coherence (46).
The complex quantum wave function includes a real part, the
magnitude of the amplitude, and the phase of the imaginary part.
It is analogous to a negative exponential function.

We have a wave function graph of e∧i((n+1)/2)ωt about
y-axis symmetry with e∧(–i((n+1)/2)ωt) and the BEC kernel as:

G (x1, x2) =
1

exp
(

‖x1−x2−µ‖
1.38×(T)

)

− 1
(11)

We can conclude that the BEC kernel is similar to the wave
function. However, the BEC can represent a change of energy,
emphasizing the process of changing. The BEC kernel also
has a relationship with the cell oscillation formula, where the
BEC kernel can describe a more complete and comprehensive
cell oscillation.

The relationship between the uncertainty of quantum
mechanics and the macroscopic world: one problem is the
probabilistic logical causal chain, and the other one is the logical
causal chain. To bridge these two kinds of causal chains, it is
necessary to normalize the probabilistic logical causal chain. The
normalized quanta can be regarded as the complete quanta or
set of quantum groups which are deterministic, causal, knowable,
and described by macroscopic laws. The unnormalized quantum
can only be regarded as a fragment of the complete quantum,
or a transient fragment representation of the complete quantum,
which is uncertain, random, and unknowable, following the
description of the causal chain of probabilistic logic.

The following are the theoretical proof sections. The Laplace
distribution equation and the Poisson distribution equation are
the spatial distributions of natural laws proved by probability.
They both involve the negative exponential factor of 1, similar
to our BEC kernel.

The Proof of BEC Kernel by Laplace
Distribution
Initially, when Laplace invented his Laplace distribution, he
wanted to see the law of nature as created by God (47–49). Here
we ask, in spirit, or organism of glioma: Is there an underlying
law with a distribution that the oscillation of a cell obeys?
In probability theory and statistics, the Laplace distribution,
named after Pierre-Simon Laplace, is composed of exponential
distributions. A Laplace (µ, b) is a random variable, and the
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FIGURE 9 | Image of group 1 and its best value image segmentation.
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FIGURE 10 | The tendency of best values T and µ for group 1.

FIGURE 11 | The best values for the six images of group 2.

Laplace distribution function is:

f (x|µ, b) =
1

2b
exp(−

µ− x

b
)

=
1

2b

{

exp(−µ−x
b

) if x < µ

exp(− x−µ
b

) if x ≥ µ
(12)

where µ is a location parameter and b is a scale parameter
sometimes referred to as the diversity, b >0. The BEC

formula is: exp
(

‖x1−x2−µ‖
1.38×(T)

)−1
. It has Y-axis symmetry with

exp
(

‖x1−x2−µ‖
1.38×(T)

)

, so the BEC formula is similar to Laplace

distribution of the equation, 1
2b

exp(− |µ−x|
b

).
In summary, the Laplace distribution represents a

natural law, and it helps explain a principle of nature,
including living cells, such as glioma. Our BEC kernel
describing internal structure of glioma is similar to
Laplace distribution.
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FIGURE 12 | Image of group 2 and its best value segmentation.

Frontiers in Medicine | www.frontiersin.org 11 March 2022 | Volume 9 | Article 794125

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Zhang et al. Brain Glioma Image Segmentation

TABLE 2 | Image of group 2 in the range of µ was from 2 to 6.7.

µ 2 3 4 5 6 6.7

LI 0.9961 0.9961 0.9962 0.9962 0.9961 0.9962 P

0.8709 0.8552 0.8797 0.8818 0.8634 0.8854 R

0.9293 0.9203 0.9343 0.9355 0.9250 0.9375 F

MG T11 0.9963 0.9963 0.9963 0.9963 0.9963 0.9963 P

1.000 1.000 1.000 1.000 1.000 1.000 R

0.9981 0.9981 0.9981 0.9981 0.9981 0.9981 F

AO I 0.9959 0.9959 0.9959 0.9959 0.9959 0.9961 P

0.9151 0.9066 0.9075 0.9066 0.9130 0.9417 R

0.9538 0.9491 0.9497 0.9491 0.9527 0.9681 F

MG T12 0.9961 0.9961 0.9961 0.9961 0.9961 0.9961 P

1.000 1.000 1.000 1.000 0.9955 0.9936 R

0.9981 0.9981 0.9981 0.9981 0.9958 0.9949 F

L II 0.9962 0.9962 0.9962 0.9962 0.9962 0.9962 P

0.9891 0.9962 0.9968 1.000 0.9943 0.9818 R

0.9926 0.9962 0.9965 0.9981 0.9952 0.9889 F

AO II 0.9952 0.9952 0.9952 0.9952 0.9952 0.9952 P

0.9939 0.9915 0.9922 0.9918 0.9946 0.9900 R

0.9945 0.9933 0.9937 0.9935 0.9949 0.9926 F

The bold words mean that the value is good and corresponds to a value that does not

change for different parameters.

TABLE 3 | Image of group 2 of the range of µ was from −2 to −6.7.

µ −2 −3 −4 −5 −6 −6.7

L I 0.9962 0.9962 0.9961 0.9961 0.9961 0.9961 P

0.8818 0.8818 0.8619 0.8749 0.8645 0.8746 R

0.9335 0.9335 0.9242 0.9316 0.9256 0.9314 F

MG T11 0.9963 0.9963 0.9963 0.9963 0.9963 0.9963 P

1.000 1.000 1.000 1.000 1.000 1.000 R

0.9981 0.9981 0.9981 0.9981 0.9981 0.9981 F

AO I 0.9959 0.9959 0.9959 0.9959 0.9959 0.9961 P

0.9075 0.9066 0.9075 0.9066 0.9130 0.9417 R

0.9497 0.9491 0.9497 0.9491 0.9527 0.9681 F

MG T12 0.9961 0.9961 0.9961 0.9961 0.9961 0.9961 P

0.9974 1.000 0.9955 1.000 1.000 0.9936 R

0.9968 0.9981 0.9958 0.9981 0.9981 0.9949 F

L II 0.9962 0.9962 0.9962 0.9961 0.9962 0.9962 P

0.9928 0.9962 0.9962 0.9869 0.9951 1.000 R

0.9945 0.9962 0.9962 0.9915 0.9956 0.9981 F

AO II 0.9952 0.9952 0.9952 0.9952 0.9952 0.9952 P

0.9899 0.9919 0.9897 0.9926 0.9915 0.9922 R

0.9925 0.9935 0.9924 0.9939 0.9934 0.9937 F

The bold words mean that the value is good and corresponds to a value that does not

change for different parameters.

The Proof of BEC Kernel by Poisson
Distribution
The Poisson distribution is also a theory in probability and
statistics. It is named after Siméon Denis Poisson, a French
mathematician. It describes an average rate law in a given space

TABLE 4 | Image of group 2 of the best value of µ was from −6.7 to 6.7.

Name of image µ µ

level 1 (LI) 6.7 −2 and −3

level II (LII) 5 −5

Multiple gliomas (MG) T11 0 to 6.7 −1 to −6.7

Multiple gliomas (MG) T12 2 to 5 −3 and −5

Anaplastic oligodendroglioma (AO)I 6.7 −6.7

Anaplastic oligodendroglioma (AO)II 6 −6

or time, with the condition that there is a given number of
events within a fixed interval. It can also be extended in several
disciplines for distance, area, or volume, and can even be used
as a random process model in the fields of astronomy, biology,
ecology, geology, physics, economics, image processing, and
telecommunications (50). In our space representation of image
segmentation, the Poisson distribution has its advantages and can
express a law describing a spatial distribution. The probability of
nodes in an image for a Poisson distribution is as follows.

Assume that nodes occur interval is 0, 1, 2, . . . The node rate as
the average number is designated Lambda λ and the probability
of observing node k in an interval is:

P
(

k events in interval
)

=
λke−λ

k!
(13)

Where e is Euler’s number, 2.71828. . . , it is the base of the natural
logarithms. The Poisson distribution is better in representing a
space probability distribution than a Normal distribution (51).
The equation for Poisson distribution is similar to the equation
of Laplace distribution, and they both include the factor-negative
exponent which is identical to the BEC kernel. Together, they
help prove that the BEC kernel is feasible and reasonable in
theory, given the negative exponent. The BEC kernel, thus, has
its theoretical basis both in quantum mechanics and natural law
as mathematics and statistical distribution.

In summary and based on the theory of quantum mechanics,
statistical distribution, and related research, this section proves
that the BEC kernel is suitable for glioma image segmentation.

The Advantages of Our Prediction Model
With BEC Kernel
This article has three advanced and innovative research
highlights. First, an advanced concept of predictive segmentation
is proposed. This model is not only a brain glioma image
segmentation model, but is also a prediction model, which
predicts the contour of a blurry medical image that cannot
easily be segmented. Second, the theoretical proofs deduce the
relationship between the micro theory of quantum mechanics
and macro glioma contours by using the micro formation
mechanism of a brain tumor to help the macro glioma
segmentation. Based on the quantum mechanics, the novel BEC
prediction kernel is the third frontier or research highlight of this
article. The detailed prediction models with BEC kernel are: (1)
the brain belongs to nature and is composed of molecules and
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FIGURE 13 | Shows the image segmentation of the best value of T for group 3.

ions. The theory of quantum coherence and nuclear spins can
express a law describing the formation of a brain tumor, including
that of glioma. Glioma formingmight be defined according to the
theory of quantum coherence and nuclear spins; that is, we can
use quantum coherence and nuclear spins, such as BEC and its
equation, to describe the forming process of glioma. Therefore,
the application of BEC theory to glioma segmentation has a
theoretical basis. (2) Small molecules and particles have quantum
coherence in the micro-world. However, in the macro world, the
nuclear spin of small molecules and particles is weakly coupled
with the degree of freedom of the environment. The nuclear spin
is very weak and can be easily changed by the environment. It is in
a way similar to the etiology and evolution mechanism of glioma.

We, therefore, conclude that the BEC kernel may represent
not only a law of nature but may also be used to analyze the
images of glioma usefully.

EXPERIMENTS

We performed five tests to investigate whether our proposed
BEC kernel with Support Vector Machine (SVM) can be used
to implement glioma image segmentation tasks. Test 1 aimed to
cluster nodes within a segmented set, and Test 2 considered the
same nodes within two groups. Test 1 and Test 2 confirmed that
the BEC kernel is effective in doing single or multi-classifications
and in realizing a segmented shape of nodes that are similar
to glioma formation. Test 3 investigates if the BEC kernel is

feasible for glioma image segmentation using 18 glioma images
divided into different types. Test 4 examined the performance
of the BEC kernel by comparing it against other existing cluster
methods in the literature. The images used in the tests are
selected both from the database4 and from reference papers.
Finally, test 5 aimed to do a further test compared with the
existing Convolutional Neural Networks (CNN) methods using
the challenging Brain Tumor Segmentation (BraTS) datasets and
clinical images for segmentation.

Test 1: Nodes in One Set
Test 1 explored the ability of the BEC kernel to cluster image
nodes. In this test, one set of random nodes is classified into two
distinct classes in two dimensions. One type of node formed a
circular central area and an annular region of a different radius.
By clustering using the BEC kernel and the Gaussian kernel,
we investigated whether the shape of the nodes clustered by
the BEC kernel appeared similar to the natural form of glioma
and whether it had a better ability than the Gaussian kernel to
cluster nodes.

Figure 5A shows the segmentation performed by the BEC
kernel of SVM (Support Vector Machine) for initially random
nodes. Figure 5B highlights the segmentation produced by the
Gaussian kernel of SVM for initially random nodes, and Figure 6
shows an image of Glioma (left), BEC image (middle), and the

4https://figshare.com/articles/Diffuse_Low_grade_Glioma_Database
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FIGURE 14 | Images of group 3 and their best value of T.
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TABLE 5 | Image of group 3 within range of T is from 0 to 6.

T 0 1 2 3 5 6

T11 0.9945 0.9945 0.9945 0.9945 0.9945 0.9945 P

0.8507 0.8507 0.8507 0.8507 0.8508 0.8507 R

0.9170 0.9170 0.9170 0.9170 0.9170 0.9170 F

T12 0.9952 0.9952 0.9952 0.9952 0.9952 0.9952 P

0.9923 0.9877 0.9896 0.9919 0.9898 0.9943 R

0.9937 0.9914 0.9924 0.9935 0.9915 0.9974 F

T13 0.9948 0.9948 0.9948 0.9948 0.9948 0.9948 P

0.8492 0.8492 0.8492 0.8492 0.8492 0.8492 R

0.9612 0.9612 0.9612 0.9612 0.9612 0.9612 F

T14 0.9955 0.9954 0.9955 0.9954 0.9955 0.9955 P

1.0000 0.9893 1.0000 0.9835 0.9999 1.0000 R

0.9977 0.9924 0.9977 0.9894 0.9977 0.9977 F

T15 0.9966 0.9966 0.9966 0.9966 0.9965 0.9966 P

0.9815 0.9927 0.9944 0.9886 0.9538 0.9815 R

0.9890 0.9946 0.9955 0.9926 0.9747 0.9890 F

T16 0.9961 0.9961 0.9961 0.9961 0.9962 0.9962 P

0.9905 0.9827 0.9827 0.9719 1.0000 1.0000 R

0.9933 0.9893 0.9893 0.9838 0.9981 0.9981 F

The red color indicates the best value and blue color indicates next best value for different

parameters that do not change.

TABLE 6 | Image of group 3 within range of T is from −1 to −6.

T –1 −2 −3 −4 −5 −6

T11 0.9945 0.9945 0.9945 0.9945 0.9945 0.9945 P

0.8508 0.8507 0.8507 0.8507 0.8508 0.8512 R

0.9170 0.9170 0.9170 0.9170 0.9170 0.9173 F

T12 0.9952 0.9952 0.9952 0.9952 0.9952 0.9952 P

0.9898 0.9920 0.9903 0.9900 0.9921 0.9936 R

0.9925 0.9936 0.9928 0.9926 0.9936 0.9944 F

T13 0.9948 0.9948 0.9948 0.9948 0.9948 0.9948 P

0.8492 0.8492 0.8514 0.8492 0.8492 0.8492 R

0.9162 0.9162 0.9175 0.9162 0.9162 0.9162 F

T14 0.9954 0.9954 0.9954 0.9953 0.9955 0.9955 P

0.9935 0.9910 0.9954 0.9744 1.000 0.9911 R

0.9945 0.9932 0.9954 0.9848 0.9977 0.9933 F

T15 0.9966 0.9965 0.9965 0.9965 0.9966 0.9966 P

0.9785 0.9606 0.9738 0.9592 0.9995 0.9785 R

0.9875 0.9782 0.9850 0.9775 0.9981 0.9875 F

T16 0.9961 0.9961 0.9962 0.9960 0.9961 0.9961 P

0.9936 0.9877 1.000 0.9701 0.9905 0.9798 R

0.9948 0.9919 0.9987 0.9874 0.9933 0.9879 F

The red color indicates the best value and blue color indicates next best value for different

parameters that do not change.

segmentation image by the BEC kernel of SVM (right). From
these figures, we observed that the BEC kernel of SVM simulates
the Glioma object better than the Gaussian kernel as the shape
of the central circle of the BEC kernel looks more similar to
the formation of glioma. Furthermore, the object in the glioma
image, the BEC image, and the segmentation image by the BEC

FIGURE 15 | Best values for the two images of group 4.

kernel all bear a similar underlying appearance of a central area
with an outer annular region.

Test 2: Nodes Clustered in Two Sets
Test 2 is divided into 2 parts. In part one, we compared the
BEC kernel of SVM and the Gaussian kernel of SVM to cluster
two initially random node patterns. Figure 7 shows that the BEC
kernel can cluster nodes more accurately when compared with
the Gaussian kernel of SVM, as we see that the BEC kernel was
able to press all the red-colored nodes while the Gaussian kernel
did not.

The second part of test 2 compared the results obtained for
the BEC kernel and Gaussian kernel using a Fisheriris node-set.
Figure 8 shows that the clustering of the BEC kernel is more
accurate than that of the Gaussian kernel as some of the nodes
were not classified correctly by the Gaussian kernel.

Test 2 indicated that the BEC kernel of SVM performs better
than a Gaussian kernel of SVM both in the case of an initially
random node pattern and of a Fisheries node pattern set. It
confirms that the BEC kernel is feasible in cluster images.

Test 3: Image Segmentation of Glioma
Test 3 aimed to train the super-parameters of T and µ to
investigate whether the BEC kernel can accurately segment
a representative range of actual glioma types. We chose 18
glioma images in four groups of differing types from the
MedPix R© database, which included nearly 59,000 brain tumor
images (https://medpix.nlm.nih.gov/home). These images were
all typical glioma medical images, and the test results represented
real-world segmentation performance. Group 1 was the type of
image known as T∗w∗ and included four pictures. It was the
typical type of glioma image, and we aimed to look for the best
values for both T and µ. Group 2 consisted of six shots: Level I,
Level II, Multiple gliomas T11, Multiple gliomas T12, Anaplastic
oligodendroglioma I, and Anaplastic oligodendroglioma II.
Group 2 was challenging for its complexity, and we aimed to

Frontiers in Medicine | www.frontiersin.org 15 March 2022 | Volume 9 | Article 794125

https://medpix.nlm.nih.gov/home
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Zhang et al. Brain Glioma Image Segmentation

FIGURE 16 | Image group 4 and its best value segmentation image.
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find a trend of the best value for µ. Group 3 comprised of
four T∗ images of Oligodendrocytes where we aimed to find the
movement for the best value of T. Group 4 contained images of
Hemangiopericytoma (a) and Pleomorphic yellow astrocytoma
(c). These were complicated gliomas, and we hoped to find the
trend for best values of T andµ in these types. The range of T and
µ was defined according to the occurrence of the BEC state. The
value for T was lower than 0, but we aimed to trace the process of
the BEC before and after the BEC state occurrence, so, the value
range of T that we tested is slightly extended from −10 to 10.
Similarly, the value range of µ was from−10 to 10 as well.

Image evaluation parameters P (Precision), R (Recall), and F
(F-measure) were used to assess and compare the consistency,
accuracy, and sensitivity, respectively (52), in the test results.
Precision (P) was the fraction of relevant retrieved instances and

determined how useful the results are: P =
sum(predict & true)

sum(predict)
.

Recall (R) Was the fraction of retrieved relevant instances and

showed how complete the results are: R =
sum(predict & true)

sum(true) .

The F-measure (F) is the harmonic mean of precision and recall.
That is, F = 2∗P∗R

(P+R) . A perfect image segmentation method

should produce a Precision of 1, Recall of 1, and F-measure of 1.
Meaning that all foreground pixels are correctly classified within
tests, correctly classified across all the trials, and the measure
approximately the average of the two when they are similar.

Group 1
Group 1 included four types of images: type T1w1_1, T1w1_2,
T2w1_1, and T2w1_2. For these glioma images, we tested the
value of T from −10 to 10 and the range of µ from −10 to 10.
The evaluation parameters of P, R, and F for group 1 are shown in
Table 1. The best value of T and µ are T= 6 and µ = 1 for image
T1W1_1, T = 7 and µ = 3 for image T1W1_2, T = 5 and µ = 4
for image T2W1_1, and T = −7 and µ = 2 for image T2W1_2.
The segmentation images of the best values T and µ for group 1
are shown in Figure 9, and the values of T and µ are displayed in
Table 1.

The best values of T andµ for group 1 are shown in Figure 10.
It shows that the best deals of T and µ are different for different
types of gliomas image. However, they are all in the range from
−7 to 7. The average best value of T is 6, and ofµ is 3. Next, based
on the average best value of T, we test the trend of the best value
of µ in group 2 and then push the movement of the best value of
T in group 3.

Group 2
In group 2, we focused on testing the trend for the best value of µ
based on the best average value for T of 6 in group 1. This group
included six images of three types, which have Levels [including
Level I(LI) and Level II(LII)], multiple gliomas (including MG
T11 andMG T12), and Anaplastic oligodendroglioma (including
AOI and AOII). With these images shown by Figure 11, we test
the value of µ, between 0 and 6.7, and from−1 to−6.7, while the
value of T is 6. The test results are shown in Tables 2, 3. The best
deal of µ is 6.7 and −2, −3 for Level I. The best value for µ is 5
and−5 for Level II. Values of µ from−6.7 to 6.7 are all good for
Multiple gliomas T11. Values of µ from 2 to 5 and −3 to −5 are

TABLE 7 | Image of group 4.

T, µ 1 2 3 4 5 6

T(a)

P 0.9967 0.9967 0.9967 0.9967 0.9967 0.9967

R 0.9600 0.9688 0.9646 0.9658 0.9635 0.9658

F 0.9780 0.9826 0.9804 0.9810 0.9798 0.9810

T(c)

P 0.9961 0.9961 0.9961 0.9961 0.9961 0.9961

R 1.000 0.9928 1.000 1.000 9952 0.9958

F 0.9980 0.9944 0.9980 0.9980 0.9956 0.9959

µ(a)

P 0.9967 0.9967 0.9967 0.9967 0.9967 0.9967

R 0.9637 0.9637 0.9648 0.9680 0.9536 0.9633

F 0.9799 0.9799 0.9805 0.9821 0.9747 0.9797

µ(c)

P 0.9961 0.9961 0.9961 0.9961 0.9961 0.9961

R 0.9929 0.9967 0.9996 0.9997 1.000 0.9957

F 0.9945 0.9964 0.9978 0.9979 0.9980 0.9959

The range of T and µ was from 0 to 6. The red color indicates the best value and blue

color indicates next best value for different parameters that do not change.

TABLE 8 | Image of group 4.

T, µ −1 −2 −3 −4 −5 −6

T(a)

P 0.9966 0.9967 0.9967 0.9967 0.9967 0.9967

R 0.9515 0.9616 0.9702 0.9767 0.9650 0.9650

F 0.9735 0.9788 0.9833 0.9866 0.9806 0.9806

T(c)

P 0.9961 0.9961 0.9961 0.9961 0.9961 0.9961

R 1.000 0.9888 1.000 0.9948 0.9979 0.9941

F 0.9980 0.9924 0.9980 0.9954 0.9970 0.9951

µ(a)

P 0.9967 0.9967 0.9967 0.9967 0.9967 0.9966

R 0.961 0.9611 0.9689 0.9645 0.9650 0.9535

F 0.9785 0.9812 0.9826 0.9803 0.9805 0.9746

µ(c)

P 0.9961 0.9961 0.9961 0.9960 0.9961 0.9961

R 0.9988 0.9998 1.000 0.9917 0.9998 0.9999

F 0.9974 0.9979 0.9980 0.9939 0.9980 0.9980

The range of T and µ was from −1 to −6. The red color indicates the best value and blue

color indicates next best value for different parameters that do not change.

suitable for multiple gliomas T12. Values 6.7 and −6.7 are good
for Anaplastic oligodendroglioma I (AOI). And, the values 6 and
−6 are good values for Anaplastic oligodendroglioma II (AOII),
as shown in Table 4.

The trend of the best value ofµ is shown in Figure 12. It shows
that the importance of µ has a slight change for different types.
Still, the positive and negative values of µ have the same trend,
except for the AOI image, and they almost have a symmetric
relationship for each image, except for the appearance of L I. The
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TABLE 9 | Our prediction model compared with reference methods.

Authors Method Precision

(mean)

Recall

(mean)

F- (mean)

Khan and Syed (53) GLCM 0.94–0.98 0.92–0.96 0.88–0.93

Song et al. (54) LMLE 0.73–0.90 0.80–0.87 0.76–0.88

Erus et al. (55) CP +PCA 0.99 0.46–0.62 0.53–0.66

Nabizadeh et al. (56) HbGO 0.82–0.89 0.75–0.92 0.70–0.86

Prakash and Kumari

(57)

Gaussian Mixture

Model

0.90–0.94 0.72–0.82 0.80–0.87

Kahali etal. (58) entropy-based

fuzzy

0.78–0.82 0.68–0.70 0.72–0.76

Ren etal. (59) improved fuzzy

clustering

0.88–0.90 0.71–0.80 0.78–0.85

Huang et al. (60) FCM + rough set, 0.95 0.70–0.81 0.80–0.87

Chen etal. (61) Disentanglement

and Gated Fusion

0.80–0.85 0.73–0.89 0.76–0.87

Our model BEC kernel 0.99 0.73–1.00 0.85–0.99

conclusion is that we can use the positive values of µ in place of
the negative values of µ when segmentation is not required, and
the best value range of µ is from 5 to 6.7.

Group 3
The best value of T test is shown by Figure 13, and the
Images shown by Figure 14 in group 3 were Oligodendrocytes
and included the T11, T12, T13, T14, T15, and T16. We
concentrated on testing the trend for the best value of T
based on the best average value of µ of 3 in group 1.
We tried the T value in the BEC formula from 0 to 6
and from –1 to −6. The results are shown in Tables 5, 6.
Values of T from 0 to 6 were all good for T11 and T13. The best
deal of T was 6 for T12. A T value of 0, 2, and 6 was suitable for
T14, and a T value of 2 was ideal for T15. T values of 5, 6 were
ideal for T16, and a T value of −6 was good for T11 and T13,
while a T value of −3 was good for T13 and T16, and T value of
−5 was good for T14 and T15.

We concluded that it is possible to include the positive values
of T instead of the negative values of T, if specific segmentation is
not required, and the best value range for T is from 2 to 6.

Group 4
In group 4, we focused on attempting to detect the best values for
both T and µ based on the value trends in the testing of group
2 and group 3. Group 4 images shown by Figure 15 included
two images: Hemangiopericytoma (a) and Pleomorphic yellow
astrocytoma (c). The changing trend of the values of T and µ

is shown in Figure 16. The best values in group 4 had the same
trend as group 1, group 2, and group 3.

The value range of T and µ were from −6 to 6, and as shown
by Table 7; we noticed that the best T value was 2 for image (a),
and 1, 3, 4 for the image of (c). The best value for µ was 4 for
image (a), and 1 and 5 for the appearance of (c). FromTable 8, we
observed that the best T value was −4 for image (a) and −1 and
−3 for (c). The best µ value was −3 for (a), −3, −4, −5, and −6
for the image of (c). Table 7 shows the detailed test parameters of
T and µ.

We concluded that the best value of T and µ are within the
range that we predicted at the beginning of the tests.

In summary, from the above eighteen tests, which were
divided into four groups of glioma images, we conclude that the
range of the values of T and µ are from −10 to 10, which is
larger than the standard range of T ≤0 and µ from 0 to 6.7 as
suggested by the underlying theory of the BEC approach. Our
test aimed to investigate whether the range of values would be
more extensive or if it included any unexpected results. However,
the results indicate a performance as predicted by calculation.
In addition, the best values that we tested are all within the
range of the BEC theory. Therefore, the four groups of 18 glioma
images proved that our proposed prediction model with the
BEC kernel is feasible and has a good performance for glioma
image segmentation.

Test 4: Comparison of Results With Other
Similar Methods
In this test, we compared our prediction model with the existing
cluster reference models and methods in the field of brain image
segmentation of about seven years, from the year 2014 to 2020
of reference (52–61), such as Gray-Level Co-occurrence Matrix
(GLCM), large margin local estimate (LMLE), Capturing statistic
(C.P.) + principal component analysis (PCA) and Histogram-
gravitational optimization (HbGO), Gaussian Mixture Model,
Disentanglement and Gated Fusion, and some improved
fuzzy clustering, namely, entropy-based fuzzy, improved fuzzy
clustering, and FCM+rough set. The mean comparison result
showed that our prediction model using the BEC kernel provided
higher evaluation values in Precision, Recall, and F-measure.
For example, for the value of P, the best value among reference
methods was 0.98, while for our process, all were more than
0.99. As for the value of R, the highest value of our BEC kernel
approach was 1 while the existing approaches had a value of
0.96. Moreover, the lowest R-value for our method was better
than the six reference papers except the three papers related to
GLCM, LMLE, and HbGO. Finally, our comprehensive value F,
which included P and R values, was better than all the methods
except for the Khan and al. approach (53), in which the F
value was between 0.88 and 0.93. Similarly, our approach returns
values that were between 0.85 and 0.99, which were a little bit
similar or higher. In the other cases, our F values were better
than the existing approaches. Therefore, we can conclude that
our prediction model using the BEC kernel had significantly
achieved better results than the existing methods. Table 9 shows
a comparison of methods.

Test 5: Comparison of Results With CNN
Methods Based on Both BraTS Datasets
and Clinical Images
Since CNN has been an innovative technology in recent
years, we added a comparative experiment with it. We used
the challenging datasets BraTS and clinical images for the
segmentation experiment to confirm the effectiveness of the
prediction model proposed in this article.
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FIGURE 17 | The segmentation of the image results of Brain Tumor Segmentation (BraTS).
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TABLE 10 | The evaluated segmentation results of Brain Tumor Segmentation (BraTS) datasets.

Ma et al. (62), Ours Zhou et al. (63), Ours Wang et al. (64), Ours Wu et al. (65), Ours Liu et al. (66), Ours Zhou et al. (67), Ours Our model

P 0.900, 0.9967 0.9159, 0.9545 0.964–0.968, 0.9978 0.906, 0.9878 0.993–0.997, 1.0000 0.870–0.962, 0.9945 0.9545–1.0000

R 0.850, 0.9138 0.8274, 0.8584 –, 0.9463 0.950, 0.8887 0.807–0.924,

0.952–0.9836

–, 0.9461 0.8584–0.9836

F 0.870, 0.9535 0.8694, 0.9039 –, 0.9714 0.928, 0.9356 0.948–0.9591,

0.975–0. 9917

–, 0.9697 0.9039–0.9917

FIGURE 18 | The example of patient images segmentation results.

TABLE 11 | The evaluated segmentation results of patient images.

Jia et al.

(68), Ours

Tang et al.

(69), Ours

Naser and Deen

(70), Ours

Our prediction

model

P 0.9652,

1.0000

0.933, 0.9961 0.89–0.92, 0.9623 0.9623–1.0000

R 0.9667,

0.9643

0.993, 0.9672 0.87–0.92, 0.9469 0.9469–0.9672

F 0.9659,

0.9818

0.962, 0.9814 0.88–0.92, 0.9545 0.9545–0.9818

For verifying the effectiveness of the method, two groups of
medical images with different datasets were further selected for
experiments: BraTS (the Brain Tumor Segmentation) Datasets
and clinical patents. Group 1 of BraTS datasets is used for
standard and challenging testing, and clinical patent datasets of
group 2 aimed at testing the practical effect. Group 1 images
were selected from BraTS 2020, 2019, and 2018 datasets, each
with modality volume of 240 × 240 × 155. Each sample was
composed of four modalities of brain MRI scans T1-weighted
(T1), post-contrast T1-weighted (T1ce), T2-weighted (T2), and

Frontiers in Medicine | www.frontiersin.org 20 March 2022 | Volume 9 | Article 794125

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Zhang et al. Brain Glioma Image Segmentation

Fluid Attenuated Inversion Recovery (FLAIR). Group 2 consisted
of 100 patient images which were selected from the clinical,
radiological, and hospital cases. The selected 100 tumor MRI
images included grades II, III, and IV with an image size of 256
× 256× 3.

Group 1
From BraTS2020, 2019, and 2018 datasets, we chose 150 cases
of the training sample, 50 cases for validation, and 25 cases
of test samples. The test segmentation examples are shown by
Figure 17 with the compared reference results (62–67). The
evaluated parameters are shown in Table 10.

In Figure 17, the first column represents the original image,
while the second column contains the reference segmentation
results. The third one is our segmentation results, and the fourth
column is our results compared with ground truth (G.T.). The
red color area is the G.T. results, while the blue one is our
segmented results. The overlapping of the blue and red zones
means that the segmented results are accurate. As for the images
compared with G.T., we can notice that the red and blue areas
almost overlap, indicating that our segmentation is accurate.
When compared with the reference images, our segmentation
contours are closer to the target area than the reference images.
The following segmentation has evaluated the parameters that
further prove the accuracy of our approach.

The reference papers in Table 10 represent the existing CNN
methods in glioma segmentation from 2018 to 2021. Concerning
the three evaluated parameters, P, R, and F, our values are all
higher than other approaches using the same images. As an
example, in the best-compared value by Liu and et al. (66),
published in 2021, their value of P is from 0.993 to 0.997,
but ours is 1. In addition, their R value ranged from 0.807 to
0.924, while our R value is between 0.9523 and 0.9836. Notably,
our lowest value, 0.9523, is higher than their highest value of
0.924. Even more, when comparing the value of F, our lowest
value is 0.975, which is also higher than their highest value
of 0.9591.

Group 2
Around 100 patient images were collected from 55 patients.
The MRI and CT images were collected from Beijing Tiantan
Hospital of China and were randomly divided into two sets with
38 patients as training set, four patients as validation set, and 13
patients as testing set (68). Forty-five patient cases were from the
clinical, radiological tumor images dataset (69, 70). The examples
from 100 test case results are shown in Figure 18 compared to the
reference results, and the evaluation parameters are indicated in
Table 11.

As shown in the second and third columns, our segmentation
contours are closer to the target contours. Our results presented
in the four-column images reveal an overlap between red and
blue areas, which confirms the accuracy of our segmentation
contours. The following evaluation parameters table proves that
our method results are better than existing methods.

Regarding the images of clinic patients, all our test values
of P, R, and F are higher than the values of existing methods.

For example, in the best test values of the approach of Liu
and et al. (68), P-value is 0.9652, R-value is 0.9667, and F
is 0.9659. When implementing the same test, P and F values
of our method are harmonic as P and R of 1 and 0.9818. It
means that our prediction model has better test values than the
existing models.

Both group 1 and group 2 test results demonstrated that
the proposed prediction model in this article has more accurate
segmentation in BraT datasets and has a comparative validity in
clinic patient datasets.

CONCLUSIONS

This article presents a new prediction model using the BEC
kernel to improve the glioma image segmentation. The proposed
BEC kernel is based on the quantum theory of the BEC state
model, a novel approach that was not previously explored for
image segmentation. First, the BEC theory was analyzed to
illustrate that applying the BEC kernel is feasible and potentially
advantageous for the image segmentation. Second, we formulated
a novel predictionmodel for image segmentation, based on a BEC
kernel. Third, a BEC kernel, which was innovatively derived from
quantum mechanics theory and other related research, was used.
Finally, experiments were conducted using both BraTS Datasets
and clinical images to validate our proposed prediction mode.
In conclusion, the proposed prediction model segmentation is
more accurate than the existing cluster methods and the most
commonly used CNN techniques for implementing brain image
segmentation tasks.

As a future work, we plan to investigate the problem of
medical image segmentation through the proposed prediction
model for more different types of medical images, especially for
tumors apart from brain tumors. In addition, we are planning to
test more theories in the quantum mechanics research field and
apply them in medical image segmentation.
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