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Abstract: Fish freshness can be considered as the combination of different nutritional and organolep-
tic attributes that rapidly deteriorate after fish capture, i.e., during processing (cutting, gutting,
packaging), storage, transport, distribution, and retail. The rate at which this degradation occurs is
affected by several stress variables such as temperature, water activity, or pH, among others. The
food industry is aware that fish freshness is a key feature influencing consumers’ willingness to
pay for the product. Therefore, tools that allow rapid and reliable assessment and prediction of the
attributes related to freshness are gaining relevance. The main objective of this work is to provide a
comprehensive review of the mathematical models used to describe and predict the changes in the
key quality indicators in fresh fish and shellfish during storage. The work also briefly describes such
indicators, discusses the most relevant stress factors affecting the quality of fresh fish, and presents a
bibliometric analysis of the results obtained from a systematic literature search on the subject.

Keywords: mathematical modelling; fish quality; fish freshness; bibliometric analysis; predictive
microbiology; stress variables; quality degradation

1. Introduction

The main causes of food discarding among consumers and retailers are the food
aspect, outdating, and safety uncertainty [1]. Damage and spoilage of foods lead to
around 15% of waste, which increases to 35% if food is subject to inadequate storage and
transport conditions [2,3]. Mathematical modelling describing the evolution of food quality
indicators, under given storage and transport conditions, is central to minimising food
waste [2]. Therefore, the prediction of fresh fish quality is a major challenge for the food
industry, distributors and retailers to adjust prices and minimise food waste.

Fresh fish and shellfish are highly perishable products due to their biological com-
position. Under normal handling chilled or refrigerated storage conditions, their shelf
life is limited by enzymatic, chemical and microbiological spoilage. Fresh fish is stored,
transported and distributed in boxes of high-density poly-ethylene filled with ice. Other
common conservation methods for fresh fish are the transport and storage in tubs with
water and ice or at superchilling temperatures [4,5]. From fish capture to consumer con-
sumption, there are several factors affecting fish quality, being temperature the most
relevant. The prediction of fish quality in all these cases is critical to determine the price of
the product and sell it before it is not of sufficient quality, or even safety, for the consumer.

Quality in fresh fish, and generally in food, is a broad concept that involves different
attributes (chemical, physical, microbiological, sensory) which can be measured either
directly or indirectly. In the last decades, several analytical techniques have arisen [6]
including biosensors to measure microbial pathogens or biogenic amines [7]; electronic
noses or electronic tongues for volatile compounds, K-value or TVB-N [8,9]; or hiperespec-
tral imaging to determine moisture content or texture [10,11]; among other. The selection
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of the analytical method depends on the selected indicator, but also on properties such
as accuracy, reliability, portability, rapidity, easiness to use and analyse the results, time
consumption and price. Ideally, the methods should be also non-destructive and non-
invasive [12]. Recent works [6,13,14] present exhaustive reviews regarding the different
analytical methods considered in the literature to measure the most commonly used quality
indicators for fish freshness assessment. Typically, assessment methods focus on fish quality
at the moment of measurement but are unable to predict quality changes in the following
days. Prediction requires the use of appropriate mathematical models. It is important to
mention that some authors, for instance, ref. [15–17], use the term predictive model to denote
models that correlate freshness indicators with experimental measurements (pH, TVB-N,
hyperspectral imaging, Electronic nose data, etc.). Typically, some type of regression is used
to obtain these models. Although these works are common and necessary, in this review,
we will use the term predictive for those models able to forecast the future evolution of the
freshness indicators. Otherwise, we will use the term assessment or estimation. Mathematical
models for the prediction of fresh fish quality are diverse and difficult to classify.

In this review, we propose the use of general features of the mathematical structure to
organise the different modelling alternatives, as illustrated in Figure 1. The final objective
of the model is either to estimate (using indirect online measurements) or to predict one
or more chemical, physical, microbiological or sensory attributes that are indicators of the
consumer’s perception. Such attributes (odour, texture, TVB-N, spoilage bacteria, etc.) are
the output of the model (blue part of the figure). The input of the model (red part of the
figure) can be any external factor (temperature, pH, fish feed, etc.) affecting the quality
indicators. The model (orange part of the figure) provides a quantitative relationship
between inputs and outputs either using empirical relationships or inspired by known
mechanisms of fish quality degradation.
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Figure 1. Fish quality models are described attending to their Quality attributes (Section 2), Stress
factors (Section 3) and models, i.e., mathematical relationships between attributes and stress factors
(Section 4).

This review is organised following the structure presented in Figure 1. It begins by
summarising the results of the systematic literature review performed to investigate the
most typical quality attributes used to define fish quality, including a brief description
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of the procedure followed to perform such a review. Secondly, it introduces the relevant
stress factors affecting fish freshness. Such stress factors can be split into two groups:
Pre-slaughter/slaughter conditions, and handling, storage and distribution conditions.
In Section 4, we review the mathematical relationships or models that allow us to describe
and predict fish quality attributes (outputs) as a function of the stress factors (inputs).
As a final remark, we will discuss what we think are the main challenges for modelling
fish quality and possible alternative solutions to consider in the future. As a general
rule, we will denote by fish quality any positive attribute, either nutritional, organoleptic
or a combination, in fresh fish, and therefore related to fish freshness. In this regard,
issues not related to fresh fish were not considered in this review, such as processed fish
(cooked, sterilised, etc.) or social aspects such as food security or production of added-value
compounds.

2. Quality Attributes (Model Outputs)

Food quality in fresh fish and fresh fishery products is a broad and complex concept
defined by a set of attributes (quality attributes) that are either nutritional, organoleptic, or a
combination of both. The levels (concentrations) of some chemical compounds describe
nutritional quality attributes. Examples of nutrients include vitamins, bioactive forms
of oligo-elements, essential amino acids, digestible proteins or unsaturated fatty acids,
among others. On the other hand, colour, texture, flavours or aroma are attributes defining
the organoleptic quality of a particular food product. Organoleptic variations in fish are
caused by changes in chemical, microbiological and physical properties. Sometimes, quality
attributes are defined by the level of a particular biological, chemical or biochemical factor
(e.g., the concentration of a given vitamin, nucleotide, enzyme, or bacteria, among others),
although usually, it is the result of a combination of different factors. For example, colour
is the (observable) result of a certain combination of pigments on a given food matrix that
have been produced or consumed under the action of many biochemical transformations.
Other quality attributes, such as freshness, are defined by the combination of nutritional
and organoleptic properties which deteriorate with time. Freshness can quantitatively be
described using different sensory scores, such as the Quality Index Method (QIM), or other
simpler indicators, such as the shelf life dating of a given food product, either to specify
the last date when the product must be sold (“sell by date”), the “high-quality” period or
the date when the product must be removed from the store [18].

We have analysed this diversity of quality attributes studied in the literature, and their
interconnections, by conducting a systematic bibliographic review and bibliometric analysis
of the articles (in the Web of Science Core Collection database, Food Science and Technology
category). Figure 2 summarises the procedure we have followed to perform the systematic
literature search.

Terms related to 
fish quality

Terms related to
fish names

Terms related to 
off-topic issues

NEAR/5

NOT

Abstract, title and
keywords analysis

New terms

Terms related to
modelling

1636 works

33 works

Full paper analysis

25 works

Figure 2. General scheme of the procedure followed in this manuscript to perform the systematic
literature search.
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Inside the dashed rectangle, we represent the iterative part of the procedure. First,
we constructed two lists. One of the lists contained terms related to fish quality, such as
freshness, K-value, and lipid oxidation, among others. The other one contained general
terms such as seafood or shellfish and fish species names. In the search, words from both
lists must appear in a major field (abstract, title or author keywords). We have found
many works that included words from both lists, in which the quality terms were not
related to fish. To avoid these situations, we used a maximum separation of five words
(NEAR/5) between the terms in both lists. This separation was chosen by the trial and
error method with the objectives of avoiding the exclusion of manuscripts within the scope
of this work (shorter separations) and minimising the number of off-topic manuscripts
(larger separations). Since the focus of this review is on fresh fish, we have excluded from
the search (NOT) those words related to off-topic issues such as processing (sterilisation,
modified atmosphere, etc.), production of added-value compounds (essential oils, gelatin,
etc.), food security or other social aspects, among others. The initial search still included
works not related to fresh fish quality so we identified, new terms that should be avoided,
and repeated the search. The list of terms included and excluded in the systematic search is
presented in Appendix A. This iterative procedure resulted in 1636 works. Details about
such works and a bibliometric analysis are available online in the repository [19]. In this
material, the interested reader can access 2 types of reports: a PDF file that includes the
main results of the general search, and 12 interactive reports for sub-collections defined as
the group of works where one of the 12 selected quality attributes is mentioned in a major
field. Table 1 summarises the results of the systematic review for each of the 12 categories or
groups. The table presents, for each category, the number of works, total citations, average
citations per work, and the most cited works.

Table 1. Most employed quality attributes in the literature. The number of total citations per year is
used to obtain the most cited articles. The terminology used for each attribute was: Lipid oxidation
(fatty acid*, lipid oxidation, TBA, TBARS, thiobarbituric), Sensory analysis (QIM, QSM, sensory
analysis, sensory evaluation, sensory method, TVB-N/TMA-N (TVB-N/TMA-N), Spoilage bacteria
(SSO, spoilage bacteria, spoilage microorganism*), Texture properties (texture, hardness, firmness),
Biogenic amines (biogenic amine*), Odour (odour, odor), Colour (colour, color, chromatism), Nutrients
(nutrient*, vitamin), Water content/activity (water content, water activity) and Electrical properties
(electrical properties, conductance, conductivity).

Quality Attribute Citation
Counts

No.
Works

Avg.
Citations per

Work
Most Cited Works

Lipid oxidation 10,875 474 22.9 Herrero [12], Richards and Hultin [20], Grigorakis et al. [21]
Sensory analysis 5295 209 25.3 Ólafsdóttir et al. [22], Al Bulushi et al. [23], Olafsdottir et al. [24]

TVB-N, TMA-N 4386 185 23.7 Pacquit et al. [25], Papadopoulos et al. [26], Ruiz-Capillas and
Moral [27]

Spoilage bacteria 3876 155 25.0 Al Bulushi et al. [23], Gram et al. [28], Dalgaard [29]
Texture 3587 176 20.4 Herrero [12], Olafsdottir et al. [24], Alasalvar et al. [30]

ATP degradation 3509 124 28.3 Ólafsdóttir et al. [22], Veciana-Nogués et al. [31], Jones et al. [32]
Biogenic amines 3282 112 29.3 Al Bulushi et al. [23], Veciana-Nogués et al. [31], Kim et al. [33]

Odour 3066 119 25.8 Papadopoulos et al. [26], Ramanathan and Das [34], Kawai [35]
Colour 2830 149 19.0 Pacquit et al. [25], Kuswandi et al. [36], Huang et al. [37]

Nutrients 704 62 11.3 Chakraborty and Raj [38], Moreda-Piñeiro et al. [39], Palaniappan
and Vijayasundaram [40]

Water
content/activity 573 32 17.9 Cakli et al. [41], Morzel et al. [42], Raju et al. [43]

Electrical properties 381 11 34.6 Olafsdottir et al. [24], Vaz-Pires et al. [44], Yao et al. [45]

Additionally, we have incorporated in the repository a PDF file that contains the
information included in the interactive reports. All the reports, iterative or not, include a
general analysis of the collection (including, for example, time span, collaboration index,
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authors per article, citations per year), and analysis of the countries, authors, articles and
journals. Networks of co-citations and keyword co-occurrences were also incorporated.
Moreover, the collections can be downloaded as an Excel file and the graphs and tables can
be manipulated to, for example, constrain the works to those where certain words, selected
by the user, are mentioned in the abstract.

Most of the manuscripts were research articles, dating back from 1949 and with
citations increasing homogeneously since then, except for two jumps in publications in
1977 and 2002. Around 100 works were published in 2021, the last year considered in
the review. The most cited works were written by Ólafsdóttir et al. [22] with a review on
methods to evaluate fish freshness and by Ryder [46] with a method to measure ATP and
its breakdown products to estimate the KI-value. The most productive countries have
been China, USA and Spain. These are also the countries where the documents with the
greatest impact (in terms of average article citations) were produced. Journal of Food
Science (145 documents), Food Chemistry (140 documents) and Journal of Agricultural and
Food Chemistry (72 documents) are the journals with the largest number of publications.
The most productive authors were from the northwest of Spain (S. P. Aubourg, Barros-
Velázquez), whereas the authors with the greatest impact were Ólafsdóttir and Dalgaard
from Iceland and Denmark, respectively.

After the iterative procedure was finished, we refined the search (see Figure 2) to find
those works related to mathematical modelling. We read the resulting 33 manuscripts and
kept those (25) that fitted within the scope of this review.

In the next sections, we define each of the attributes with references to the main works
in the area. For a deeper discussion about these quality attributes we recommend some
recent comprehensive reviews [6,13,14].

2.1. Lipid Oxidation

Lipid oxidation is the attribute gathering the greatest attention, both in terms of the
number of citation counts and of works, with a remarkable increase of publications during
the first decade of the current century remaining almost invariant during recent years.
The most cited researchers on this topic are M. P. Richards and Y. Ozogul. Although fatty
acids are also nutrients (described in Section 2.10), we have decided to consider them
separately because of the importance of lipid oxidation. Fish constitutes the main source of
polyunsaturated fatty acids (PUFA), up to 40% of long chain fatty acids [47], with quantity
and composition changing with the catching period and depending on whether the fish
is wild or cultured [21]. PUFA are easily oxidised into aldehydes, responsible for changes
in flavour, texture and odour, known as rancidity [6,12,20,22,48], and are highly affected
in most of the cases by previous fish bleeding [20]. In addition, the oxidation reaction
can decrease the nutritional quality of food and certain oxidative products are potentially
toxic [48]. Primary lipid peroxidation products (peroxide value being its most common
measure) include hydroperoxide that is unstable and decomposes to generate various
secondary products, such as aldehydes that contribute to fish rancidity [12]. The most com-
mon method to measure aldehydes is the thiobarbituric acid-reactive substance (TBARS)
test [22].

The main advantage of this indicator is that the oxidation of unsaturated lipids pro-
duces alterations in smell, taste, texture, colour, and nutritional value [22]. Therefore,
it provides us with a global measure of fish freshness. However, analysis of PUFA is a
destructive method so the fish sample analysed cannot be commercialised.

2.2. Sensory Analysis

Despite being the second most relevant quality attribute in terms of publications (with
G. Ólafsdóttir being to a large extent the most cited author), sensory analysis is the most
used method to assess freshness, probably because it depends on a combination of the other
quality attributes [22]. In this group, we include any form of measure or interpretation of
fish freshness perceived by the senses of sight, smell, taste, or touch. They can be assessed



Foods 2022, 11, 2312 6 of 26

by a trained panel or by consumers’ subjective opinions about preferences. The most
common method in Europe is the Quality Sensory Method (QSM) based on the Council
Regulation (EC) No 2406/96 for marketing standards [49]. The output of this method is a
discrete value that classifies fish in four levels of freshness (Extra, A, B, and Not Admitted).
This method is based on shared characteristics in fresh fish and therefore is common to
different fish species. For specific tests, the most common method is the Quality Index
Method (QIM) [50]. The output of the QIM is also a discrete value (0, 1, 2, . . . , n), where
lower values correspond to fresher fish. The criteria to select the value and the number of
levels (n) depend on the fish species considered.

The main advantages of these methods are: (i) they are minimally invasive, and do
not involve the destruction of the sample, since the sense of taste is not included; (ii) they
can be used to estimate fish shelf life by agreeing from which level the food is not con-
sidered of sufficient quality to be sold to the consumer; (iii) instead of focusing on one
particular feature, they provide a global evaluation of fresh fish. However, sensory analysis
methods are highly subjective and depend, to a large extent, on the expertise of evaluators.
The cost associated with the use of a panel of evaluators is another disadvantage. These
disadvantages can be alleviated by using analytical techniques -colourimeters, electronic
noses, hardness testers- instead of a panel of experts .

Another alternative is the Global Stability Index (GSI), a score gathering the influence
of many attributes, sensory or not. The GSI is computed using the following general
expression [51]:

GSI = 1−
n

∑
i=1

αi
Ai − Ai,0

Li − Ai,0
(1)

Ai and Ai,0 are, respectively, the values of a given attribute, for example, TVB-N or K-value,
at assessment time t and at initial time t = 0. αi is the weight given to each attribute, n is
the total number of attributes considered, and Li is the spoilage threshold for attribute Ai.

2.3. TVB-N/TMA-N

The formation of volatile nitrogen bases, such as trimethylamine (TMA-N), dimethy-
lamine (DMA), or ammonia, from the reduction of trimethylamine oxide (TMAO), is a
widely investigated cause of fish odour. There was a substantial increase in interest during
the 10 years after 1996, being Ruiz-Capillas the most cited author. The total amount of
volatile bases (TVB-N), as well as individual methylamines, have been extensively used as
indicators of quality degradation in postmortem fish [52,53]. The reduction reactions are
catalysed by bacteria such as Shewanella spp. or Pseusomonas spp., during fish spoilage [54].
Some authors [17,26,52] have argued that these volatile bases are poor freshness indicators
for some fish species because of the low content, or even absence, of TMAO. However,
the FAO specified a maximum allowable level in international trading of 10 mg of TMA-
nitrogen per 100 g fish muscle [55].

2.4. Spoilage Bacteria

Research works regarding this quality attribute have increased since 1994 without
any deceleration in the last years as previously described attributes. Dalgaard, Gram and
Bulushi, are, markedly, the most cited authors. Fish freshness deteriorates rapidly with
the growth of Gram negative psychrophilic or psychrotrophic bacteria, named spoilage
bacteria (SSO), due to their ability to reduce TMAO and to produce hydrogen sulphide [28].
Common spoilage bacteria of fish at chilled temperatures are: (1) Shewanella putrefaciens
for being H2S-producing bacteria and with acceptability limits around 107 CFU/g [56]
or even slightly higher 107.02 CFU/g [57], (2) Pseudomonas spp. with the same
acceptability limits [56–58], or larger when analysing for example Pseudomonas psychrofila
(108.5 CFU/g [59]), and (3) broad measurements such as Total Viable Counts (TVC) with a
limit of 106 CFU/g [16]. More information can be found in [28,60,61].



Foods 2022, 11, 2312 7 of 26

Since microbial growth and metabolism is the major cause of food spoilage [62],
spoilage bacteria is a key indicator of fish freshness and shelf life. The main disadvantage
is that the procedure to determine bacterial concentration is tedious and time consuming.

2.5. Texture Properties

Bibliometric analysis for texture attributes reveals that many works mentioned this
attribute without being the focus of the work. Among the works considering texture
as a relevant focus, we would like to highlight the review on fish texture [63] and a
research article assessing texture, among other chemical and sensory characteristics, of sea
bream [30].

Texture can be evaluated using minimally invasive techniques. However, contrary
to other food matrices, such as beef, texture in fish is not usually regarded as a relevant
freshness indicator, particularly when considering fresh fish. As mentioned in [64], it
should be considered in combination with other indicators, such as colour and odour. Use
of texture as a fish quality indicator limits to either cooked or frozen fish stored for long
periods, where an increase in toughness and dryness of the tissues can be observed [63].
After cooking, the taste of fresh fish is associated with firm meat that goes to dry, crumbly
with short, tough fibres for deteriorated fish. However, raw fish maximum toughness
commonly occurs after 1–2 days of storage, corresponding to the minimum pH and rigor
mortis [63]. Texture properties are typically considered in the evaluation of the QIM [65].

2.6. ATP Degradation

Although the number of citations places this attribute in the sixth position, it is the
third one in average citations per work. Most of the works were published in the nineties
and during the past 10 years, with G. Ólafsdóttir being the most cited author .

After fish death, ATP transforms, within the first 24-48 h, into inosine 5′-monophosphate
(IMP) in three steps, producing adenosine diphosphate (ADP) and adenosine monophos-
phate (AMP) [66,67]. IMP degradation continues on a cascade of reactions that produces
Inosine 5′-monophosphate (Ino) and hypoxanthine (Hx), which is further decomposed in
other compounds such as xanthine and uric acid [52,67]. This cascade of reactions occurs
in the order of days to weeks, depending on the storage temperature and bacterial con-
centration [68]. IMP is related to the pleasant sweet and meaty flavors in fresh fish, umami
flavour [69,70], whereas Hx is responsible of unpleasant bitterness [71,72]. The K-value
and KI-value are two of the most widely employed indicators to evaluate freshness. They
are defined as the following function of the ATP degradation products [68,73–76]:

K-value =
Ino + Hx

ATP + ADP + AMP + IMP + Ino + Hx
· 100 (2)

KI-value =
Ino + Hx

IMP + Ino + Hx
· 100 (3)

The K-value has been also correlated with the freshness of different fish species [73].
The authors found that very high grade corresponded with K-value lower than 10%. High
grade individuals had K-values lower than 20% or 30%, depending on the fish species.
Fishes with K-value up to 50% correlated with medium grade. Finally, K-value larger than
50–70% was obtained for low grade samples.

The main advantages of indexes based on the degradation of ATP (K-value, KI-value)
are their reliability [66] and, as mentioned above, their direct connection with fish flavor.
The main disadvantages are that the evaluation of K-value or KI-value requires the destruction
of the sample and their usefulness depends on the fish species being examined [64].

2.7. Biogenic Amines

Works studying the correlation between spoilage and biogenic amines are homoge-
neously increasing since the nineties, being the most cited articles by Bulushi, Ruiz-Capillas
and Vecianogues. Biogenic amines here are non-volatile amines (histamine, cadaverine
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and putrescine) formed by decarboxylation of amino acids (histidine, lysine and ornithine,
respectively). Although TMA-N and TMAO are also biogenic amines, they are not consid-
ered in this group because TMA-N is volatile and it is a result of the degradation of TMAO,
therefore being one of the main contributors to the formation of TVB-N, as discussed in
Section 2.3. Within non-volatile biogenic amines, histamine is the most studied due to its
toxicity and allergic potential, but it is unable to correlate with the level of spoilage for
different fish and conditions [23]. Cadaverine is the biogenic amine that can be used as
a spoilage indicator (for example, for salmonid fish, values less than 10 mg/kg indicate
good quality [77]). Putrescine, however, is not a good spoilage index because its amine,
ornithine, is not present in all fish species (for example, it is missing in tuna). Alternatively,
there are amine indexes combining different biogenic amines such as the amine index (AI):

AI =
putrescine + cadaverine + histamine

Total amines
· 100

Total amines = putrescine + cadaverine + histamine + tyramine+

tryptamine + methylamine + spermidine + spermine

or the chemical index:

Chemical index =
putrescine + cadaverine + histamine

1 + spermidine + spermine

For relationships between amine content and spoilage level for different fish species,
the reader is referred to Table 2 in [23].

2.8. Odour

The number of citations, works, and average citations per work, regarding this at-
tribute, are similar to ATP degradation and Biogenic amines but with a homogeneous
distribution of the number of articles per year. X. Y. Huang and V. Papadopoulos are the
authors with the largest number of citations regarding this attribute. Same as texture and
colour, this quality attribute is usually studied in the literature together (or even correlated)
with other attributes. The major aromatic compounds identified related to spoilage levels
are fatty acids profiles, aldehydes, ketones, trimethyl amine (TMA), and volatile organic
compounds [78]. Typically, studies focus on assessing odour following one standard sen-
sory index (see, for example, ref. [26], for sea bass assessment). Commonly, freshness is
associated with iodine shellfish and seaweed smell, and spoiled fish with muddy, putrid,
faecal, pungent, smell to ammonia or ink smell in cephalopods and acidic in shrimps.
Odour can be evaluated using non-invasive methods. However, using a panel of evaluators
to assess this indicator is subjective and expensive. Analytical methods could be used to
analyse aromatic compounds. However, in most cases, this would involve the destruction
of the sample. Although, if electronic noses are properly calibrated and validated odour
can be a very interesting quality indicator .

2.9. Colour

Despite being an important indicator for consumers, it is one of the attributes with
the lowest number of citations and average citations per work. However, the interest of
the scientific community seems to increase during the last 15 years. The most cited author
in this field is A. Pacquit. Colour changes have been also used as an indicator for quality
degradation in combination with other attributes or as a part of sensory analysis. Colour
degradation kinetics are the result of changes in the pigments due to some biochemical
transformations. For example, the oxidation of myoglobin and haemoglobin turns the flesh
colour from red to brown. As pointed out by [6], some compounds present in fish, such as
amines or ammonia, may react with the oxidised liquid causing serious browning.

The main advantage of using this feature to assess quality is that, as mentioned above,
it is an important indicator for consumers. Besides, colour measurements can be obtained
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using non-invasive or minimally invasive techniques. However, fish skin is heterogeneous
in many species. Therefore, the results provided by devices to measure colour, such as
colourimeters, will vary depending on the regions of the skin being measured. A trained
panel of experts could be used to globally evaluate the colour of fish skin. However, this
alternative has the same disadvantages mentioned for sensory analysis and odour, i.e., it is
expensive and subjective.

2.10. Nutrients

Fish is highly appreciated as a healthy food product [16,79,80] mainly because it is rich
in nutrients such as high-quality proteins, fatty acids, and vitamins, among others. However,
despite its importance, nutrients are not usually considered as a factor for determining fish
freshness, except for the study of fatty acids, already considered in Section 2.1. This is the
attribute with lower average citations per work, being the most cited author K. Chakraborty
with 48 citations. Most of the highly cited manuscripts found in the systematic search regarding
nutrients focused on different aspects [38–40,81], such as the characterisation of vitamin
compounds; the use of fish oil; correlations between arsenic bioavailability and nutrient
content; among others, not directly related to fish freshness. This is probably because the
rate of degradation of most nutrients is slower than other indicators such as the QIM and
when changes are noticeable, fish is already spoiled. Another disadvantage is that the
assessment of nutrient content requires destructive methods.

2.11. Water Content/Activity

The number of citation counts and the average citations per work for this attribute are
the second lowest in the list, after nutrients. This is probably because it is usually considered
a stress factor and not a quality indicator itself. The most cited author is S. Cakli. Water
content is related and can be described from water activity using the moisture sorption
isotherm curve. Although this relationship is a non-linear function, water content increases
with water activity and vice versa, and therefore both are essential quality parameters
related to important textural attributes such as juiciness [12], mainly related to texture and
flavour. However, as in the case of other indicators, destructive methods are used for the
assessment of water content.

2.12. Electrical Properties

This attribute has gained the lowest attention in terms of the number of works. How-
ever, works focusing on this attribute are highly cited, with a review of different multi-
sensors gathering most of the citations [24]. In fact, the average number of citations per
work is the largest of all attributes considered in this review. Enzymatic and bacterial
decomposition of proteins and lipids after fish death results in the formation of charged
molecules which increase the electrical conductance (EC) of the muscle [6,82]. The loss
of this kind of nutrients can be, therefore, correlated with the increase of EC. Autolytic
spoilage is also responsible for cell membrane disruption, which allows the liquids to pour
out increasing the EC [24,45].

The main advantage of this indicator is that it can be measured using minimally inva-
sive techniques, avoiding the destruction of the sample. However, the correlation between
EC increase and freshness degradation must be performed for the different fish species.

3. Stress Factors and Their Usual Models (Additionally, Named Secondary Models)

Food quality attributes are conditioned by the food matrix microstructure and compo-
sition as well as by several stress or environmental variables [18]. Chronologically, those
factors modifying fish quality can be classified attending to the origin and slaughter condi-
tions of the fish (pre-slaughter and slaughter) and due to handling, storage and distribution.

Fish composition and matrix microstructure depend on many factors such as the
fish species, its size, age, and gender, whether it is lean or fat, fresh or saltwater fish,
the fish feed, catching period (seasonal variability), geographical area or temperature of
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the catching waters. For example, fat, and therefore lipid oxidation, highly depends on the
catching period and on whether the fish is wild or cultured [21]. Another example would
be the cadaverine level which is considered a good spoilage index for wild fish, but not
for aquaculture fish [23]. The slaughter procedure also affects fish quality. For example,
bleeding affects lipid oxidation, preventing this oxidation in minced trout whole muscle,
minced mackerel light muscle, and intact mackerel dark muscle [20]. Commonly, these
factors are not modelled and, therefore, they are not considered in this review.

During handling, storage and distribution there are many external factors (stress
factors) accelerating fish quality loss. Some attributes, like texture, can be affected by the
just after-slaughter conditions, such as the glycolysis and rigor mortis, leading to gaping [63].
However, in general, outside-of-fish variables during storage and distribution are the
parameters that can be manipulated to extend freshness and they are usually the focus of the
mathematical models. Temperature is undoubtedly the most important and studied factor,
although others such as pH [17] or CO2, when stored under a modified atmosphere [83],
have been also considered.

There are different ways of modelling the influence of temperature. Roughly, the mod-
elling approaches can be classified into two groups: (i) models considering a direct influence
of the temperature on shelf life, and (ii) models describing the effect of temperature on
the degradation of biochemical compounds or on bacterial growth, which are then related
to freshness. The first type consists of pure empirical input/output relationships. These
models are discussed in Section 4.1. The second type consists of mechanistic-based relation-
ships. These models do not provide a direct input/output expression, but a function of the
relationship of temperature with a kinetic parameter with a major role in any of the quality
attributes or outputs.

Certainly, the most common model to describe the effect of temperature, at least when
the output of the model is a product of one or more biochemical reactions, is the Arrhenius
model [84]:

K(T) = A exp
(
−Ea
RT

)
Arrhenius model

where K(T) is a degradation rate that depends on the Temperature (T) through an exponen-
tial expression. A is the pre-exponential factor, Ea is the reaction activation energy, and R is
the universal gas constant.

The influence of temperature on bacterial spoilage (output) is more complex, with many
models available in the literature [60], including the Arrhenius equation. Nevertheless,
the most common one is the Ratkowsky or square root model to describe the change in
maximum growth rate (µmax) [85]:

µmax(T) = [b(T − Tmin)]
2 Ratkowsky model

being Tmin the temperature at which growth is zero, and b the factor shaping the curvature
of the function. The same functionality can be used to model the effect of temperature on
the lag phase of spoilage bacteria [57].

Although the temperature is the major factor affecting fish freshness, there are other
relevant stress variables such as pH (a major factor in texture [63]), water activity, salt
concentration or concentration of CO2 in packed fresh fish. The models in those cases are
not so common and are of many different forms [60]. The reader is referred, for example,
to the gamma concept to model the joint effect of several stress variables [86,87].

4. Models (Relationship between Model Inputs and Outputs)

The diversity of mathematical models for fish quality assessment emerges
mainly from the diversity of the fish quality attributes previously described and from
the complexity of the fish freshness concept. In the systematic review, we found 25 records
where mathematical modelling of one or more attributes is included. These
records [16,17,45,51,52,56–60,67,68,80,88–99] were revised and their main modelling in-
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formation was included in the tables presented in this section. The objective of this section
is to provide an overview of the most common approaches found regarding the mathemati-
cal modelling of fish quality/freshness.

In general, screened models are deterministic, lacking uncertainty analysis, and most
of them are semi-empirical and described in the so-called closed-form expression, i.e., they
are described by algebraic equations with a finite number of terms without derivatives or
integrals. Fish quality usually depends on macroscopic variables that can be described using
deterministic models, i.e., models without considering any random effect, thus providing
the same solution for different simulations performed under the same conditions. Stochastic
models, on the contrary, assume some random behaviour intrinsic in the dynamics resulting
in stochastic differential equations. In that case, any realisation of the model provides a
different solution. They are usually required when modelling food safety, but not for quality,
where low numbers of certain variables (such as a low number of pathogenic bacteria)
are decisive to assess the risk of foodborne illness [100,101]. Probabilistic models, on the
other hand, lack dynamical equations or include the probabilistic part in the parameters of
the dynamic. They are relevant when considering uncertainty (due to lack of information,
measurement error or noise [102]) and/or variability (due to differences in the model
parameters caused by, for example, changes in food matrix or spoilage bacteria strains [95]).

Attending to the type of mathematical equations, fish quality models are usually
presented in their closed-form and they are based on empirical expressions used to represent
certain behaviours, such as exponential growth [45,91]. When models are inspired by first
principles with mechanistic or semi-mechanistic formulations, a closed-form expression
may not exist, be unknown, or be too complex for practical use. In these cases, the model is
directly described by differential Equations [68,96], requiring proper numerical methods
for their resolution and calibration [103,104]. Models expressed in their differential form are
also required when the stress variables or other model parameters (growth or degradation
rates, diffusivity of a given compound, etc.) vary during storage and transportation.

When attending to the specific features of fish quality modelling, we found four
different types of modelling approaches attending to their objective:

• Shelf life soft sensors are models that consider a direct input/output relationship.
They consist of empirical functions, denoted by soft (from software) or virtual sensors.
Typically, the input and the output are, respectively, temperature and shelf life.

• Quality soft multi-sensors are models considering a general mathematical expression
that can be applied to describe more than one attribute.

• Quality ad hoc models are mechanistic-based models with equations specifically
derived for one particular quality attribute.

• Sensory or shelf life models are models providing as their output a sensory score or
shelf life date. However, they also require the intrinsic modelling of one or several
quality indicators (such as spoilage bacterial content). To this purpose, they typically
consider a quality ad hoc model. These sensors are also named smart when they are
used not only for assessment purposes but for prediction of different degrees of fish
quality as well [97].

This classification will be used to structure this section.

4.1. Shelf Life Soft Sensors (Input/Output)

In the literature, there are two common expressions to model the dependence of shelf
life (SL) with temperature (T). Such expressions coincide with the ones used to model
degradation rates or bacterial growth as a function of the temperature. On the one hand,
sensors assume an exponential dependence of shelf life with the temperature (Shelf life
decreases exponentially when increasing temperature [90]) of the form:

SL(T) = SL0 exp (−b T) Exponential empirical shelf life model
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with SL0 being the shelf life at T = 0 °C and b a parameter that represents the degree of
influence of the temperature on the shelf life. If shelf life is highly affected by temper-
ature, parameter b will be large, otherwise, it will be close to zero. On the other hand,
the Arrhenius empirical shelf life model [56] has been also considered in the literature:

SL(T) = SLre f exp

[
Ea
R

(
1

Te f f
− 1

Tre f

)]
Arrhenius empirical shelf life model

where now shelf life at an effective temperature Te f f is calculated from a reference shelf life
SLre f at temperature Tre f . Ea is the activation energy and R the universal gas constant.

There are many variations of these equations such as the school-field [98], the Expo-
nential RRS (Relative rate of spoilage) model [105] or the square-root RRS model [85,98]
that were inspired by limiting the levels of spoilage microorganisms. Shelf life can also
be estimated from different quality attributes, such as the level of the spoilage bacteria.
However, these are more sophisticated expressions that require modelling these attributes
as described in Section 4.4.

Although shelf life is an important issue, the main disadvantage of these models is
that they do not provide a measurement of the current freshness state of the fish.

As shown in Table 2, only three references considering shelf life soft sensors models
were found in the systematic search. Each of these references focused on one particular fish
species and the authors use one or two modelling alternatives. Therefore, there is a need
for works focusing on different species. A comparative study of the different modelling
approaches would be also required.

Table 2. Summary of the shelf life soft sensors models found in the literature search.

Output Matrix Model References

Shelf life Bogue SL(T) Arrhenius emp. Taoukis et al. [56]
Shelf life European sea bass SL(T) Exponential emp. Limbo et al. [90]
Shelf life Large yellow croaker SL(T) Exponential emp. & school-field Quanyou et al. [98]

4.2. Soft Multi-Sensors

There are general mathematical formulations that may describe major trends in
growth/increase or degradation/decay of a group of attributes. The direct advantage
of this approach is that the same model structure is used for different quality indicators
by adjusting the parameter values to fit the experimental behaviour of each indicator.
However, the mechanisms of degradation are not considered. This results in too generic
expressions that are mainly based on empirical correlations. Therefore, they cannot be ap-
plied to understanding attributes with complex dynamics (such as when the property does
not increase or decrease monotonically). Besides, since the mechanisms are not considered,
the predictive capabilities of these models are limited to the experimental conditions used
to adjust the model parameters. The results provided by this approach are less reliable than
the results obtained with the ad hoc models presented in the following section.

Let us denote by Ai (i = 1, 2, . . . m) a given quality attribute that depends on time (t),
and usually on temperature (T). m is the total number of attributes considered.

The simplest multi-sensor is based on the Weighted regression coefficients model [17].
This model relates one or several outputs (Ai) with several inputs or stress variables (Sj)
using a linear expression of the form:

Ai =
w

∑
j=1

ai,jSj + ai,w+1 i = 1, . . . , m Weighted regression coefficients model

Sj typically includes temperature, but other stress variables, such as pH, can be considered.
ai,j are coefficients to be estimated for each attribute and each input. ai,w+1 is the indepen-
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dent coefficient. Although this model is a direct input/output relationship and can be used
to calculate shelf life (as in Section 4.1), the model is very general and therefore can be used
to calculate many different attributes, such as the sensory freshness index [17].

Other type of multi-sensors assume that the quality attribute (Ai) behaves as a nth-
order reaction as follows [51]:

dAi
dt

= K An
i i = 1, ..., m nth-order reaction model (4)

where K is the reaction rate, which typically is considered to depend on temperature accord-
ing to the Arrhenius expression. Usually, n is considered a natural number, although it can
be any positive rational number in the so-called power law models used in other contexts.
nth-order reaction models are tested in some works [51], however, the usual approach is to
select n so that it provides the best compromise between simplicity and performance of the
model (Occam’s razor principle).

Among the different expressions derived from the nth-order model, the most com-
monly used in the literature is the exponential model, which corresponds with a first-order
reaction (n = 1). Considering that the reaction rate (K) remains constant during the process,
the expression of the closed-form is:

Ai = Ai,0 exp (Kt) i = 1, . . . , m Exponential model or first-order reaction model
(5)

with Ai,0 being the initial condition (initial value for attribute Ai at t = 0).
Another expression, sufficiently general to represent the attribute dynamics, is the

zeroth-order reaction (n = 0) model. For constant reaction rates (K), it results in a linear
dependency of the attribute with time:

Ai = Ai,0Kt i = 1, . . . , m Linear model or zeroth-order reaction model (6)

The main advantage of using the differential form, Equation (4), instead of the closed-
form, Equations (5) and (6), is that it allows to consider situations where the storage or
transport temperature changes.

Table 3 shows the attributes (outputs) modelled with this approach and the selected
models for each case. In most cases, the growth/degradation rates depend on the tem-
perature following the Arrhenius expression. Positive or negative values of K are used to
represent, respectively, the increasing or decreasing evolution of the attributes. In general,
the closed-form of the equations is used in these works so, as mentioned above, the temper-
ature must be constant during storage and transport to obtain reliable results. K-value and
TVB-N are the most typical indicators considered in this approach. As in the case of Shelf
life soft sensors, only a few fish species were considered in these studies. More research is
required to include other species.

We have also found, outside the systematic search, the use of linear models of the
form of Equation (6) to describe the evolution of TAC, EC, K-value, and Sensory Analysis
indicators in rainbow trout (Oncorhynchus mykiss) [106]. The authors in this work also
compared the solutions obtained using either Arrhenius expression or Artificial Neural
Networks (ANN) as a secondary model. Their results show that ANNs provide a better fit
to experimental data than the Arrhenius expression, in particular for K-value and Sensory
Analysis indicators.
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Table 3. Virtual multi-sensors (same model structure for modelling different attributes). In the
table TVB-N = total volatile base nitrogen, TAC = total aerobic counts, EC = electrical conductivity,
GSI = global stability, SL = Shelf life, SFI = Sensory Freshness Index index, TM = Torrymeter reading,
IT = Internal Temperature, ST = Superficial Temperature.

Output Matrix Secondary Model Primary Model References

TVB-N, TAC, K-value Grass carp K(T) Arrhenius Exponential model Zhang et al. [91]
TVB-N, TAC, K-value, EC Crucian carp K(T) Arrhenius Exponential model Yao et al. [45]
GSI (Sensory Score, TAC,

TVB-N, K-value) Bighead carp K(T) Arrhenius Linear model Hong et al. [51]

GSI (sensory score, K-value,
TAC and TVB-N), EC Crucian carp K(T) Arrhenius Linear model Zhu et al. [94]

SL, SFI Gilt-head seabream Ai(pH, TM, IT, ST,
TVB-N)

Weighted regression
coefficients. Calanche et al. [17]

4.3. Quality ad hoc Models

In the systematic search, ad hoc models were found for some quality attributes,
but not for texture properties, lipid oxidation/fatty acids, non-volatile biogenic amines,
other nutrients, electrical conductivity, odour, colour or water activity. Lipid oxidation,
despite being the most studied quality attribute in fish, was only modelled using the
generic exponential model for TBA in grass carp [91]. Non-volatile biogenic amines, in
particular histamine, were commonly used to model food safety [107]. However, they were
not studied for describing food quality. No models for nutrient (proteins, vitamins, etc.)
degradation or water activity were found, although water activity is a factor influencing
texture or bacterial growth, and included as an input in those models. Regarding colour,
models are mainly proposed for processed fish [108–110] but no model for colour changes
in fresh fish was found in the literature. Despite odour being a relevant quality indicator
by itself, it is typically used in combination with other attributes, for instance, to obtain the
QIM. Electronic noses could be used to obtain reliable data that could be used to calibrate
and validate models describing the evolution of odour. However, in the context of fish
freshness, electronic noses are used to evaluate freshness or storage time [16]. As in the
case of colour, no models were found to describe the evolution of odour.

There are, however, specific models for some of the quality attributes that are explained
in detail in the next subsections. These models usually consider the mechanisms of quality
degradation so the results are more reliable than those obtained with the other models
described in previous sections. The main disadvantage is that such mechanisms involve,
in most cases, complex phenomena. Therefore, the derivation of a mathematical model
in these cases is a time consuming and complex task. Models describing the evolution of
spoilage bacteria are the most commonly used ad hoc models.

4.3.1. Spoilage Bacteria Models Using Predictive Microbiology

Predictive microbiology is a field that focuses on modelling the behaviour of microor-
ganisms, including spoilage bacteria, in different food matrices such as fresh fish. It is
a broad area with established terms and community [60,88], and where three different
models are usually considered: modelling microorganisms growth or inactivation dynam-
ics (primary model), how these dynamics change with environmental stress or inputs
variables (secondary models), and the implementation of these models in friendly software
(tertiary models). The terminology of primary and secondary models can be useful to
outline the different modelling approaches and will be used also in this review, even for
models outside the predictive microbiology scope.

Primary models are diverse [111] and they focus on the dynamics of bacterial numbers
(N). The most used primary models in fish spoilage bacteria are [29,112,113]:
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N = N0 exp (µmaxt) Exponential model (7)

N = N0 +
Nmax − N0

1 + exp [−µmax(t− ti)]
Modified Logistic Model

N = N0 exp

 log (Nmax/N0)

1 + exp
[

4µ
log (Nmax/N0)

(λ− t) + 2
]
 Reparametrised Gompertz Model

dN
dt

=
a0

a0 + (1− a0) exp(−µmaxt)
µmax N

(
1− N

Nmax

)
Reparametrised Baranyi’s Model

with N0 being the number of initial bacteria, Nmax the maximum number (in the stationary
phase), µmax the maximum growth rate and λ the time of the lag phase. In the modified
logistic model, λ is a function of the point of inflexion (ti):

λ = ti −
1

µmax
ln
(

Nmax + Nmax exp(µmaxti)

Nmax + N0 exp(µmaxti)
− 1
)

and for simplicity in the provided equation we assume that the minimum cell number
Nmin is the initial cell number N0. The derivative form of Baranyi’s Model (closed-form
solution is long and complex [114]) is presented with modifications to make lag phase zero,
for a0 = 1, and maximum lag (no dynamics), for a0 = 0.

Works in the systematic search including modelling of spoilage bacteria are outlined
in Table 4. Secondary models are only included when there is a clear description within the
work. The variety of fish species considered in this case is larger than in the cases of Shelf
life sensors and Soft multi-sensors. There is also a large variety of bacterial strains studied.
However, most of the works found in the search consider deterministic models whereas
bacterial population growth is a stochastic process. In this regard, although the mathe-
matical structure of the model developed in [95] is deterministic, the authors estimate the
variability of the model parameters using different experimental conditions and different
fish samples. This variability is used to generate different combinations of parameters and
each combination is used to obtain different simulation results. This approach allows us to
approximate the stochastic behaviour.

4.3.2. TVB-N and TMA-N Models

Volatile nitrogenous bases (TVB-N), and its major contributor TMA-N, are widely
modelled quality outputs with specific modelling approaches (in addition to the gen-
eral modelling [45,91]). They are easy to measure indexes that adequately correlate to
fish freshness.

Firstly, Howgate [52] pointed out that the exponential model (used in general mod-
elling approaches [45,91]) was not descriptive of TMA-N changes since TMA-N reaches
a limit, instead of increasing exponentially, because they are the sub-product of TMAO.
The author suggested a logistic growth of the form:

TMA-N =
TMA-Nmax − TMA-N0

1 + exp (−K(t− ti))
Modified Logistic Model

where TMA-N0 and TMA-Nmax are, respectively, the initial and maximum allowed concen-
trations of TMA-N, K is the maximum growth and ti the point of inflexion .

On the other hand, TVB was modelled by García [97] by assuming a delay and a later
production by psychrotrophic bacteria (N) with following equations:

dTVB
dt

=

(
a0

a0 + (1− a0) exp (−Kt)

)
K N Exponential Model with delay



Foods 2022, 11, 2312 16 of 26

where a0 represents the parameter determining the duration of the delay (mathematically
equivalent to the expression used by [113] for lag phase in bacterial growth, a0 = 1 indicates
no delay), K is the growth rate due to psychrotrophic bacteria (N). Interestingly, years after
this work, a simpler exponential model was used to model TVB in rohu fish stored at 0
and 5 °C [80], claiming that TVB formation was a primary function of microbial action and
suggesting the necessity to model TVB as a function of the microbial population as already
carried out in the literature [97].

Table 4. Works in the systematic search, including modelling of spoilage bacteria. The following
acronyms are used: TVA for total viable counts, TMAB for total mesophilic aerobic bacteria, TPAB for
total psychrophilic aerobic bacteria and LAB for lactic bacteria.

Output Matrix Secondary Model Primary Model References

Pseudomonas &
Shewanella Bogue µmax(T) Arrhenius &

Ratkowsky Baranyi’s model Taoukis et al. [56]

Pseudomonas &
Shewanella Gilt-head seabream

µmax(T)&λ(T)
Arrhenius &
Ratkowsky

Mod. logistic model Koutsoumanis and
Nychas [57]

Sulphide producers &
non-producers Gilt-head seabream µmax(T) (not clearly

defined) Baranyi’s model Giuffrida et al. [92]

Pseudomonas &
Carnobacterium Tropical shrimp µmax(T) Arrhenius &

Ratkowsky
Baranyi’s model Rep.

Gompertz Model Dabadé et al. [59]

Pseudomonas &
Shewanella Hake µmax(T) Ratkowsky Baranyi’s model García et al. [95]

TVC Grass carp – Rep. Gompertz Model Ying et al. [16]

Psychrotrophic counts Cod – Baranyi’s Model García et al. [97]

Pseudomonas,
Enterobacteriaceae,

TMAB, TPAB & LAB
Rainbox trout µmax(T) Ratkowsky Mod. Logistic Model Genç and Diler [99]

Pseudomonas Gilt-head seabream – Mod. Logistic Model Correia Peres Costa
et al. [58]

Biomass Rohu fish – Mod. Logistic Model
Gompertz Model Prabhakar et al. [80]

4.3.3. Texture Properties

As mentioned above, no predictive models were found in the systematic search for
texture properties. It must be highlighted that the works [89,93] describe the models
they develop as predictive. However, as mentioned in the introduction, we use the term
predictive to indicate the ability of the model to forecast the evolution of the quality indi-
cators. The models developed in [89,93] are built using partial least squares regression or
least-squares support vector machines to assess texture indicators using nuclear magnetic
resonance (NMR) or hyperspectral imaging (HSI) measurements. In other words, these
models provide a non-invasive estimation of the texture properties at the NMR or HSI
measurement time, but they do not predict the future evolution of such indicators.

A predictive model to describe the viscoelastic behaviour of rohu fish (Labeo rohita)
was developed in [115], although this work was not present in the systematic search.
The authors used the modified Maxwell model to relate skin hardness and compression
time for iced fish:

F(t) = C0 + C exp
(

t
trel

)
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where F(t) is the force at any time, C0 corresponds with the force at equilibrium, C is the
decay force, and trel is the relaxation time. Experimental data was used to fit coefficients
C0, C and trel .

Further research is required regarding the mathematical description of the evolution
of texture in fresh fish.

4.3.4. ATP Degradation

As mentioned in Section 2.6, ATP degradation occurs in a series of steps represented as:

ATP→ ADP→ AMP→ IMP→ Ino→ Hx→ Xa→ Uric acid

The first three steps occur relatively fast after slaughter so, when fish samples are
analysed they contain low (or zero) concentrations of ATP, ADP and AMP. On the other
hand, the degradation from Hx to Xa and uric acid is usually slow and when such products
are formed, the fish is already spoiled. Therefore, in general, ad hoc models only consider
the part of the scheme involving IMP, Ino and Hx. The KI-value, Equation (3), can be
obtained from these compounds.

Table 5 summarises the main features of the models derived in the different works of
the systematic search. In particular, ref. [52,67] considered the reaction scheme:

IMP
K1

Ino
K2

Kbac
Hx

where K1 and K2 are, respectively, the reaction rates for the conversion of IMP into Ino,
and Ino into Hx. Bacterial conversion of Ino into Hx (Kbac) was also taken into account.
In these works, first-order kinetics are considered. Arrhenius expressions were used to
account for the dependency of reaction rates on the temperature. Bacterial growth was
modelled using an exponential model of the form of Equation (7). In [52], the possibility of
a loss of nucleotides by leaching (diffusion through muscle and skin) was also considered.
Another interesting issue about this work is that the author presented and discussed the
results obtained from data of forty-five different fish species. Reliable results were obtained
for most of the considered species. In [68,96], the authors found, by fitting the models to
experimental data, that alternative nucleotide degradation paths might occur in European
hake (Merluccius merluccius). In particular, the direct conversion of IMP to Hx and other
products should be considered. Leaching of nucleotides and the effect of bacteria, namely
Pseudomonas spp. and Shewanella spp., on the conversion of IMP to Ino and Ino to Hx, were
also considered. The standard square-root model [85] was used to represent the bacterial
growth rates.

Table 5. Ad-hoc models found in the systematic search to describe the degradation of IMP, Ino and
Hx. The KI-value is obtained from the concentration of these components. All these models consider
a cascade of first-order reactions.

Output Matrix Secondary Model Primary Model References

IMP, Ino, Hx Rainbow trout Ki(T) Arrhenius Exponential model, Bacterial
catalysis Howgate [67]

IMP, Ino, Hx Forty-five species Ki(T) Arrhenius Exponential model, Bacterial
catalysis, leaching Howgate [52]

IMP, Ino, Hx Hake Ki(T) Arrhenius First-order reaction model Vilas et al. [96]

IMP, Ino, Hx Hake Ki(T) Arrhenius First-order reaction model, Bacterial
catalysis, leaching Vilas et al. [68]

4.4. Sensory or Shelf Life Models

Quality ad hoc models are usually a tool, more than the final aim, to assess or predict
shelf life or different grades of fish quality. For example, modelling of spoilage bacteria in
Table 4 is commonly used to estimate shelf life by specifying a concentration of bacterial
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counts at which the quality is considered not sufficient. Shelf life date, for example, is
estimated using spoilage bacteria in bogue fish (Boops boops) and gilt-head seabream (Sparus
aurata) for numbers greater than 7 logs (N > 107 CFU/g) [56,57] or even N > 108.5 CFU/g
for Pseudomonas psychrofila in tropical shrimp [59].

There are models in the literature that are used to estimate different grades of freshness,
not only shelf life or a given quality indicator. These models are summarised in Table 6.
As shown in the Table, works following this approach and the number of species considered
are scarce. The main challenge is to find a mathematical relationship between the outputs
of the ad hoc models and different quality levels. The first attempt consisted of dividing the
QIM into three indexes (QIMS for skin, QIMG for gills, and QIMF for flesh), and finding
their relationship with non-producers (Nw) and producers (Nb) of sulphide, present in
those specific parts for the fish [92]. However, for an estimation of a final QIM index, not
only models of spoilage bacteria but also of TVB-N are required [97]. In this work, a simple
ANN was developed to obtain the relationship between QIM and the model variables

(TVB-N and bacterial count). A logistic model was used to describe the bacterial
evolution. Other works focused on using models of spoilage bacteria to find ranges of
standard sensory methods. Such methods considered fewer freshness grades than the
QIM. That is the case in [16], where cod freshness, in terms of a three-level standard (SC/T
3108-1986), was correlated with the TVC value. The work by [95] used a nonlinear function
of Pseudomonas and Shewanella counts to determine a four-level QSM value in European
hake. This work is the only one that considers a secondary model, and therefore, it is the
only one that provides the final relationship between the effect of temperature changes in
the four levels of quality in QSM.

Table 6. Modelling of sensory scores using ad hoc models. QIM stands for Quality index specific for
gilt-head seabream [65] or cod [50] method. S,G and F for Skin, Gills, Flesh, Nw, Nb, Np, Ns, Npsy for
sulphide and non-sulphide produces, Pseudomonas, Shewanella and psychrotrophic counts.

Output Matrix Secondary Model Primary Model References

QIMS, QIMG, QIMF (15 levels) Gilt-head seabream Not clearly defined QIM(Nw, Nb) Giuffrida et al. [92]
Council Regulation(EC) No 2406/96
(1996) Standard method (4 levels) Hake µmax(T) Ratkowsky SM(Np, Ns) García et al. [95]

SC/T 3108-1986 Standard method
(3 levels) Cod – SM(NTVC) Ying et al. [16]

QIM (23 levels) Cod – QIM(TVBN, Npsy) García et al. [97]

5. Modelling Challenges and New Directions

In this review, we have described, classified and established connections for the
different types of mathematical models to describe and predict fish quality. We have
mainly focused on those works within the systematic search described in Appendix A,
although other relevant contributions, not included in such search, were considered in this
review. First of all, we should stress that the literature is larger, particularly in the case of
spoilage bacteria using predictive microbiology. However, there are many comprehensive
reviews regarding predictive microbiology [60,116,117], and the focus of this review was,
instead, on providing connections between models that describe different fish quality
attributes, and on identifying those topics that require more research attention. For example,
there are still relevant quality attributes for which it was not possible to find mathematical
models. The most illustrative example is lipid oxidation, the most studied attribute in
the literature from the experimental point of view. Other attributes lacking modelling
approaches are non-volatile biogenic amines, nutrients, odour and water activity (although
this is considered as an input in several models in the literature). Other attributes, such as
colour, have been modelled only for processed fish.
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We need to stress that, in addition to the lack of modelling for certain quality attributes,
there are major limitations in some of the models we found. Generic models, named in this
review software sensors or multi-sensors, are particularly advantageous to compare results
from different studies but, in this comparison, it is clearly observed that there are many
inconsistencies between works. For example, both linear and exponential functions have
been used to model the same attribute (see Table 3). However, whereas linear functions
may approximate a short time window of an exponential model, differences between both
approaches are considerable for wide prediction windows. There is a need to compare
those modelling structures and detect which ones are more appropriate for the different
quality outputs.

Ad-hoc predictive microbiology models, that have been studied in detail, still present
limitations, mainly due to the uncertainty of the estimated parameters and the initial
bacterial fish load (or model initial conditions). Microbial models require a known starting
state, but measuring bacterial load takes time and involves the destruction of the sample.
Some partial solutions have been considered such as (1) using the worst-case scenario [116],
(2) estimating the initial conditions variability [95], or (3) estimating the numbers using
indirect measurements of other variables (such as conductance measurements) that are
non-invasive and fast to obtain [118]. However, taking into account that bacteria grow
exponentially between lag and stationary phase, model prediction is highly affected (very
sensitive) by its initial conditions. More research on this topic is required to find confidence
models of spoilage bacteria.

Another challenge, still only partially addressed in the literature, is the derivation of
expressions that allow the inference of sensory attributes or shelf life from the growth of
spoilage bacteria. In this regard, some works derived models describing two or several
attributes, for instance, shelf life and growth of Pseudomonas, but such attributes were only
connected through the stress variables, typically temperature (see examples in Table 4).
Ideally, the model should provide a final quality index, as a function of different quality
attributes that depend on the stress variables, as the examples provided in Table 6.

In addition, only a few works validate the predictive capability of the models proposed,
i.e., the ability of the model to describe data outside of the set used for model develop-
ment and parameter estimation. Most of them use constant temperature or temperature
oscillating at a high frequency, as compared with the model dynamics time-scale (using
such oscillating temperature would be equivalent to using a mean constant temperature).
For example, in the work by [56] two non-isothermal profiles are used for the validation.
In one profile, temperature oscillates at high frequency and the change in the output signal
was smaller than the experimental error of the measurement. On the other hand, the model
was validated using a temperature profile with wider oscillations, that provided a change
in data trend and model dynamics. Only a few works consider dynamic temperature
profiles, computed using an optimal experimental design, to reduce the uncertainty of the
predictive model [95].

To advance in this area, reproducibility of published works is a key aspect, particularly
for ad hoc models, usually more complex and with many different mathematical structures.
Currently, comparison among works is extremely difficult, not only because of the vari-
ability between fish species and conditions before and after the capture (for example in
food structure [119]) but also because the proposed measure of fish quality is sometimes
specifically developed for the study [118,120]. We think that for the advance of modelling
of fresh fish quality, research should be focused on reproducing and predicting established
sensory indexes, such as QIM [95,97,121], allowing comparison between approaches.

Finally, the community should invest in better exploitation of the available models
and towards their integration into software systems for online quality prediction, as is
already the case in food safety [122], or even for optimisation-based determination of the
best conditions to maximise shelf life in different processes. In this regard, an ambitious
objective would be the derivation of a digital twin [123] for fresh fish degradation. Let us
here use an illustrative example of the potential of these models in a study developed in
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our group, namely [124]. In this work, existing models were used to find the best active
package configuration (including the type of packaging and concentration of antimicrobial)
that maximises food quality while ensuring food safety. In addition, the model was used to
predict, at any moment, the expected food quality for the expected stress variables along
the food chain.
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Appendix A. Systematic Literature Search

Table A1. Terms of the search performed on the web of science. The search was limited to the Web of
Science Core Collection database and to the Food Science and Technology category. All years until end
2021 are considered.

Set Search Records

#1

(TI OR AB OR AK) = ( (“quality” OR “freshness” OR “shelf life” OR “shelf-life” OR “K-value” OR “KI-value” OR
“ATP” OR “adenosine triphosphate” OR “IMP” OR “inosine monophosphate” OR “hypoxanthine” OR “colour” OR
“color” OR “chromatism” OR “fatty acid*” OR “lipid oxidation” OR “tba” OR “electrical properties” OR “electrical
conductance” OR “electrical conductivity” OR “texture” OR “hardness” OR “firmness” OR “odour” OR “odor” OR

“nutrient*” OR “vitamin” OR “biogenic amine*” OR “water content” OR “water activity” OR “tvb-n” OR “tma-n” OR
“qim” OR “qsm” OR “sensory analysis” OR “sensory evaluation” OR “sensory method” OR “sso” OR “spoilage

bacteria” OR “spoilage microorganism*") NEAR/5 ("fish” OR “fishes” OR “shellfish” OR “seafood*” OR “albacore”
OR “amberjack” OR “anchovy” OR “angler” OR “barbel” OR “barracuda*” OR “sea bass” OR “beluga” OR “bigeye”
OR “blackfish” OR “bluefish” OR “blue runner” OR “blue shark” OR “branzino” OR “seabream” OR “sea bream” OR
“butterfish” OR “carp” OR “catfish” OR “catshark” OR “comber” OR “conger” OR “cutlassfish” OR “danubian wels”

OR “dogfish” OR “eel” OR “eels” OR “flounder” OR “flying fish” OR “forkbeard” OR “garfish” OR “garrick” OR
“guitarfish” OR “gunard” OR “haddock” OR “hake” OR “halibut” OR “hammerhead” OR “herring” OR “icefish” OR

“John dory” OR “lamprey” OR “lanternfish” OR “leerfish” OR “little tunny” OR “mackerel” OR “mahi mahi” OR
“marlin” OR “megrim” OR “melva” OR “monkfish” OR “moonfish” OR “needlefish” OR “pandoras” OR “panga” OR
“pangasius” OR “parrotfish” OR “parrot fish” OR “perch” OR “pike fish” OR “pilchard” OR “pilotfish” OR “pilot fish”
OR “plaice” OR “pollack” OR “pollock” OR “ponyfish” OR “porbeagle” OR “rainbow trout” OR “cownose ray” OR
“devilray” OR “butterfly ray” OR “softnose skate” OR “legskate” OR “sawfish” OR “ribbonfish” OR “rockfish” OR

“rosefish” OR “sablefish” OR “sailfish” OR “salmon” OR “sardine” OR “sardinella” OR “scabbardfish” OR
“scorpionfish” OR “sheatfish” OR “shi drum” OR “sillago” OR “skipjack” OR “smooth hound” OR “smooth-hound”
OR “spearfish” OR “St Peter’s fish” OR “stargazer” OR “stingray” OR “sturgeon” OR “surgeon fish” OR “swordfish”

OR “tilapia” OR “threadfin” OR “triggerfish” OR “trout” OR “tubefish” OR “tuna” OR “turbot” OR “walleye” OR
“whitebait” OR “whiting” OR “yellowtail” OR “octopus” OR “squid*” OR “crab” OR “lobster*” OR “prawn*” OR

“shrimp*” OR “cuttlefish*” OR “crayfish*” OR “langoustine*” OR “scampi*” OR “urchin”) )

6429
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Table A1. Cont.

Set Search Records

#2

(TI OR AB OR AK) = ("high pressure” OR “atmospheric cold plasma” OR “modified atmosphere*” OR “sterilization”
OR “sterilisation” OR “frozen” OR “thawed” OR “pH-shift processing” OR “cross-processing” OR “fillet*” OR “slice*”
OR “fish oil*” OR “quality of water” OR “water quality” OR “frying” OR “garlic” OR “canned fish*” OR “surimi” OR

“fish sauce” OR “nugget” OR “chitosan” OR “x-ray*” OR “farming” OR “farm-level” OR “antibacterial” OR
“antimicrobial” OR “electronarcosis” OR “immun*” OR “Fluorescence in situ hybridization” OR “cooking” OR

“microplastic*” OR “embryo*” OR “rice” OR “drying” OR “dried” OR “nursery” OR “fishmeal” OR “plastic” OR
“irradiation” OR “larva*” OR “feed*” OR “coating” OR “diet” OR “dietary” OR “reproductive” OR “ibuprofen” OR

“fertilizer*” OR “valorization” OR “catch damage” OR “thermal process*” OR “non-thermal process*” OR “non
thermal process*” OR “children” OR “gear design” OR “additive” OR “mimicry” OR “seed quality” OR “sodium

alginate” OR “edible film*” OR “TYRP1 gene*” OR “transgene” OR “antioxida* peptide*” OR “antioxida* capacity”
OR “antioxida* solution” OR “antioxida* effect*” OR “anti-oxida* activity” OR “antioxida* activity” OR “rearing” OR
“algae” OR “collagen expression” OR “genomic*” OR “proteomic*” OR “s-potential*” OR “fish meal” OR “synthesis”
OR “egg quality” OR “carotenogenesis” OR “nutrient requirement*” OR “maternal” OR “oily fish” OR “gelatin” OR

“polychlorinated” OR “nutrition of salmonoid” OR “fish retina” OR “color picture*” OR “elderly” OR “inheritance of
color” OR “short read mapping program” OR “tea polyphenol” OR “fish consumption” OR “inter-specific hybrids”

OR “extracellular lipase” OR “pathology” OR “metabolic polymorphisms” OR “transgenic” OR “eco-label” OR
“lethality” OR “micro-squid” OR “emulsion*” OR “vegetable production” OR “source of nutrient*” OR “hydrolyzate*”
OR “epiphitic” OR “bilirubin” OR “essential oil*” OR “histology” OR “egg-yolk” OR “chd” OR “silver toxicity” OR

“biomanipulation” OR “hormonal-control” OR “protein crosslinking” OR “food security” OR “high hydrostatic
pressure” OR “red tide*” OR “intake” OR “digestibility” OR “nutrient absorption” OR “nutrition” OR “docking” OR
“egg” OR “diet” OR “nutrient recycling” OR “farm effluents” OR “fish behavior” OR “smoked” OR “chromatophore*”
OR “hydroponic” OR “recovery of fish” OR “fish recovery” OR “fish-odor syndrome” OR “fish-odour syndrome” OR

“water chemistry” OR “natural preservatives” OR “mince” OR “epiphytic” OR “phosphorus” OR “omega3” OR
“hemolysate” OR “hemolysis” OR “availability of nutrients” OR “biosynthesis” OR “health” OR “globalization” OR
“inhibition of polyphenoloxidase” OR “species identification” OR “virus” OR “norovirus” OR “ferment*” OR “bread”
OR “plant extract*” OR “nanoencapsulate*” OR “starch” OR “edible compound*” OR “edible natural compound*” OR

“fish burger*” OR “wafer*” OR “bromelain” OR “fish ball*” OR “fish cake*” OR “dehydrat*” OR “grill*” OR
“4-hexylresorcinol” OR “freezing” OR “freezing-point” OR “restructure*” OR “squid oil” OR “molecular distilation”)

332,851

#3 #1 NOT #2 1636

#4 (TI OR AB OR AK) = (“mathematical model*” OR “predictive model*” OR “dynamic model*” OR “growth model*”
OR “predictive microbiology” OR “model”) 922,980

#5 #3 AND #4 33

The use of the term ID (keywords plus) in our search caused the selection of many
spurious publications. Therefore, we only considered title (TI), abstract (AB), and author
keywords (AK) in the search. In the set search #1, we have considered two blocks. The first
one contains terms related to quality indicators (for example, quality, freshness, K-value,
etc.). The second one was used to limit the search to fish products. On the other hand, set
search #2 was included to avoid those works that were not related to fresh fish, which is
the focus of this review.
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