
Seizure 21 (2012) 478–481
Case report

Progression of microstructural putamen alterations in a case of symptomatic
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A B S T R A C T

Microstructural alterations of the putamen were recently reported in patients with partial and generalized

epilepsy disorders. However, it is unknown whether these alterations pre-exist or are secondary to

recurrent seizures. Here we investigated the progression of putamen fractional anisotropy (FA) alterations

in a case of recurrent psychomotor seizures using longitudinal diffusion tensor imaging (DTI) shortly before

(DTI-1) and after a psychomotor seizure (DTI-2). We obtained FA values of a hypothesis-guided putamen

region-of-interest (ROI) and seven exploratory ROIs. FA values from both DTIs were compared with

reference values from 19 controls. Relative to controls, the patient’s putamen FA was increased at DTI-1 (13%

left putamen, 7% right putamen), an effect that was exacerbated at DTI-2 (24% left putamen (p < 0.05), 20%

right putamen). In the exploratory ROIs we found FA reductions in the corticospinal tract, temporal lobe, and

occipital lobe (p < 0.05) relative to controls at DTI-1 and DTI-2. In contrast to the putamen, all exploratory

ROIs showed no relevant FA change between DTI-1 and DTI-2. These results suggest that recurrent seizures

may lead to progressive microstructural putamen alterations.

� 2012 British Epilepsy Association. Published by Elsevier Ltd. 
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1. Introduction

It has been recently reported that patients with cryptogenic
temporal lobe epilepsy (TLE) and juvenile myoclonic epilepsy (JME)
have inter-related increased diffusion tensor imaging (DTI)-derived
measures of putamen fractional anisotropy (FA) and macroscopic
putamen atrophy relative to age-matched healthy subjects.1,2 This
unusual finding has been observed in other neurological disorders,
including Huntington’s disease3,4 and Susac’s syndrome,5 but
without sufficient neurological explanation.3,4 Given that the
putamen and more generally the basal ganglia have a crucial role
for the mediation of seizure propagation,6 it is important to
understand how the putamen is architecturally affected in epilepsy.
In patients with habitual epilepsy, it is difficult to confidently deduce
whether neuroanatomical abnormalities pre-exist or are the
consequence of recurrent seizures without monitoring the progres-
sion of brain structure and integrity during the course of serial
imaging with simultaneous consideration of clinical variables, such
as number and type of seizures, medication, etc. There are very few, if
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any, longitudinal DTI studies of the effects of recurrent seizures in
patients with epilepsy syndromes that are not treatable by surgery.
In almost all studies7 focus has been given to pre-/post-operative
chronic partial epilepsy cohorts.8,9 DTI offers the opportunity to
investigate microstructural changes not observable using conven-
tional structural MRI,10,11 and quantification of such alterations12

may provide more information on progressive brain damage in
epileptic syndromes. In the present study, we used serial applica-
tions of DTI to investigate the possible progression of gray and white
matter alterations in a patient with symptomatic partial epilepsy,
with a particular focus to investigate the stability or progression of
putamen microstructural alterations in response to recurrent
seizures.

2. Materials and methods

2.1. Case patient and healthy control subjects

A 48-year-old woman was found unconscious at home with
deviation of the eyes and bite of the tongue. A cranial CT revealed a
2.2 cm � 2.7 cm measuring left parietal hemorrhage. During 20
months after onset of symptomatic epilepsy she had four
complex-partial seizures with secondary generalization and
three complex-partial seizures. Most frequently the patient
presented with global aphasia, disorientation and mild paresis
der CC BY license. 
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Table 1
Seizure history with clinical details. LEV, levetiracetam; VPA, valproate; LTG, lamotrigin.

Seizure

Nr.

Date Clinical features Seizure type EEG MRI or CT Treatment

1 25.08.09 Deviation of the eyes,

bite of the tongue

Symptomatic with secondary

generalization

n.a. Left parietal hemorrhage LEV

VPA

2 08.09.09 Aphasia, pronator drift right Psychomotor complex-partial Left temporal focus Left parietal hemorrhage LEV

VPA

3 06.10.09 Aphasia, anisokoria deviation of

the eyes to the left, incontinence

for urine, no cyanosis

Complex-partial with secondary

generalization, focal

status epilepticus

Focal status epilepticus,

bilateral frontal

Residual hemorrhage LEV

VPA

4 30.03.10 Arrest of speech Complex-partial with secondary

generalization

Left fronto-temporal focus

with secondary generalization

Residual defect zone

of the hemorrhage

LEV

5 22.06.10 Aphasia, apraxia,

right-sided hemiparesis

Complex-partial with secondary

generalization

Left temporal focus with

secondary generalization

No recent alterations LEV

6 11.01.11 Aphasia, slowing of the right arm Complex-partial with secondary

generalization

Focal status epilepticus,

left temporal

No recent alterations LEV

7 23.05.11 Disorientation, aphasia, pronator

drift of the right arm

Psychomotor complex-partial n.a. No recent alterations LEV

LTG

8 09.07.11 Disorientation, aphasia Psychomotor complex-partial n.a. Residual defect zone

of the hemorrhage

and HS

LEV

LTG
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of the right arm. EEGs indicated a left temporal focus, occasionally
with secondary generalization (for more detailed information see
Table 1). We also studied a group of 19 neurologically and
psychiatrically healthy age-matched controls (median 47 years,
min 42, max 51). All subjects gave written informed consent and
the local ethics committee approved this study.

2.2. Quantitative diffusion tensor imaging

The patient was admitted for DTI at two time points using a
1.5 T MR system (Gyroscan Intera T15, Philips Medical Systems,
Best, The Netherlands). The time between the initial insult and the
first DTI scan (DTI-1), and second scan (DTI-2), was 21 months and
two days, and 23 months and one day, respectively. Time between
the two scans was eight weeks and four days. For DTI we used
single shot echo planar imaging (EPI) with 20 diffusion directions
[two b-factors, 0 and 1000 s/mm2, TR = 9.3 s/TE = 89 ms, acquisi-
tion matrix: 128 � 128, voxel size: 1.8 mm � 1.8 mm � 3.6 mm
(reconstructed to 2.0 mm � 2.0 mm � 2.0 mm for image proces-
sing), two averages]. DTI image processing was performed by using
the ‘‘Münster Neuroimaging Evaluation System (EVAL)’’.12,13 All
time consuming calculations, e.g. eddy currents correction and
normalizations, were carried out on a 64-processor computer (Sun
Table 2
Columns represent mean FA and standard deviation (SD) of the controls and patient D

Significant (p < 0.05) changes are in bold. p-Values were corrected for multiple compar

ROI FA values

Controls Pat. DTI-1 

Mean SD Mean Changes in %

relative to controls

Hypothesis-guided ROI

FA left putamen 0.136 0.014 0.154 +13 

FA right putamen 0.137 0.015 0.146 +7 

Exploratory ROIs

FA right temporal lobe 0.392 0.016 0.364 �7 

FA frontal lobe 0.358 0.014 0.336 �6 

FA corticospinal tract 0.419 0.013 0.387 �8 

FA all white matter 0.385 0.013 0.352 �9 

FA corpus callosum 0.479 0.027 0.443 �8 

FA left temporal lobe 0.394 0.017 0.348 �12 

FA occipital lobe 0.365 0.016 0.300 �18 
Microsystems, Inc., Palo Alto). Diffusion-weighted images were
corrected for eddy currents using a recently developed tech-
nique.13 The employed EVAL-DTI processing pipeline incorporated
(i) structure adaptive smoothing14 and (ii) a multi-contrast image
registration toolbox for the optimum spatial pre-processing of DTI
data prior to statistical analysis.15,16 Registered FA images
corresponded to the MNI coordinate space. For hypothesis-guided
analysis of FA images, we generated a putamen region-of-interest
(ROI) and for further explorative analysis seven other ROIs,
including the whole white matter, corticospinal tract, corpus
callosum, occipital lobe, frontal lobe and temporal lobe. These ROIs
were created automatically by the EVAL pipeline on the output
images from the registration toolbox for all patients and controls,
as previously performed.1 For each of these ROIs mean FA was
calculated.

2.3. Statistical analysis

We used a two-sample t-test including correction for multiple
comparisons to test for differences in mean FA between patient’s
DTIs and controls. The FA values of the 19 normal controls have
been tested by the Kolmogorov–Smirnov test for normality
(p > 0.20). In order to assess intra-individual reproducibility of
TI-1 and DTI-2. Changes in % are calculated relative to the mean FA of controls.

isons. ROIs are displayed in descending order according to changes in % of DTI-2.

Pat. DTI-2

p Mean Changes in %

relative to controls

p Changes in %

relative to DTI-1

0.225 0.169 +24 0.031 +10
0.550 0.164 +20 0.088 +12

0.104 0.371 �5 0.205 +2

0.157 0.337 �6 0.169 0

0.031 0.390 �7 0.047 +1

0.024 0.357 �7 0.050 +1

0.204 0.442 �8 0.189 0

0.015 0.345 �12 0.011 �1

0.001 0.311 �15 0.003 +4
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putamen FA, we compared putamen FA in a healthy control across
10 separate DTI measurements. We found that over the 10 DTI
measurements, the control subject’s putamen values were a mean
of 0.127 with a standard deviation (SD) of �0.009 for the right
putamen and of 0.125 with a SD of �0.008 for the left putamen
(coefficient of variation CV = SD/mean � 100% = 7%).

3. Results

3.1. DTI-1

DTI-1 was performed three days after a complex-partial seizure
(Seizure No. 7, Table 1), which occurred approximately 18 months
after the initial hemorrhage. At this time, patient mean FA was
increased in the left (+13%) and right (+7%) putamen relative to the
Fig. 1. (a) Mean putamen FA of controls (CTRL Group) (whiskers represent the standard d

estimated intra-individual reproducibility (7% CV) of FA). The increase of putamen FA bet

with the mean left putamen FA of the healthy age-matched control group. (b) FA image of

ROI is depicted for the right hemisphere; the color-coded FA is shown for the left hemisph

right (blue) hemisphere. *The increase of putamen FA values between DTI-1 and DTI-2

putamen ROI. (For interpretation of the references to color in the figure caption, the re
mean putamen FA of controls (Table 2). The mean FA values of all
exploratory white matter ROIs were reduced relative to controls.
The most prominent reductions of FA relative to controls were
observed in the left temporal lobe (�12%; p < 0.05) and occipital
lobes (�18%; p = 0.001). Furthermore, significant reduction of ROI
FA was observed in the whole white matter (p < 0.05), and
bilaterally in the corticospinal tracts (p = 0.05, Table 2). Mean FA of
the frontal lobes, corpus callosum and the right temporal lobe was
also reduced (>1 SD relative to controls).

3.2. DTI-2

Approximately six weeks after DTI-1 the patient’s next seizure
occurred (Seizure No. 8, Table 1). DTI-2 was acquired two weeks
later. When comparing DTI-1 with DTI-2 the putamen FA was
eviation) and patient’s (Pat.) putamen FA of DTI-1 and DTI-2 (whiskers represent the

ween DTI-1 and DTI-2 was significant (p = 0.05) in the left putamen when compared

 a healthy control. (c) FA image calculated from DTI-2 of the patient. The extent of the

ere. The colored arrows indicate the position of the ROI for the left (orange) and the

 was beyond the estimated intra-individual reproducibility of the mean FA in the

ader is referred to the web version of the article.)
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further increased (24% for the left putamen, ipsilateral to the lesion
(p < 0.05) and 20% (p = 0.088) for the right putamen relative to
controls). This increase of putamen FA between DTI-1 and DTI-2
was (i) beyond the estimated intra-individual variability (7% CV)
and (ii) significant in the left putamen when compared with the
mean left putamen FA of the controls. Progressive putamen FA
increases in the patient are shown in Fig. 1. The exploratory white
matter ROIs showed no relevant change of mean FA.

4. Discussion

The primary finding of this case is the progressive bilateral
increase of putamen FA in a patient with a unilateral parieto-
occipital hemorrhage, complex partial seizures and occasional
secondary generalized seizures. The putamen is not causally linked
with focal unilateral epilepsy disorders, but contributes to the
modulation of seizure propagation after the principle epilepto-
genic focus has become active.6 In patients with TLE and JME,
putamen macroscopic atrophy is directly related to pathologically
increasing putamen FA.1,2 Furthermore, increasing putamen FA
significantly correlates with the age of onset and duration of JME.1

In the present study, we observed a progressive putamen FA
increase manifested as (i) an overall increase in the patient’s
putamen FA at DTI-1 relative to controls and (ii) a further putamen
FA increase between DTI-1 and DTI-2 in the patient that exceeded
the values observed in a randomly selected serially imaged healthy
control.

As discussed in more detail previously,1,2 one explanation for
the increase in putamen FA in patients with epilepsy may be due to
increased levels of iron in patients with epilepsy that accumulate
in the putamen, thus increasing the putamen FA and exacerbating
a normal effect seen in healthy aging.17 Whether individual
seizures increase such iron accumulation is unknown and warrants
further investigation. An alternative explanation is that the
atrophic gray matter within the putamen excessively constrains
the space where numerous myelinated axons intersperse. Myelin-
ated axons have a much greater FA compared to gray matter, and
the spatial constriction of myelinated axons may lead to a localized
increased anisotropy of water diffusion, given that this would
occur beyond the voxel resolution of DTI.1,2 The putamen has been
implicated in the normal inhibition of seizure generalization, and
metabolic and structural alterations of the putamen have been
reported in various epileptic syndromes.6,18–20 It is also important
to note that increasing putamen FA is also observed in other
neurological disorders including Huntington’s disease3,4 and
Susac’s syndrome5 suggesting that this pathological alteration
may not be specific to epileptic syndromes. The present results of
increased putamen FA also extent findings by a cross-sectional
study of increased FA in bilateral caudate nuclei and increased
mean diffusivity values bilaterally in thalamus, putamen, and left
caudate nucleus in patients with absence seizures.21

In summary, the findings of this case suggest that unilateral
symptomatic partial seizures can lead to progressive microstruc-
tural changes of the putamen in both hemispheres. This is the first
report that illustrates the dynamic of progressive microstructural
subcortical alterations in a patient with a unilateral epilepsy
disorder by comparison of DTI examinations performed shortly
before and after a complex partial seizure. Future work should
determine the aetiology of putamen FA increase in epileptic and
other neurodegenerative syndromes.
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