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Abstract: Lung cancer is still a leading cause of cancer-related deaths worldwide. Vital to ameliorating 
patient survival rates are early detection, precise evaluation, and personalized treatments. Recent years have 
witnessed a profound transformation in the field, marked by intricate diagnostic processes and intricate 
therapeutic protocols that integrate diverse omics domains, heralding a paradigm shift towards personalized 
and preventive healthcare. This dynamic landscape has embraced the incorporation of advanced machine 
learning and deep learning techniques, particularly artificial intelligence (AI), into the realm of precision 
medicine. These groundbreaking innovations create fertile ground for the development of AI-based models 
adept at extracting valuable insights to inform clinical decisions, with the potential to quantitatively interpret 
patient data and impact overall patient outcomes significantly. In this comprehensive narrative review, 
a synthesis of various studies is presented, with a specific focus on three core areas aimed at providing 
clinicians with a practical understanding of AI-based technologies’ potential applications in the diagnosis and 
management of non-small cell lung cancer (NSCLC). The emphasis is placed on methods for diagnosing 
malignancy in lung lesions, approaches to predicting histology and other pathological characteristics, and 
methods for predicting NSCLC gene mutations. The review culminates in a discussion of current trends and 
future perspectives within the domain of AI-based models, all directed toward enhancing patient care and 
outcomes in NSCLC. Furthermore, the review underscores the synthesis of diverse studies, accentuating 
AI applications in NSCLC diagnosis and management. It concludes with a forward-looking discussion on 
current trends and future perspectives, highlighting the LANTERN Study as a pioneering force set to 
elevate patient care and outcomes to unprecedented levels.
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Introduction

Lung cancer is still a leading cause of cancer-related 
deaths worldwide. The late stage of diagnosis and the 
heterogeneity of imaging features and histopathology 
pose significant challenges for clinicians, in particular, to 
choose the best treatment option. Non-small cell lung 
cancer (NSCLC) is the most prevalent subtype of lung 
cancer; the mainstay of therapy is surgery, chemotherapy, 
radiation, immunotherapy, or molecularly targeted therapy. 
Although there has been considerable progress in lung 
cancer therapy, the overall survival rate continues to be low, 
and individualized approaches are necessary to enhance 
patient outcomes (1). It is widely believed by the scientific 
community that progress in lung cancer therapy depends 
on the creation of cutting-edge methods that recognize 
the heterogeneity of the disease enabling personalized 
treatments for individual patients. In recent years, artificial 
intelligence (AI) has arisen as a valuable resource in 
oncology, particularly in the field of image detection and 
evaluation. The term AI refers to the use of computational 
technologies to emulate human-like intelligent behavior 
and analytical reasoning. John McCarthy initially defined 
AI in 1956 as the science and engineering of constructing 
intelligent machinery. AI is a field within computer science 
that includes a series of algorithms able to analyze large-
scale big data to execute complex functions, emulating 
human intellect (2). 

Machine learning (ML) is a subset of AI that formulates 
algorithms primarily dependent on prior, predefined data 
without direct programming. Deep learning (DL) is a sub-
discipline of ML (Figure 1) rooted in a neural network 
framework modeled after the human brain (Figure 2); DL 
algorithms do not have to specify features in advance, 
allowing them to autonomously discover features by 
exploring the data independently. This data-driven mode 
makes it more insightful and useful. Today, convolutional 
neural networks (CNNs) are the most widely used type of 
DL architecture in the domain of medical image analysis (3).

These methodologies are used in imaging in the field of 
radiomics, where accumulating evidence demonstrates that 

this can be utilized for quantitative assessment of tumors 
for activities such as disease characterization or predicting 
outcomes. The potential of these approaches is huge, and 
it has been revealed in helping clinical experts to uncover 
cancer characteristics that fail to be appreciated by naked 
eyes (4), significantly surpassing the human operator and 
all earlier related technologies in image recognition and 
analysis. In this context, radiomics is a nascent and rapidly 
progressing discipline that merges insights from radiology, 
oncology, and informatics, highlighting the convergence of 
medicine and engineering (5). Growing evidence suggests 
that radiomics can be utilized for quantitative analysis 
of tumors for activities such as disease characterization 
or outcome prediction, marking a significant research 
trajectory in medical applications (6).

Materials and methods

This narrative review is based on a selective literature 
search carried out in PubMed and Cochrane Library 
databases from origin to December 2022, with the aim of 
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Figure 1 Implementation of deep learning as a form of supervised 
learning within the subset of machine learning methods in artificial 
intelligence (created with BioRender.com).
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Figure 2 Analogous parallels between artificial neural networks and biological neural networks. Hidden layers in artificial neural networks 
can be compared to brain interneurons (created with BioRender.com).

finding relevant studies using combinations of the following 
search terms: “Artificial Intelligence (AI), Radiomics, Deep 
Learning (DL), Machine Learning (ML), lung cancer, lung 
malignancy, lung nodules, Non-Small Cell Lung Cancer 
(NSCLC)”. The search strings on PubMed and Cochrane 
Library were (“AI and Lung nodules”), (“Lung cancer and 
Artificial Intelligence”), and (“NSCLC and AI”). Text (Free 
Full texts), Article type (All except Books and Documents), 
(Humans [Filter]), and (English [Filter]) without any 
limits on the publication year. These publications were 
then selected by two distinct authors (F.L. and G.G.). The 
inclusion/exclusion criteria were reported herein:

(I)	 Inclusion criteria were (i) english-language; (ii) 
article types were: clinical trials, randomized 
controlled trials, case-control studies, prospective 
or retrospective cohort studies, review and meta-
analyses.

(II)	 Exclusion criteria: (i) article not written in English; 
and (ii) the following kind of articles: books, 
documents, editorial comments, abstracts, case 
reports, guidelines, or consensus statements.

Two authors (F.L. and G.G.) independently reviewed 
the full texts of the identified papers. A third author (M.C.) 
resolved emerging discrepancies. The selected articles were 
then examined in full, processed, and summarized to align 
with the objectives of the review. Finally, the chosen papers 

were read by all authors and discussed to draw reliable 
conclusions.

AI and the solitary pulmonary nodule 

DL and computer-aided detection (CAD) for distinguishing 
between benign and malignant tumors

DL solutions are currently leading the field in pulmonary 
nodule detection. DL algorithms have demonstrated 
similar or superior performance to medical professionals 
in various healthcare environments. Their applications 
include detecting pulmonary nodules in chest radiographs 
or computed tomography (CT) scans, improving candidate 
identification for r lung cancer screening (LCS) and 
forecasting the malignancy of pulmonary nodules (7). 
Radiologists face hurdles in detecting lung cancer from 
chest radiographs due to limited contrast resolution. This 
constraint can obscure lesions that overlap with anatomical 
structures, leading to higher rates of false-negative  
diagnoses (8). Lesion size, shape, and location are all 
independent factors in detection error and can lead 
to missing lesions during the interpretation of chest 
radiographs (9). CAD software was developed in the 1970s 
to increase the accuracy of chest radiography for nodule 
detection (10). The use of computer algorithms in CAD 
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systems can aid in identifying various medical conditions. 
This includes the use of computer-aided detection systems 
(CADe) to help detect irregularities or lesions in medical 
images, and computer-aided diagnosis systems (CADx) 
to assist in the analysis and diagnosis of medical images. 
Such systems have the potential to improve the accuracy 
and speed of medical diagnosis, particularly in situations 
where human evaluation may be limited or prone to 
errors. CAD systems can aid in the detection of chest CT 
pulmonary nodules by initially screening a large number of 
chest CT images and highlighting suspicious lesions. This 
can help radiologists to make secondary discrimination, 
decrease their workload, and improve screening efficiency. 
Traditional CADe systems usually consist of two main 
stages: (I) selection of candidate nodules and (II) removal of 
false positive nodules (FPN) while preserving true positive 
nodules (TPN) (11). By enhancing these steps, more 
cases of lung cancer that may have been missed during 
routine chest imaging can be identified. This could lead to 
improved survival rates (12). 

The use of low-dose computed tomography (LDCT) 

scans in LCS has led to a significant increase in the volume 
of images that radiologists must analyze, which can be 
a challenging and time-consuming task. Furthermore, 
the elevated frequency of false positives is an additional 
concern, as it may lead to superfluous diagnostic evaluations 
and invasive medical procedures for patients who are 
not afflicted with lung cancer. These issues highlight the 
need for more efficient and accurate methods of analyzing 
LDCT scans for LCS. As known, the low dose CT scan 
differs in quality to CT scan performed for staging, and 
for this reason, images acquired with this instrument are 
lower in quality. This is one of the main reasons for which 
it is hard to give a definitive definition only on the basis 
of the images. As shown in Table 1, a comparison among 
studies collecting the use of CAD or DL has been made. 
AI using CAD or DL methods has been implemented to 
decrease radiologist errors and increase the detection rate 
of pulmonary nodules. However, before employing DL 
techniques, the CAD system realized only poor detection 
performance (sensitivity of 70% or lower) for lung 
nodules and a markedly high false positive rate, which was 

Table 1 AI applications in pulmonary nodule detection and classification

Study Method used Number of images/patients Results

Kakeda, 
2004 (10)

Traditional CADe and CADx systems in chest 
radiography for nodule detection and diagnosis

45 lung cancer patients and 
45 healthy patients

Improved efficacy in nodule detection 
in chest radiographs

Roos, 2010 
(13) 

DL system for consistently classifying nodule types in 
CT scans, determining the management strategy for 
LCS participants

20 patients with clinical 
suspicion of pulmonary 
nodules

Suggested the use of DL systems to 
help in consistently classifying nodule 
types in CT scans for LCS

van 
Ginneken, 
2010 (14)

Automated Nodule Detection 2009 (ANODE09) study: 
Web-based framework evaluating nodule detection 
algorithms from LCS CT scans

55 anonymized CT scans Limitations: uniform dataset from one 
center, same scanner, and protocol

Armato, 
2011 (15)

Lung Nodule Analysis 2016 (LUNA16) trial: used 888 
scans with 1,186 nodules from LIDC and IDRI for 
instruction and assessment. Reference values based 
on annotations from four radiologists

888 scans with 1,186 
nodules

Best algorithm achieved sensitivity of 
97.2% with 1 false positive per scan 
on average, continues to be used as a 
benchmark for AI algorithms

Christe, 
2013 (16) 

Combining human observer with CAD system resulted 
in higher sensitivity for detecting lung nodules 
compared to combining two different CAD systems

900 nodules Improved sensitivity for lung nodule 
detection when combining human 
observer with CAD system

Ciompi, 
2017 (17) 

AI algorithm to classify pulmonary nodules into various 
types using a dataset of 943 subjects with 1,805 
nodules from the Multicenter Italian Lung Detection 
(MILD) trial

943 subjects with 1,805 
nodules

Performance of the system was 
within inter-observer variability of 
four experienced human readers, 
demonstrating effectiveness in 
classifying nodules similarly to an 
independent human expert

AI, artificial intelligence; CADe, computer-aided detection; CADx, computer-aided diagnosis; DL, deep learning; CT, computed 
tomography; LCS, lung cancer screening; LIDC, lung image database consortium; IDRI, image database resource initiative; CAD, 
computer assisted detection.



Lococo et al. AI in lung cancer: state & future7100

© AME Publishing Company. J Thorac Dis 2024;16(10):7096-7110 | https://dx.doi.org/10.21037/jtd-24-244

inadequate for clinical application (13).
The Automated Nodule Detection 2009 (ANODE09) 

study was the pioneering web-based framework for assessing 
nodule detection algorithms from LCS CT scans (14).  
The primary limitations of this study were the dataset size 
and the uniformity; all the images were acquired from a 
single center, using the same scanner and protocol. To 
address these limitations, the Lung Nodule Analysis 2016 
(LUNA16) trial was established using 888 scans with 1,186 
nodules from the Lung Image Database Consortium (LIDC) 
and Image Database Resource Initiative (IDRI) for training 
and established (15). 

To guarantee robustness, the reference values for each 
scan were based on annotations from four radiologists. 
The best algorithm achieved a sensitivity of 97.2%, with 
an average of one false positive per scan. As a result, it 
continues to be used as a benchmark for more recent AI 
algorithms (18). 

Christe et al. demonstrated that combining a human 
observer with any CAD system resulted in higher sensitivity 
for detecting lung nodules compared to combining two 
different CAD systems (16). Ciompi et al. developed an 
AI algorithm to categorize pulmonary nodules into solid, 
part-solid, non-solid, perifissural, calcified, and speculated 
employing a dataset of 943 subjects with 1,805 nodules from 
the Multicenter Italian Lung Detection (MILD) trial (17). 
They showed that the system’s accuracy was comparable 
to the inter-observer variability of four experienced human 
readers, thereby confirming the effectiveness of the system 
at classifying nodules equivalently to an independent 
human expert. Radiologists have introduced the concept 
of “nodule type” in interpreting CT scans, where they 
must differentiate between various types of opacities 
based on their appearance and, more importantly, their 
likelihood of being malignant. In this context, the range 
of variability reached by the proposed system makes it the 
first suitable system for automatic analysis of CT scans in 
LCS. This study indicated that a DL system could assist 
in reliably categorizing nodule types, which influences the 
management strategy for LCS participants. According to 
the National Institute of Health and Care Excellence, for 
individuals undergoing a chest CT scan as part of targeted 
LCS, AI-derived CAD software technologies have the 
potential to be economically beneficial. Therefore, although 
there is not yet sufficient evidence to endorse the software 
as standard practice, centers may implement it as part of 
targeted LCS. Proof needs to be generated to ensure the 
potential advantages of using the software are achieved 

in practice and to facilitate comparisons of the various 
technologies (19). 

Malignancy prediction

The existing management strategies for indeterminate 
pulmonary nodules rely on qualitative or quantitative 
estimates of the malignancy risk of these nodules. The 
prominent examples include Lung-RADS by the American 
College of Radiology, guidelines by the Fleischner Society, 
and the British Thoracic Society (20). Lung-RADS® is a 
quality control mechanism that aims to standardize the 
reporting and management recommendations for LCS CT. 
It is designed to minimize confusion in the interpretation 
of LCS CT results and to streamline outcome monitoring. 
A comprehensive atlas and lexicon will be established to 
facilitate this process. The atlas will feature a medical audit 
and outcome monitoring process, while the lexicon of LCS 
CT terminology and reporting format will standardize the 
language used in reports. Many experiences in literature are 
now reporting the role of AI in LCS (see Table 2).

The Brock model, also known as the Pan-Canadian 
Early Detection of Lung Cancer or PanCan model, was 
developed in 2013 to estimate the risk of malignancy in 
pulmonary nodules (25). The model includes various 
predictors such as patient demographics, nodule size, type, 
and morphology. The Brock model is currently integrated 
into the British Thoracic Society nodule management 
guidelines (26,27) and is recommended in the Lung-RADS 
version 1.1. Although the Brock model has demonstrated 
that radiologists can more precisely evaluate the malignancy 
risk of a nodule, there is no consensus when radiologists 
are requested to identify the signs of malignancy (28). 
In 2020, Baldwin et al. conducted a validation study on 
lung nodules measuring 5–15 mm, which were identified 
unexpectedly at three hospitals in the UK. In this study, the 
lung cancer prediction convolutional neural network (LCP-
CNN) was evaluated against the Brock University model, 
recommended in UK guidelines, and it was found that AI 
enhances risk prediction (21). 

Choi et al. developed a radiomic prediction model for 
the early detection of lung cancer from lung nodules with 
low-dose CT in 2018 (22). This model, based on two 
CT radiomic characteristics, achieved 84.6% accuracy, 
surpassing the one reported by Lung CT Screening 
Reporting and Data System (Lung-RADS). The general 
growth of a nodule on CT and growth not assessed from 
a single scan only appeared to be the most important 
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Table 2 The role of AI in lung cancer screening 

Study
Number 
of images/
patients

Aim Results Comments

Armato, 2011 
(15)

7,371 To identify all lung nodules in 
each CT scan

2,669 lesions marked as a nodule 
≥3 mm by ≥1 radiologist

Reference database for CAD methods for 
lung nodule identification

Ciompi, 2017 
(17)

1,805 To classify pulmonary 
nodules

Algorithm classifies nodules 
equivalently to an expert

System effectiveness corroborated, first 
for automatic CT analysis in lung cancer

Baldwin, 2020 
(21)

1,397 To compare LCP-CNN with 
the Brock model

AUC for LCP-CNN: 89.6%, Brock 
model: 86.8% (P≤0.005)

AI improves risk prediction

Choi, 2018 (22) 72 To predict early detection of 
lung cancer

Prediction model accuracy: 
84.6%, AUC: 0.89

Two-CT radiomic features achieve 
higher accuracy than Lung CT Screening 
Reporting and Data System (Lung-
RADS®)

Ohno, 2020 (23) 290 To evaluate CADv with CNN 
for nodule measurement

AUC for CADv with CNN: 0.94, 
CADv without CNN: 0.69

CNN improves accuracy and nodule 
differentiation

Zhang, 2022 
(24)

860 To compare detection rates 
between radiologists and AI

AI accuracy: 99.1% for solid 
nodules, 98.8% for non-solid

AI greatly increases detection sensitivity, 
outperforming radiologists

AI, artificial intelligence; CT, computed tomography; CAD, computer-aided diagnostic; LCP, lung cancer prediction; CNN, convolutional 
neural network; AUC, area under the curve; CADv, computer-aided detection of volume.

predictors of the malignant nature of the nodule. A CNN 
model was developed by Ardila et al. in 2019 to examine 
LDCT volumes to detect lung cancer. The model was able 
to accurately predict the risk of lung cancer over one and 
two years with an area under the curve (AUC) of 94.4% and 
87.3%, respectively (29). The model had greater sensitivity 
and specificity for lung cancers compared to the human 
operators when only a single LDCT was available; similar 
diagnostic accuracy was observed when multiple LDCTs 
were available (14). Based on this evidence, a superior 
performance of the DL network methodology was claimed 
when compared to that of six independent radiologists when 
dealing with the assessment of malignancy (from one CT 
scan only).

Although these claims require extensive validation, AI 
algorithms may have achieved radiologist-level performance 
for detecting the malignant nature of a pulmonary 
nodule by CT. Nevertheless, these studies only evaluated 
individual performances and did not take into account any 
collaboration between human and machine (30). 

Certain tasks that are more challenging for radiologists 
might be more manageable for the algorithm, and vice 
versa. For example, subsolid nodules are frequently 
overlooked by radiologists due to their lower contrast with 
lung tissue. Conversely, highly irregular nodules might not 
be identified by the AI because of their rarity in the training 

dataset (31,32). Regarding the capacity of a human reader 
to receive assistance from an AI system, two approaches 
have been outlined: second reader and concurrent reader. 
When employing computer-aided diagnosis (CAD) 
as a second reader, the radiologist initially reviews the 
study independently, submits it to the CAD system, and 
subsequently re-evaluates the study by concentrating on the 
CAD marks to finalize the results. Conversely, with CAD 
as a concurrent reader, the initial independent review by 
the radiologist is skipped; the study is processed by CAD 
and then presented to the radiologist, who either accepts 
or rejects the CAD marks and conducts a final search for 
any missed nodules (33). Silva et al. showed that CAD 
provides additional information to radiologists for detecting 
subsolid nodules in volumetric LDCT for LCS. However, 
CAD marks necessitate visual confirmation to correct false 
positives. Integrating CAD with visual reading results in 
optimal detection performance of subsolid nodules (32). For 
this reason, this setting would lead to the conclusion that 
humans and computers would likely work synergistically, 
leading to better performance in lung cancer diagnosis.

Deep learning-based automatic detection (DLAD) 
algorithms could precisely identify malignant pulmonary 
nodules on chest radiographs, occasionally outperforming 
physicians and improving physicians’ performance when 
utilized as a “second reader”. In 2018, Nam et al. developed 
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a DL algorithm by using 43,292 chest radiographs. DLAD 
demonstrated high specificity and successfully identified 
100% of high conspicuity nodules, mostly large (>3 cm), 
nodules, and more nodules in overlap areas than four groups 
of physicians (8). They reported that the DL algorithm 
achieved a sensitivity of 71–91%, a specificity of 93–100%, 
and an AUC of 0.92–0.99, which were superior to the 
performance of most physicians involved in the study (8).

Compared with previously reported conventional 
image processing-based computer-aided diagnosis, DLAD 
exhibited a significantly reduced rate of false-positive 
findings and delivered high specificity while maintaining 
sensitivity, resulting in overall better detection performance 
than thoracic radiologists (34).

In 2020, Ohno et al. (23) analyzed the volumetric 
change and doubling time of pulmonary nodules of 170 
patients with 290 nodules at chest CT, assisted by the CNN 
applied to computer-aided detection of volume (CADv) 
measurements. They indicated that the AUC of total 
volume change per day calculated by the CADv with CNN 
(AUC =0.94) was notably higher than CADv not using 
CNN (AUC =0.69), concluding that CNN is a useful tool 
for improving accuracy and nodule differentiation.

In 2022, Zhang et al. compared the performance of 
detecting lung nodules between Radiologist Observation 
and AI-assisted reading. For solid nodules, the accuracy 
and sensitivity of radiologists were 86.2% and 52.4%, 
respectively, much lower than 99.1% and 98.8% detected 
by AI. For partly solid nodules, the sensitivity of radiologists 
was 23.1%; much lower than the 100% achieved by AI. For 
non-solid nodules, the sensitivity of human observation was 
25.2%, compared to 99.1% of AI. Therefore, AI-assisted 
reading greatly increased the detection sensitivity of part-
solid and non-solid nodules by 74% compared with the 
radiologists’ observation (24).

AI repeatedly demonstrated itself as a promising 
innovation for the malignancy prediction of lung nodules. 
Almost all the studies concluded that incorporating 
AI into standard radiological diagnostic pipelines will 
foster enhanced patient care through earlier and more 
accurate detection of the disease, thereby paving the way 
toward better outcomes (35). Promising studies are now 
evaluating the role of AI in the determination of lung 
nodules malignancy. For example, the DOLCE study is 
a prospective, observational multicenter study to assess 
the clinical utility of an AI-assisted CT-based lung cancer 
prediction tool (LCP) for managing incidental solid and 
part solid pulmonary nodule vs. standard care (36). Another 

interesting study is the DART study (also collecting data 
through the Lung Health Check program) that has the aim 
of developing new ways of using computer technology (AI) 
to improve lung health care (37).

AI for predicting histology and other pathological 
features
Lung cancer is a complex and heterogeneous disease that 
can be categorized into two main histological types: NSCLC 
and small cell lung cancer (SCLC). NSCLC represents 
approximately 85% of all lung cancer cases, while SCLC 
represents the remaining 15%. NSCLC can be further 
classified into three subtypes based on the histological 
features: adenocarcinoma (ADC), squamous cell carcinoma 
(SCC), and large cell carcinoma. ADC is the most common 
subtype of NSCLC, accounting for about 40% of all 
cases, followed by SCC, which represents around 30% 
of NSCLC cases. Large cell carcinoma is a less common 
subtype, accounting for approximately 10–15% of NSCLC 
cases. Each subtype of NSCLC has distinct molecular and 
genetic characteristics, which may affect the response to 
treatment and prognosis of the disease. Therefore, accurate 
subtyping of NSCLC is crucial for personalized treatment 
decisions and clinical management. Lung biopsy remains 
up until now the cornerstone for diagnosis of lung cancer, 
obtained either by image-guided transthoracic needle 
biopsy or transbronchial by bronchoscopic techniques. 
Although the histopathologic analysis by experienced 
pathologists remains the gold standard for diagnosing 
NSCLC histologic subtypes, it is occasionally challenging 
to accurately differentiate poorly differentiated ADC and 
SCC due to similar morphologic characteristics (38) thus 
requiring confirmatory immunohistochemistry (IHC). 
Furthermore, it is time-consuming and difficult for a 
pathologist to analyze highly intricate pathologic images 
through morphological assessment of tissue sections. In 
contrast, highly sensitive and automatic AI requires limited 
human intervention to classify lung cancer histological 
types/subtypes by analyzing radiological images (CT/
PET) and digital histopathological slides using DL 
algorithms especially CNN (39) to assist (not replace) 
the pathologists in the decision-making process, making 
more precise diagnosis of NSCLC (39). Therefore, several 
studies investigated the various AI models for classifying 
the histology of NSCLC based on digital histopathological 
slides and gene profiles, comparing with the performance 
level of experienced pathologists. Recent studies using 
AI in pathology aimed to (I) forecast routine diagnostic 
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characteristics (e.g., disease vs. normal tissue, determine 
tumor grade, and differentiate cancer types) and (II) uncover 
new insights into disease (e.g., predict gene mutation status, 
disease recurrence, and outcome) (40). These algorithms 
can significantly aid pathologists in determining the 
ratio and distribution of histologic subtypes/patterns in a 
specimen, which is currently a tedious process (41).

Besides tissue biomarker analysis, liquid biopsies have 
grown increasingly widespread. Liquid biopsy involves 
the examination of any tumor-derived product in the 
bloodstream or serum. Unlike tissue-based biopsies, 
which evaluate the spatial diversity of the tumor based 
on the sample site, liquid biopsies can capture temporal 
heterogeneity by collecting specimens from the bloodstream 
at various times, potentially revealing the progression of 
the disease. This technique is useful in various contexts. 
In early-stage disease, plasma next-generation sequencing 
(NGS) with comprehensive panels can offer high sensitivity 
and specificity, aiding in distinguishing benign from 
malignant nodules, guiding neoadjuvant therapy, and 
directing adjuvant therapy for patients undergoing surgical 
resection (42). Circulating miRNA serves as a potential 
clinical marker for detecting tumors and monitoring the 
progression of tumorigenesis through liquid biopsy (43). 
Zhang et al. (43,44) presented a novel computational 
approach for identifying significant circulating miRNAs that 

may be applied to early screening, diagnosis, and constant 
monitoring of lung cancer progression. Specifically, 
they used synthetic minority oversampling (SMOTE), a 
technique to assist AI in scenarios where the minority class 
is underrepresented, risking the overshadowing of its key 
features by the dominant class. Combined with random 
forests, this approach was used to detect lung cancer via 
circulating microRNA (miRNA), attaining an AUC of 0.99. 
Notably, this study employed a case-control design with 
samples not limited to early-stage disease, likely inflating 
performance results. Nonetheless, further exploration into 
AI/ML for liquid biopsy analysis is essential, as human 
assessment of such complex, high-dimensional data is 
impractical. AI is crucial for improving the sensitivity and 
specificity of liquid biopsies, ultimately benefiting patients 
through less invasive and earlier cancer detection.

AI models using radiological images for histology 
classification
Radiologists and oncologists may face challenges in 
accurately determining the histology of NSCLC tumors due 
to limited access to invasive techniques for tumor sampling 
during biopsies. Nevertheless, non-invasive approaches, 
including the utilization of medical image biomarkers and 
ML, have the potential to function as effective substitutes 
for predicting NSCLC histology (Figure 3). In 2020, 
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Figure 3 Integrated use of big data (imaging, clinical and metabolic data) through artificial intelligence for predictive purposes at 
histological, pathological and genetic state. 



Lococo et al. AI in lung cancer: state & future7104

© AME Publishing Company. J Thorac Dis 2024;16(10):7096-7110 | https://dx.doi.org/10.21037/jtd-24-244

Table 3 Advances in predicting NSCLC histology using non-invasive approaches and machine learning

Study Method used Number of images/patients Results

Pang, 2020 (44) DL model on CT images 2,219 CT images Overall accuracy: 87%, sensitivity: SCLC 90%, ADC 
86%, SCC 92%

Moitra, 2020 (45) DL model on CT scans 285,411 CT images of 211 NSCLC 
patients

Overall accuracy: 96.3%; AUC: 98.5%; validation 
accuracy: 94.4%

Guo, 2021 (46) 3D DL and radiomics on 
non-contrast CT images

920 patients Overall accuracy: 75% (AUC 79–84%)

NSCLC, non-small-cell lung cancer; DL, deep learning; CT, computed tomography; SCLC, small cell lung cancer; ADC, adenocarcinoma; 
SCC, squamous cell carcinoma; AUC, area under the curve.

Pang et al. (44) proposed a DL model to classify SCLC, 
ADC, and SCC from 2,219 CT images. They found that 
the DL model was enough powerful to achieve an overall 
accuracy of 87% and a sensitivity of 90%, 86%, and 92% in 
classifying SCLC, ADC, and SCC, respectively. Similarly, 
in the same year, Moitra and Mandal (45) evaluated a DL 
model on CT scans belonging to 211 NSCLC patients 
(285,411 CT images). Their study included not only ADC 
and SCC but also a third non-specified NSCLC histological 
subtype. Their model reached an overall accuracy of 96.3% 
and an AUC of 98.5%. While dropout layers were used 
during training to minimize overfitting by setting some 
features to zero, all features were considered during the 
validation process. This artificially enhanced the model’s 
accuracy, which reached 94.4%. They concluded that 
their model would be useful in the automated prognosis of 
NSCLC, and it would help radiologists and oncologists in 
the decision-making process. 

Recently in 2021, Guo et al. (46) developed a 3D DL 
and Radiomics methodology to differentiate lung cancer 
histological types/subtypes (SCLC, ADC, and SCC) from 
non-contrast CT images, encompassing 920 patients. 
Results indicated that the DL models can distinguish 
SCLC, ADC, and SCC with an overall accuracy of 75% 
(AUC 79–84%) (see Table 3).

AI models using histopathological slide images for 
histology classification
In 2018, Khosravi (47) and his colleagues from Weill 
Cornell Medicine collected 12,139 IHC-stained whole-
slide images as well as H&E-stained histopathology 
images from the Stanford Tissue Microarray Database 
(TMAD) and The Cancer Genome Atlas (TCGA). They 
trained all CNNs using the chosen images to distinguish 
between the two histological subtypes [ADC and SCC]. 
The results showed that complex CNNs could successfully 

distinguish ADC and SCC across heterogeneous tissue of 
the tumor slides with no error. Histologic intertumoral 
heterogeneity in ADCs is described in two terms: frequent 
(>80%) minor heterogeneity resulting from various growth 
patterns, such as lepidic, acinar, papillary, micropapillary, 
and solid in mixed adenocarcinomas (mADCs), and unusual 
major heterogeneity as seen in the adenosquamous lung 
carcinomas (AdSqLCs) (38). These tumor growth patterns 
impact clinical prognosis, as micropapillary and solid 
patterns are linked to a poorer prognosis (48). Additionally, 
it is occasionally challenging to distinguish the predominant 
and minor histologic subtypes; therefore, AI algorithms 
are applied in different studies to accurately classify ADC 
growth patterns. In 2019, Wei et al. (49) showed that AI 
can be used to aid pathologists in classifying the five growth 
patterns with 90% accuracy thus achieving a pathologist-
level performance and ultimately contributing to more 
accurate grading of lung ADC (see Table 4). Moreover, this 
study compared CNN models and pathologists with diverse 
experience backgrounds, the CNN model accomplished 
slightly improved performance and was superior to 
inexperienced pathologists. 

“Radio-genomics”: AI models for predicting gene mutation 
in lung cancer

Somatic mutation profiling in oncology has revolutionized 
clinical practice. The discovery of driver mutations in 
NSCLC is a prime example. Molecular testing of advanced-
stage lung ADC is now the standard of care and a key 
component of the diagnostic process. For lung ADC, all 
patients with advanced stages should be tested for epidermal 
growth factor receptor (EGFR) mutations, anaplastic 
lymphoma kinase (ALK) and c-ros oncogene 1 (ROS1) 
rearrangements, and PD-L1 levels to determine their 
potential response to EGFR, ALK, or ROS1 inhibitors, or 
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Table 4 AI applications in classifying histologic subtypes and growth patterns in lung ADC

Study Method used Number of images Results

Khosravi, 
2018 (47)

CNNs trained on IHC-stained and H&E-
stained whole-slide images from Stanford 
TMAD and TCGA to discriminate ADC and 
SCC

12,139 whole-slide 
images

The successful distinction between ADC and SCC with 
no error. Histologic heterogeneity in ADCs: frequent minor 
heterogeneity (>80%) in mADCs and major heterogeneity 
in AdSqLCs

Wei, 2019 
(49)

AI used to classify five growth patterns 
in ADC with 90% accuracy. Compared 
CNN models and pathologists with varying 
experience levels

143 whole-slide 
images

Achieved pathologist-level performance, superior to 
inexperienced pathologists in distinguishing growth 
patterns

AI, artificial intelligence; ADC, adenocarcinoma; CNNs, convolutional neural networks; IHC, immunohistochemistry; TMAD, Tissue 
Microarray Database; TCGA, The Cancer Genome Atlas; SCC, squamous cell carcinoma mADCs, mixed adenocarcinomas; AdSqLCs, 
adenosquamous lung carcinomas; CNN, convolutional neural network.

immunotherapy, respectively. Additionally, various other 
biomarkers, including BRAF, ERBB2, MET splice variants 
and amplifications, and rearranged during transfection 
(RET) rearrangements, are under clinical evaluation as 
indicators of response to targeted therapies (50). 

In  par t icu lar,  the  mutat ion of  EGFR or  ALK 
rearrangements were detected in 15% and 2% of NSCLC 
patients, respectively (51,52). Currently, the identification of 
these gene mutations necessitates invasive methods of tissue 
sampling either by image-guided or transbronchial needle 
biopsy (TBNB) from the primary tumor or its metastases. 
To overcome these invasive procedures, liquid biopsy 
and now AI approaches are trying to investigate/identify 
tumor mutations to avoid more aggressive procedures 
(and potentially to reduce the delay for treatment). The 
combination of medical imaging information derived from 
radiomics and tumor genomic data is frequently termed 
“radio-genomics” (53). 

Coudray et al. (54) investigated 1,634 whole slide images 
(1,176 tumor tissue and 459 normal) using the CNN for 
distinguishing lung ADC, SCC, and normal lung tissue. 
The DL model demonstrated high performance (AUC 
=0.97) on par with pathologists. Beside diagnosing lung 
cancer, Radiomics has been extended to the prediction 
capability towards the genes’ mutations; the authors have 
shown that the CNN model was capable of predicting the 
mutation of six genes (EGFR, KRAS, FAT1, TP53, SETBP1, 
and STK11) in lung ADC with (AUC =0.73–0.85) based 
on both frozen sections and HE stained formalin-fixed 
paraffin-embedded (FFPE) slides. The EGFR tyrosine 
kinase inhibitor (TKI) targeted therapy is the effective 
first-line treatment for NSCLC patients with EGFR 
mutations and offers longer progression-free survival 

(PFS) and improved quality of life (QoL) compared with 
chemotherapy. Therefore, many studies investigated the 
role of Radiomics in integrating CT images for predicting 
the EGFR mutation. Combining structural and functional 
imaging with clinical information and the outcome of liquid 
biopsy allows for the development of models that are most 
successful at predicting gene mutation. Zhang et al. (55) 
developed a more complex model using radiomics extracted 
from the CT images combined with clinical characteristics 
as (smoking history, sex, and histologic type), for potential 
discrimination of the EGFR mutation status and showed the 
ROC (AUC =0.86), which is greater compared to research 
using only the CT images with the ROC (AUC =0.77) (56).

On the contrary, only a few studies investigated other 
gene mutations (ALK, KRAS, BRAF, ROS1), and even fewer 
for the programmed-death-1 (PD-1)/programmed-death 
ligand (PD-L1) expression. Two Korean studies showed 
promising results, the first analyzed 172 patients with 
NSCLC from three hospitals in 2014 (57). They concluded 
that ALK+ NSCLC has unique features at CT imaging that, 
when integrated with clinical variables, discriminate ALK+ 
from non-ALK tumors; it could therefore identify patients 
with a response to crizotinib with a sensitivity of 83.3%, 
specificity of 77.9%, and accuracy of 78.8%. The second 
study, published in 2015 (58), analyzed 539 pathologically 
proven lung ADC for prediction of ALK, ROS1, or RET 
by using radiomics from the CT and PET images; it 
concluded that ALK/ROS1/RET fusion-positive lung 
ADC exhibits specific clinical and imaging characteristics, 
allowing effective differentiation of fusion-positive from 
fusion-negative lung ADC. PD-L1 expression level plays 
an important role in guiding immunotherapy for NSCLC 
patients according to the latest version of NCCN (Version 3. 
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Table 5 Radiogenomic approaches for predicting gene mutations in NSCLC

Study Method used Number of images/patients Results

Coudray, 
2018 (54)

CNN on whole slide images for 
distinguishing lung ADC, SCC, and normal 
lung tissue

1,634 whole slide images  
(1,176 tumor tissue and  
459 normal)

High performance (AUC =0.97) comparable to 
pathologists. Prediction of six gene mutations 
(EGFR, KRAS, FAT1, TP53, SETBP1, STK11) 
in lung ADC (AUC =0.73–0.85)

Zhang, 2018 
(55)

Radiomics model using CT images 
and clinical characteristics (smoking 
status, gender, histological subtype) for 
discriminating EGFR mutation status

180 NSCLC patients ROC for combined model (AUC =0.86), 
higher than using CT images alone (ROC 
AUC =0.77) (56)

Yamamoto, 
2014 (57)

Analysis using CT imaging and clinical 
variables for discriminating ALK+ from  
non-ALK tumors

172 NSCLC patients Sensitivity: 83.3%, specificity: 77.9%, 
accuracy: 78.8% for identifying patients with 
a response to crizotinib

Yoon, 2015 
(58)

Analysis of lung ADC for predicting ALK, 
ROS1, or RET fusion using radiomics from 
CT and PET images

539 lung ADC samples Good discrimination of fusion-positive from 
fusion-negative lung ADC based on clinical 
and imaging features

Jiang, 2020 
(59)

Radiomics model based on PET/CT 
images of NSCLC patients for anticipating 
PD-L1 expression status

399 stage I–IV NSCLC patients AUC =0.97 for anticipating PD-L1 expression. 
AUC =0.91 for predicting PD-L1 expression 
rates over 50%

NSCLC, non-small-cell lung cancer; CNN, convolutional neural network; ADC, adenocarcinoma; SCC, squamous cell carcinoma; AUC, 
area under the curve; EGFR, epidermal growth factor receptor; CT, computed tomography; ROC, receiver operating characteristic; ALK, 
anaplastic lymphoma kinase; RET, rearranged during transfection; PET, positron emission tomography; PD-L1, programmed-death ligand 1.

2019). Jiang et al. in 2020 (59) developed a radiomics model 
based on PET/CT images of 399 stage I–IV NSCLC 
patients and concluded that radiomics may anticipate PD-
L1 expression status in NSCLC relatively accurately with 
an AUC =0.97 and 0.91 predicting PD-L1 expression rates 
over 1% and over 50%, respectively (see Table 5).

Limitations of AI-based models

DLAD, although it has demonstrated encouraging 
outcomes in medical image analysis, faces some constraints 
because of the requirement for annotated data provided 
by radiologists, which could mirror the limitations of 
human perception and analytical judgment. The primary 
obstacle in applying deep CNNs to medical images 
is the image quality (60). Although AI models have 
demonstrated performance comparable to or surpassing 
that of humans, the intricacy of these models makes them 
challenging to decipher and comprehend how they arrive 
at their outcomes, which has resulted in the notion of 
AI models as “black boxes” (61). Another major concern 
is the applicability of these models to all patients, which 
could be resolved by creating continuous learning systems 
that employ cloud-based methods to enable the real-
time delivery of clinical records and ongoing adjustment 

of the underlying training models. This would guarantee 
machine-independent consistency of the models (62).

In radiomics, the reproducibility of features is vital 
due to the variability in image acquisition, preprocessing, 
and segmentation. PET/CT scans provide extensive 
imaging data and parametric information but are prone to 
pitfalls and artifacts and are more costly and technically 
complex. The lack of a universal consensus on the optimal 
threshold for lung cancer radiomics is another challenge. 
Additionally, AI-based approaches require specialized skills, 
necessitating training for the next generation of radiologists 
and pathologists. Various AI algorithms have been created 
in NSCLC patient-focused studies, most of which are 
retrospective, single-center, with small training samples and 
lacking external validation, limiting their interpretability 
and generalizability. Moreover, a well-defined ethical and 
legal structure from stakeholders (healthcare providers, 
research organizations, patient advocacy groups, and 
government) is needed (63). 

Conclusions

The application of AI to enhance the understanding and 
treatment of NSCLC is expanding but its introduction 
in clinical practice still faces obstacles. However, we may 
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Figure 4 LANTERN Study overview. The figure illustrates key phases of the LANTERN Study, from ‘NSCLC Patients’ through 
enrollment, and integrated data collection, to the creation of digital humanized avatars, culminating in practical implementation in the 
clinical setting. NSCLC, non-small-cell lung cancer; DHA, digital human avatar.
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indeed bet that AI-based science will be ubiquitous and 
indispensable in lung cancer patients. This positive prevision 
relies on the fact that with the advent of omics sciences 
and precision medicine, the information obtained from 
the recalled omics technologies provides physicians with 
an enormous amount of data (“big data”). Only with the 
application of AI techniques, researchers and physicians will 
have the potential to deal with the complexity represented 
by the quantitative aspect of the big data-related features. 
For this reason, oncologists, radiologists and surgeons 
should persist in incorporating machine-learning tools into 
the clinical management of NSCLC and join the digital 
transformation that has already occurred in the business 
and technology sectors. Furthermore, future AI applications 
for precision medicine in NSCLC could combine radiomics 
and liquid biopsies into innovative companion diagnostics, 
offering valuable insights into tumor biology, disease 
progression, and treatment response in a minimally invasive 
and longitudinal manner (63). 

In particular, as summarized in the present narrative 
and comprehensive review, there are several possible 
applications of AI in lung cancer management, with 
preliminary but very encouraging results: 

(I)	 Computer-assisted diagnosis will facilitate the 
identification of early-stage disease, the detection of 
malignancy in lung lesions, as well as the prediction 
of histology and other pathological characteristics. 

(II)	 Advanced AI methods will be useful to predict 
NSCLC gene mutations without performing a 
sample biopsy (thus reducing time and costs). Finally, 
physicians of the future will have powerful tools to 
predict response to treatments and the occurrence of 
a tumor recurrence, resulting in a real personalized 
strategy of care.

Future research perspectives

Several future perspectives have been suggested in the 
domain of precision medicine for lung cancer therapy; our 
Team has recently developed a multi-omics platform of 
research (LANTERN project) (64) that stands as a beacon 
of innovation, contributing valuable insights that align 
seamlessly with the evolving paradigm of personalized and 
preventive healthcare. As we navigate the complexities 
of lung cancer, the LANTERN project’s multi-omics 
prospective research design, involving 600 NSCLC patients, 
presents an unparalleled opportunity to delve into the 
intricate interplay of genetic, molecular, and clinical factors. 
By carefully gathering radiomic, genomic, and metabolomic 
profiles, along with extensive medical and therapeutic 
information, the study aims to build digital humanized 
avatars that actively depict each patient’s unique molecular 
and clinical landscape (Figure 4). This approach not only 
aims to enhance individualized therapeutic approaches but 
also has the potential to transform the future of cancer 
care by aiding the ongoing advancement propelled by 
sophisticated ML and AI methods. The LANTERN Study’s 
commitment to ethical standards and compliance with 
regulations positions it as a pioneering effort that not only 
addresses current challenges in lung cancer care but also 
lays the foundation for future breakthroughs in precision 
oncology. As we reflect on the current trends and future 
perspectives in AI-based models, the LANTERN project 
emerges as a pivotal force in enhancing patient care and 
outcomes in NSCLC, paving the way for a new era in the 
battle against this challenging disease.
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