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Microglia are resident macrophages of the central nervous system and significantly

contribute to overall brain function by participating in phagocytosis during development,

homeostasis, and diseased states. Phagocytosis is a highly complex process that

is specialized for the uptake and removal of opsonized and non-opsonized targets,

such as pathogens, apoptotic cells, and cellular debris. While the role of phagocytosis

in mediating classical innate and adaptive immune responses has been known for

decades, it is now appreciated that phagocytosis is also critical throughout early neural

development, homeostasis, and initiating repair mechanisms. As such, modulating

phagocytic processes has provided unexplored avenues with the intent of developing

novel therapeutics that promote repair and regeneration in the CNS. Here, we review the

functional consequences that phagocytosis plays in both the healthy and diseased CNS,

and summarize how phagocytosis contributes to overall pathophysiological mechanisms

involved in brain injury and repair.
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INTRODUCTION

Phagocytosis is the process through which cells recognize, engulf, and digest large particles (>0.5
microns), including, but not limited to, bacteria, apoptotic cells, and cell debris. Phagocytosis
is a receptor-mediated process involving three major steps: “find me,” “eat me,” and “digest
me,” with each of these steps being regulated by multiple receptors, unique molecules, and
signaling pathways. Specific receptors involved in phagocytosis can be either opsonic (i.e., Fc
receptors, complement receptors) or non-opsonic (i.e., C-type lectin receptors, phosphatidylserine
receptors). Following recognition by phagocytic receptors, the plasma membrane extends around
the phagocytic target in an actin-dependent manner, with particles ultimately being enclosed
within a vesicular phagosome. Following formation, this nascent phagosome proceeds through a
series of maturation steps, culminating in fusion with lysosomes (phagolysosome) for the eventual
destruction of the phagocytosed particles. Importantly, following destruction, byproducts must be
effectively dealt with by the phagocytic cell, either through storage, recycling or efflux mechanisms.
The basic cell biology of phagocytosis has been extensively reviewed elsewhere (1).

Adding additional complexity to phagocytosis is the requirement for specific outcomes in the
context of different phagocytic targets. For example, while recognition and phagocytosis of bacteria
requires rapid induction of proinflammatory responses, a similar reaction to apoptotic cells induces
detrimental autoinflammation (2). As such, specific immune responses to phagocytic targets are
tailored to by a variety of context-dependent signals, including the engagement of phagocytic
receptors that utilize distinct inflammatory signaling pathways (pro vs. anti-inflammatory) and
microenvironment-derived signals that promote quiescence or inflammation (3, 4).
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Within the CNS, phagocytosis is a critical process required for
proper neural circuit development and maintaining homeostasis.
To assist in maintaining homeostasis in the CNS, synapses,
apoptotic cells, and debris must be continuously removed
to maintain optimal neural function. While phagocytosis is
primarily attributed to microglia (the professional phagocytes
in the CNS), non-professional phagocytes (e.g., astrocytes or
oligodendrocytes) may also participate (5). Arising from discrete
pathologies, specific phagocytic targets, such as insoluble protein
aggregates or myelin debris add further burden to the phagocytic
machinery within the CNS. It has been hypothesized that failures
during phagocytic processes may actually promote inflammation
and/or neurodegenerative processes. Herein, we review how
phagocytosis contributes to both the maintenance of homeostasis
and disease within the CNS (Figure 1).

PHAGOCYTOSIS IN CNS DEVELOPMENT
AND HOMEOSTASIS

Synapse Elimination
Within the developing CNS, phagocytosis is necessary for the
refinement of synaptic connectivity, as the developing CNS
overproduces both neurons and synapses (6). Furthermore,
the removal of unwanted synapses refines neural networks,
thus contributing to learning and memory (7). Microglia are
important cells that execute the pruning of synaptic connections,
utilizing immune signaling pathways, such as the complement
pathway, although other signaling pathways also contribute
(8). Microglia continuously survey the brain’s parenchyma (9)
and make frequent physical contacts with synapses that are
mediated in part by sensing neuronal activity via nucleotides,
such as ATP or ADP, and suggest that nucleotides may act as
“find me” signals that guide microglial processes toward active
synapses (10, 11). Studies investigating synapse pruning have
relied extensively on the developing visual system, which is a
well-defined sensory system that allows for easy manipulation.
Modulation of neuronal activity within the visual system
using visual deprivation (to reduce the frequency of action
potentials) has demonstrated that neuronal activity is essential
for synaptic pruning by microglia (12). Consistent with the
role of nucleotides serving as a “find me” signal within the
CNS, mice lacking the ADP receptor P2Y12, or pharmacological
blockade of P2Y12 signaling, result in impaired synapse
pruning within the developing visual cortex (13). Additionally,
CX3CR1 knockout mice demonstrate increased hippocampal
spine density during development (14), suggesting CX3CL1
may also act as a “find me” signal regulating synapse pruning.
However, CX3CL1 is dispensable for synapse pruning within
the developing visual system (15). In regards to recognition
and engulfment of synapses, the classical complement system
has been extensively studied. Briefly, the classical complement
system functions via tagging of targets with C1q, which catalyzes
the production of C3 convertase. C3 convertase subsequently
cleaves C3 producing both C3a (a pro-inflammatory mediator)
and C3b, an opsonin that triggers phagocytosis via complement
receptors on phagocytes. Early reports demonstrated that the

classical complement components C1q and C3 tag synapses
for phagocytosis and are required for proper refinement of the
developing lateral geniculate (16). Additional reports observed
that microglial complement receptor 3 (CR3) is required for
the clearance of complement tagged synapses (17). Highlighting
the relevance of complement in synapse pruning during
development, mice lacking C1q exhibit spontaneous seizure
activity as a result of impaired synapse removal (18). The
importance of C1q in tagging synapse (19) for elimination
is supported by the finding of local apoptotic mechanisms
within presynaptic elements that results in C1q accumulation
(20). Recent work leveraging the power of correlative light and
electronmicroscopy (CLEM) and live-cell imaging demonstrated
that microglia frequently contact synapses within the healthy
brain and can be seen engulfing presynaptic, but not post-
synaptic, elements via a specialized form of phagocytosis
termed trogocytosis, which results in the partial removal of cell
constituents (21). While supporting the notion that microglia
remove synaptic elements, this study fails to demonstrate that
microglia actively phagocytose entire synapses, and further, the
authors observed no role for the receptor CR3 in this process.
In addition to the classical complement system, both TREM2
and CD47-SIRPα signaling contribute to synapse pruning by
microglia (22, 23), although these pathways have been less
extensively studied.

In addition to microglia, astrocytes also participate in refining
synaptic connectivity (24, 25). It was initially reported that
astrocytes participate in the phagocytosis of synapses utilizing
the receptors MerTK and MEGF10, whereby astrocyte-specific
deletion of these receptors results in a failure to refine synapses
in the developing visual system (26). Furthermore, the ability
of human astrocytes to phagocytose synapses in dissociated
cultures and cerebral organoids has been demonstrated (27, 28),
suggesting astrocytes actively prune synapses in the human CNS.
Additionally, the Alzheimer-associated gene ApoE regulates the
phagocytic capacity of astrocytes and C1q accumulation on
synapses during aging (29). It has also been reported that sleep
deprivation causes increased synaptic pruning by astrocytes,
likely mediated by MerTK (30).

Removal of Apoptotic Cells
Apoptotic cells are constantly generated and phagocytosed
throughout the nervous system during both development
and homeostasis. Within the subgranular zone (SGZ) and
subventricular zone (SVZ), the major regions containing neural
progenitor cells (NPCs), microglia are required to constantly
phagocytose apoptotic NPCs throughout the lifespan of the
organism. Despite the majority of newborn cells in neurogenic
niches undergoing apoptosis, identification of apoptotic cells
is difficult due to their rapid clearance by microglia. During
inflammatory insult, increased apoptosis of NPCs is coupled
to increased phagocytosis by SGZ microglia, suggesting that
microglia continue to remove apoptotic progenitors regardless
of inflammatory status (31). Mechanistically, the phagocytosis of
apoptotic NPCs appears to depend on the TAM family receptors
MerTK and AXL, as evidenced by a buildup of apoptotic within
the SVZ when these receptors are genetically deleted (32).
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FIGURE 1 | Microglial Phagocytosis in the CNS. During development, microglial phagocytosis is essential for the refinement of excessive synapses, as well as the

removal of apoptotic neurons and oligodendrocytes that are overproduced during development. Homeostatic microglia in the adult brain constantly survey the brain’s

parenchyma, contributing to synaptic plasticity and phagocytosing apoptotic progenitor cells. With advanced age, microglia undergo senescence, display impaired

debris clearance, and excessively prune synapses. In diseases, such as Alzheimer’s or multiple sclerosis, microglia act as key contributors to pathology, which is

partially mediated by phagocytosis of substrates, such as amyloid-β or myelin debris (made in ©BioRender - biorender.com).
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TABLE 1 | Current evidence of phagocytosis alterations resulting from variants in disease-associated genes expressed in microglia.

Gene Associated diseases Models Alterations to phagocytosis References

TREM2
Alzheimer’s disease (48, 49)

Frontotemporal dementia (50)

Parkinson’s disease (50)

Nasu-Hakola disease (51)

Primary microglia from

TREM2−/− mice

Decreased phagocytosis of Aβ relative to WT

microglia

(52)

Reduced uptake of Aβ-lipoprotein complexes

compared with WT and TREM2+/−

(53)

Reduced uptake of E. coli particles compared with

WT controls

(54)

Human monocyte-derived

macrophages from

heterozygous carriers of the

TREM2 R62H

AD-associated variant

Reduced uptake of Aβ-lipoprotein complexes

compared with non-carriers

(53)

shRNA knockdown of

TREM2 expression in

primary mouse microglia

Reduced uptake of apoptotic neuronal membranes

vs. control shRNA treated cells

(36)

Immunohistochemical

analysis of

5XFAD/TREM2−/− mice

Decreased levels of Aβ within microglial

phagosomes vs. WT. Haplodeficient TREM2+/−

mice showed no significant reductions in Aβ uptake

(55, 56)

Increased Aβ load in hippocampus of TREM2

knockout mice

(52)

Immunohistochemical

analysis of

APPPS1-21/TREM2−/−

mice

Decreased Aβ load in hippocampus of TREM2

knockout mice vs. WT at 2 months

(57)

Decreased Aβ load in hippocampus of TREM2

knockout mice vs. WT at 4 months

(58)

Increased Aβ load in hippocampus of TREM2

knockout mice vs. WT at 8 months

Immunohistochemical

analysis of

APPPS1-21/TREM2+/−

mice

No difference in Aβ plaque load between WT and

TREM2+/− mice at 3 or 7 months old

(59)

iPSC-derived microglia-like

cells from carriers of TREM2

T66M and W50C variants

Decreased uptake of apoptotic neurons by TREM2

variant cells than by controls

(60)

Non-phagocytic CHO cells

transfected with TREM2

TREM2-CHO cells were capable of phagocytosing

apoptotic neuronal cells

(61)

CD33 Alzheimer’s disease (62, 63) Primary microglia from

CD33−/− mice

Increased uptake of Aβ compared with WT microglia (64)

CD33 overexpression in

BV2 mouse microglial cell

line

Decreased uptake of Aβ compared with control BV2

cells

(64)

Frontal cortex samples from

carriers of protective minor

allele SNP rs3865444

Decreased formic acid-soluble Aβ42 levels in

carriers of rs3865444 minor (T) allele than in major

allele carriers

(64)

TM2D3 Alzheimer’s disease (65) CRISPR-Cas9 knockout in

primary human

macrophages and U937

human myeloid cell line

Decreased uptake of Aβ and synaptosomes

compared with WT

(66)

PU.1 Alzheimer’s disease (67) siRNA knockdown of PU.1

in adult human microglia

Reduced phagocytosis of Aβ compared with

controls

(68)

α-Synuclein Parkinson’s disease (69) Human iPSC-derived

macrophages from PD

patients carrying SNCA

triplication mutations

Increased release of α-synuclein and reduced

phagocytosis capability compared with controls

(70)

(Continued)
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TABLE 1 | Continued

Gene Associated diseases Models Alterations to phagocytosis References

Progranulin Frontotemporal dementia

(71, 72), Alzheimer’s disease

(73, 74)

Microglia specific

progranulin knockout in AD

mice

(Grnflox/flox/PDAPPSw,Ind
J20)

Decreased microglial phagocytosis of fluorescent

beads in acute brain slices and increased

hippocampal Aβ plaque-load vs. WT progranulin AD

mice

(75)

DAP12 Nasu-Hakola disease (51) Primary mouse microglia

transfected with mutant

DAP12 (lack ITAM signaling

motif)

Mutant DAP12 microglia phagocytosed less

apoptotic neuronal material than control cells

(36)

Bone marrow-derived

macrophages from

DAP12−/− mice

Reduced phagocytosis of bacteria (76)

LRRK2 Parkinson’s disease (77, 78) Microglia and BMDMs from

Lrrk2−/− mice

Reduced uptake of latex beads and E. coli

bioparticles by primary microglia and BMDMs from

knockout mice vs. WT.

(79)

Decreased uptake of beads after injection into

midbrain in Lrrk2−/− mice compared with controls

MerTK Multiple sclerosis (80, 81) in vitro human microglia and

macrophages

Pharmacological blockade of MerTK inhibits myelin

phagocytosis in vitro

(82)

MS patient macrophages display reduced

expression of MerTK

(83)

Interestingly, NPCs may also participate in the phagocytosis of
neighboring apoptotic cells and may be required for efficient
neurogenesis (33). Apoptotic neurons and oligodendrocytes
are also generated throughout development, and phagocytosis
is required to clear these cells (34–36). The phagocytosis of
apoptotic neurons depends on receptors including TREM2,
CD11b, BAI1 and TIM-4, as well as the v-ATPase transporter
that is required for the degradation of apoptotic corpses (36–39).
Importantly, recent work has identified a novel microglia subset
associated with developmental white matter that is specialized
for the phagocytosis and removal of apoptotic oligodendrocytes
(40). Thus, it appears that microglia may acquire distinct
phenotypes that are required for region-specific phagocytic
functions which may not be extrapolated from one region
to another.

Phagocytosis During Aging
Within the aging CNS, there is abundant synapse loss and myelin
degeneration which is believed to contribute to age-related
cognitive decline (41, 42). Microglia- and complement-
mediated synapse elimination has been suggested to underlie
excessive synapse elimination during normal aging. Increases
in complement protein C1q are observed throughout the aged
brain, and knockout of C1q prevents age-related cognitive
decline, suggesting that excessive synapse pruning during
aging potentiates cognitive decline (19). Genetic deletion
of the complement component C3 reduces synapse loss
and cognitive decline in aged mice, further implicating
excessive complement-dependent synapse elimination as
a key contributor to age-related cognitive impairment
(43). In regards to myelin degeneration, ultrastructural
analysis and in vivo imaging has demonstrated that large

amounts of myelin debris are generated during normal
aging, and this debris is continuously phagocytosed by
microglia (44, 45). With advanced age, clearance of myelin
debris becomes impaired, resulting in insoluble intracellular
aggregates (lipofuscin granules) within microglia and microglial
senescence (46). This microglial dysfunction is exacerbated
by increased production of myelin debris or impairment
of lysosomal processing; indicating pathways downstream
of engulfment are essential to effectively deal with myelin
debris in the healthy CNS. While microglial phagocytosis
appears to be an important contributor to the aging brain,
further investigations are needed to confirm and expand on
these findings.

PHAGOCYTOSIS IN DISEASE STATES

As we begin to understand the roles of microglia
in the development and homeostasis of the CNS, it
has become increasingly evident that changes in the
key functions of these highly active cells can exert
significant effects on the progression of multiple CNS
diseases (47) (Table 1).

Acute Injury
The cellular response to acute CNS injury, such as traumatic
brain injury (TBI), spinal cord injury (SCI), and stroke is
multiphasic and has been studied in a range of models.
The initial phase involves rapid activation of CNS-resident
microglia (9, 84, 85) resulting in pro-inflammatory cytokine
release and recruitment of peripheral immune cells,
including neutrophils, monocytes, and monocyte-derived
macrophages (MDMs), to the lesion site (86, 87). This
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early response by microglia limits the spread of the lesion
(85, 88, 89) but also generates inflammatory cytokines and
reactive oxygen species (ROS), which may be detrimental
to recovery and contribute to secondary injury if not
resolved (90).

Phagocytosis, initially performed by microglia and
subsequently by recruited MDMs, acts to restore homeostasis
and minimize chronic activation (91). Phagocytosis of apoptotic
cells prevents the release of cytotoxic and immunogenic
intracellular contents (92, 93) and the removal of damaged
myelin has been shown to be important for axon regeneration
and remyelination (94–96). Additionally, live neurons may
be phagocytosed by microglia during injury (97), inducing
a form of cell death termed phagoptosis, which contributes
to neuronal cell death during pathological states (98, 99).
Importantly, the presence of “don’t eat me” signals, primarily
CD47-SIRPα or CD200-CD200L signaling, from neurons to
microglia suppresses aberrant phagocytosis and is critical
for maintaining microglia in a quiescent state [reviewed in
(100)].

Recruited MDMs play an important role in post-injury
clearance. In a model of cerebral ischemia in mice, MDMs,
once localized to the site of injury, have been shown to have
a higher phagocytic capacity than microglia (101). However, as
demonstrated in a SCI model, recruited MDMs are less capable
of processing phagocytic material intracellularly and are also
more susceptible to apoptotic and necrotic cell death (102).
Therefore, although peripherally-derived MDMs take up more
debris post-injury, the inefficient processing of phagocytosed
material results in cell stress, which ultimately contributes to the
inflammatory milieu.

Whether the activity of infiltrating MDMs following CNS
injury is beneficial for repair or a detrimental contributor
to inflammation is still disputed (103–106). Following
disease onset in models of stroke and SCI, infiltrating
MDMs have been found to alter microglial gene expression,
downregulating both beneficial (phagocytosis) and neurotoxic
(pro-inflammatory) functions (102, 107, 108). Indeed, blockade
of MDM infiltration or MDM ablation has been shown
to be beneficial in SCI (109–111) and TBI (112, 113).
Conversely, other models suggest that preventing the
infiltration and functioning of certain MDMs populations
in CNS injury results in worsened outcomes (107, 114–116).
Contradictory data may be due to inconsistent spatial and
temporal assessment of inflammation, phagocytic activity and
outcomes in the various models (117) as well as difficulties
in differentiating CNS-resident from infiltrating myeloid
cells. The use of double transgenic models, such as the
Cx3cr1GFP/+Ccr2RFP/+ mouse, would enable improved
distinction between phagocytosis performed by resident
microglia and infiltrating monocytes, as used to differentiate
these myeloid cell types in studies of stroke (118, 119), SCI (105)
and inflammation (120).

Multiple Sclerosis
Destruction of myelin sheaths within the CNS, as occurs in
multiple sclerosis (MS), produces degenerating myelin at sites

of injury and inflammation. This degenerating myelin, termed
myelin debris, must be cleared from sites of injury to promote
timely repair. CNS (but not PNS) myelin acts as a potent
inhibitor of oligodendrocyte differentiation (121), and the
introduction of exogenous myelin into demyelinated lesions
halts oligodendrocyte differentiation at the pre-myelinating
stage (122). The removal of myelin debris within MS lesions and
experimental animal models, such as experimental autoimmune
encephalomyelitis (EAE) or cuprizone-induced demyelination,
is primarily mediated by microglia and macrophages.
Resident microglia and peripheral macrophages are capable
of phagocytosing and degrading large quantities of myelin
as highlighted by rapid clearance of myelin debris in animal
models, although myelin debris can persist in MS patient lesions
(123). Microglia and macrophages differ in their ability to
uptake myelin. Specifically, resident microglia demonstrate a
greater ability to engulf myelin then peripheral macrophages
(124–126), and are more resistant to apoptosis following myelin
phagocytosis (102), indicating microglia are more efficient at
both engulfing and degrading myelin debris. The mechanism
underlying this difference is unknown, although both ontogeny
and exposure to the CNS microenvironment likely contribute.
For example, astrocyte-conditioned media has been shown to
promote myelin phagocytosis by macrophages and microglia
in vitro (127, 128), suggesting the CNS microenvironment
programs myeloid cells for efficient myelin phagocytosis. The
phenotype of myeloid cells (pro-inflammatory vs. reparative)
also has a large influence on the phagocytic ability of myeloid
cells, as inflammatory myeloid cells (e.g., LPS stimulated) display
reduced myelin phagocytosis in comparison to reparative,
anti-inflammatory myeloid cells (e.g., IL-4 stimulated) (126).

Early investigations into myelin phagocytosis examined
the effects of opsonization, demonstrating that both
immunoglobulins and complement proteins promote the
phagocytosis of myelin, and blocking Fc or complement
receptors reduced myelin phagocytosis in vitro (125, 129, 130).
In addition, evidence from MS lesions suggests that Fc receptors
and complement play active roles in myelin phagocytosis
(131). Interestingly, myelin debris is capable of activating
complement in the absence of myelin reactive antibodies (132).
Furthermore, myelin phagocytosis in vitro relies on scavenger
and C-type lectin receptors for recognition and internalization
of myelin debris (125, 133). More recently, the TAM family
receptors MerTK and AXL, which bind phosphatidylserine via
the bridging molecules Protein S and Gas6, respectively, have
been identified as essential regulators of myelin phagocytosis.
Within the EAE animal model, deletion of AXL results in
increased clinical severity and impaired myelin clearance, while
delivery of exogenous Gas6 is protective (134). Loss of AXL/Gas6
during cuprizone-induced demyelination results in increased
neuroinflammation and impaired remyelination, indicating
that signaling via the apoptotic cell receptor AXL is required to
promote the resolution of inflammation following demyelination
(135). Studies utilizing human macrophages and microglia
have demonstrated that MerTK is an essential phagocytic
receptor for myelin, expression of MerTK correlates with myelin
phagocytosis in vitro, and MerTK levels are reduced within MS
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patient macrophages (82, 83). Polymorphisms within the MerTK
gene are associated with MS susceptibility, suggesting MerTK
plays an important role in the development of MS (80, 81).
Finally, TREM2 has also been implicated in myelin phagocytosis.
TREM2 binds myelin lipids directly to facilitate internalization,
and studies using the EAE animal model observed that blockade
of TREM2 increases EAE severity, while TREM2 overexpression
is protective, in part mediated by effects on clearance of myelin
debris (136–138). Moreover, TREM2 KO mice display faulty
myelin debris clearance and remyelination in the cuprizone
model of toxic demyelination, with TREM2 knockout microglia
failing to upregulation genes associated with phagocytosis and
lipid metabolism (138, 139).

In addition to myeloid cells, astrocytes have been observed
to engulf myelin debris. Within MS lesions, hypertrophic
astrocytes contain myelin inclusions (140), and astrocytes
have been demonstrated to uptake myelin debris in vitro
(141). Transcriptomic analysis of astrocytes reveals expression
of several complete phagocytic pathways and apoptotic cell
receptors, such as MerTK, AXL and LRP1 (142). This is
supported by the description of neurotoxic “A1” astrocytes,
which downregulate phagocytic receptors including MerTK and
show impaired myelin phagocytosis in vitro (143). Astrocytes
phagocytose myelin at quantities several-fold lower than myeloid
cells (144), questioning the functional significance of astrocyte-
mediated myelin phagocytosis in vivo. Recently, phagocytosis of
myelin by astrocytes has been shown to induce the expression of
multiple chemokines both in vitro and in vivo (145), suggesting
that astrocytes sense myelin debris and respond by recruiting
professional phagocytes to sites of injury. These results are in line
with the demonstration that astrocyte ablation impairs myeloid
cell recruitment and phagocytosis in the cuprizone model, partly
due to lack of CXCL10 expression (146).

Alzheimer’s Disease and CNS
Phagocytosis During Aging
Alzheimer’s disease (AD) is characterized by the accumulation of
extracellular plaques of toxic amyloid-beta (Aβ) and intracellular
neurofibrillary tangles. The amyloid cascade hypothesis posits
that an imbalance between the production and the clearance
of Aβ initiates the pathological cascade of synapse loss, neuron
death, and brain atrophy found in AD (147). The contribution
of microglia to AD pathogenesis is becoming increasingly
recognized as genome wide association studies (GWAS) and
transcriptomic analyses highlight links between microglial genes
andAD risk, as well as betweenmicroglial signaling pathways and
disease progression (47).

In the case of the more common, late onset AD (LOAD), it
has been argued that impairment in the clearance of Aβ has a
greater impact on disease progression than its overproduction
(148). As the primary resident phagocytes of the CNS, microglia
play an important role in preventing the accumulation of this
toxic protein through both phagocytosis and the production
of degrading intra- and extracellular enzymes (149). In vitro,
Aβ initiates cell stress responses, synapse loss, mitochondrial
dysfunction, and neuronal apoptosis. In the early stages of AD,

microglial function is neuroprotective, acting to clear apoptotic
cells and pathological protein aggregates (150) as well as forming
a barrier around plaques to restrict their growth and diffusion
of synaptotoxic Aβ oligomers (151, 152). However, long term
exposure to Aβ induces chronic microglial activation-associated
dysfunction known as reactive microgliosis (153), in which
phenotypic changes result in the adoption of a continuous pro-
inflammatory status and compromised phagocytosis (154–156).

It is important to note that many in vitro and in vivo
phagocytosis assays rely heavily on determining the uptake,
but not measuring the subsequent degradation, of pathogenic
proteins. In order to prevent intracellular accumulation of Aβ,
it must be appropriately degraded and cleared through the
endosome-lysosomal pathway (157, 158). The uptake of fibrillar
and soluble Aβ has been reported in multiple models of microglia
in vitro and in vivo, however, whether complete degradation of
this protein, in particular the fibrillar (f) form, occurs remains
disputed. Following in vitro culture of control microglia with fAβ,
phagosomes have been found to contain incompletely degraded
Aβ for up to 20 days (159–161). It has been reported that
acidification of microglial lysosomes, for example by treatment
with MCSF, can improve the efficiency of intracellular fAβ

breakdown (162, 163).
The presence of complement activation in AD pathology

has been observed for several decades (164, 165) however, it is
only recently that genetic analyses have identified complement
components as playing a role in AD pathogenesis (166–169). As
discussed previously, complement-mediated pruning of synapses
is a key microglial function during development and, whilst
complement factors aid plaque clearance (170, 171), phagocytosis
of synapses appears to become dysregulated during AD. Synapse
loss has been identified early on in AD and correlates strongly
with cognitive decline (172, 173). Inhibition or knockout of
the complement components C1q, C3, and CR3, required for
microglial synapse refinement during development, reduced the
synapse loss found in mouse AD models (174–176).

GWAS studies have identified the rare variant R47H in the
gene encoding the phagocytic receptor TREM2 as a risk factor
for the development of LOAD (48, 49). TREM2 expression is
necessary for the phagocytosis of a range of particles (36, 53, 54);
TREM2 knockout microglia are less efficient at phagocytosing Aβ

than WT microglia (53, 55) and mutations in TREM2 affect the
detection of damage-associated lipids by microglia (56), which
may explain their reduced ability to take up apoptotic cells (60,
61, 177). It has recently been suggested that TREM2 drives the
expression of the scavenger receptor CD36, via the upregulation
of C/EBPα (52), augmenting phagocytosis. TREM2 knockout
AD models have produced contrasting results regarding amyloid
burden (56–59), however it can be argued that this is an indirect
measure of microglial phagocytosis of Aβ, as amyloid burden can
be altered by other reported TREM2-mediated effects including
microglial migration and plaque barrier formation (55, 178, 179).

The ApolipoproteinE–ε4 allele is the greatest genetic risk
factor for the development of LOAD (180). APOE has been
found to be an endogenous TREM2 ligand (53, 181), suggesting
an interaction between the two most significant AD genetic
risk factors on the surface of microglia. APOE binds to both
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Aβ (181, 182) and apoptotic cells (181) and therefore may
facilitate the detection and phagocytosis of Aβ and apoptotic cells
by TREM2-expressing microglia. The TREM2-APOE signaling
pathway has been reported to suppress the homeostatic signature
of microglia in several CNS disease models, inducing a shift to
a neurodegenerative phenotype (183). Therefore, this signaling
axis may exert effects on both beneficial and detrimental
microglial functions.

Single-cell RNA-sequencing has identified a new subset of
highly phagocytic, AD-associated microglia (DAM) surrounding
the plaques in an AD mouse model (184). Interestingly, this
subset of microglia was also found in models of aging and
ALS so may represent a generalized response to age-related
neurodegeneration, or loss of homeostasis, rather than to a
specific disease-associated protein. Whether this adoption of a
highly phagocytic phenotype is beneficial or deleterious for AD
progression has not yet been established.

It has been argued that aging and the expression of genetic
risk factors, either independently or in combination, limit the
ability of microglia to prevent or slow the pathogenesis of
neurodegenerative diseases (185). Age is the single biggest
risk factor for the development of LOAD and the recent
identification of a unique phenotype of aged human microglia,
in which susceptibility genes for both AD and MS were found
to be enriched (186), suggests that age could significantly
impact microglial function. In the aged brain, microglia exhibit
marked changes in their morphology and activity; compared
to young cells there is an increase in soma size, a loss of the
characteristic tiled tissue distribution, and shorter, less dynamic
processes (187–189). Primary mouse microglia demonstrate
age-dependent, substrate-specific decreases in phagocytosis of
fibrillary Aβ (190) and α-synuclein oligomers (191). Age-
related phagocytic activation of microglia, which correlated with
cognitive impairment, was reported in aged rhesus monkey
brain (192). In this study, immunohistochemical analysis of
white matter regions indicated that with age, increasing numbers
of microglia simultaneously expressed galectin-3, a phagocytic
marker, and HLA-DRMHC II, a marker of microglial activation.
However, in another study, the presence of large, heterogeneous
intracellular inclusions suggested that increased uptake, but
inefficient lysosomal digestion, of particles may be associated
with aged microglia (193). Poor Aβ protein degradation is also
found in aged mouse microglia (188, 194). Therefore, age-
related changes may increase the susceptibility to abnormally
folded proteins and accumulating debris, resulting in a loss of
homeostasis and the persistence of cytotoxic conditions.

Other Neurodegenerative Diseases
Microglial phagocytosis has been implicated in a range of other
neurodegenerative diseases (195), in particular proteopathic
diseases in which the balance of protein production, clearance
and degradation becomes dysregulated. In prion disease, the
pathogenic form of prion protein (PrPsc) is not taken up by
microglia (196), and alters the uptake of other particles (197),
resulting in the accumulation of pathology. Multiple studies have
demonstrated the ability of α-synuclein (α-SYN), the pathogenic
protein found in Lewy bodies in Parkinson’s disease (PD), to

alter microglial phagocytosis, although this is conformation
and expression-level dependent (198). Mutations in LRRK2 are
the most commonly found variants in familial PD and recent
work has demonstrated that LRRK2 influences myeloid cell
phagocytosis via interactions with the actin remodeling protein
WAVE2 (79). LRRK2 deficiency in mouse microglia attenuated
phagocytosis of beads, whereas expression of PD-associated
LRRK2–G2019S augmented phagocytosis in mouse microglia
and patient-derived macrophages, which may result in neuronal
damage due to overactive phagocytosis during disease (79).

The TREM2 R47H variant associated with AD has also been
found to be a risk factor for PD and frontotemporal dementia
(FTD), suggesting a common role for TREM2 dysfunction in
multiple neurodegenerative diseases (50). Nasu-Hakola disease
(NHD) is a progressive, presenile dementia in which phagocytic
alterations are a primary cause of pathology. Rare but lethal,
NHD is caused by a loss of function of TREM2 or its signaling
partner DAP12 (51). Significant demyelination is found in
patient brains (199) and in mouse models (200, 201), however
signs of Aβ and tau pathology are limited, despite the role of
TREM2 in AD (202). Overactive microglial phagocytosis is also
a driver of the pathology found in FTD; loss of expression of
functional progranulin results in increased C1q production and
complement-mediated synapse loss during aging (203).

MODELING PHAGOCYTOSIS IN THE CNS

CNS phagocytosis can be modeled and studied using a range of
in vitro and in vivo techniques. Flow cytometry and microscopy
are frequently and easily utilized to assess the uptake by cell
lines or primary cells in vitro of fluorescently-labeled synthetic
or physiological particles, including latex, Aβ, myelin, zymosan,
and dextran (204). Flow cytometry allows the rapid assessment of
large numbers of cells, whereas microscopy provides additional
information on the motility and morphology of the cells as they
perform this actin-associated function. Time-lapse microscopy
allows the monitoring of the clearance or, in the case of some
pathogenic proteins, the persistence of phagocytosed material
within the cells. The ability to fluorescently label a range
of particles enables disease- or context-specific analysis of
phagocytosis, however, in order to ensure the identity of the
phagocytic cell, these experiments are frequently performed in
monoculture. Monocultures of primary cells are valuable for
understanding the morphological changes and cellular pathways
of specific substrate uptake during phagocytosis but do not
provide information on the interactions between different cell
types during this process. It has also been shown that the isolation
and culture of microglia rapidly alters their transcriptomic
signature (205), so in vitro assays may not accurately recapitulate
CNS phagocytosis.

In vivo, phagocytosis can be inferred in tissue by the
expression of phagocytic markers, such as CD206 and CD68, or
live cell imaging either transcranially or organotypic cultures.
Using acutely prepared and organotypic slices, microglial
phagocytosis of apoptotic neurons has been observed (206,
207). These techniques preserve the structure and physiological
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conditions within the tissue, and, when combined with
fluorescent labels, such as lectin, and two-photon or confocal
time lapse imaging, allow the study of interactions between
different cell types (208). Transgenic mouse lines in which
enhanced green fluorescent protein (EGFP) is expressed under
the control of myeloid cell-specific gene promoters, including
CX3CR1 (209), Iba1 (210), and Cfs1r (211), allow live fluorescent
imaging of microglial migration and phagocytosis (12).

Species-specific differences between mouse and human cells
have been found with respect to phagocytosis (212) so, in
the case of investigating human diseases, human studies are
necessary. Primary human microglia can be obtained from
fetal or post-mortem samples, however these resources can be
difficult to obtain particularly within acceptable post-mortem
delay conditions. The recent development of methods for the
generation of induced pluripotent stem cell-derived microglia-
like cells (iMGLs) allow the study of human microglia function
in vitro (70, 213–215). Mimicking scarce primary human
microglia, iMGLs are capable of phagocytosing synaptosomes,
as found during development, and also disease-associated Aβ

and tau (213). This model system is valuable for investigating
interactions between genetic risk factors and pathogenesis,
as recently demonstrated by iMGLs carrying patient-derived
TREM2 variants phagocytosing less apoptotic cell material
than controls (60), whilst avoiding the caveats associated with
mouse models of human disease. It should be noted that these
cells have never been exposed to cues arising from the CNS
microenvironment, which may alter the differentiation and
function of the iMGLs.

Until recently, markers for distinguishing microglia
from monocytes were lacking, making it difficult to
determine whether phagocytosis was being performed
by CNS resident microglia or infiltrating myeloid
cells. The discovery of microglia-specific proteins,
such as TMEM119 (216), will allow more accurate
investigations of the microglial-specific contributions

to homeostasis and disease. These tools may also allow
the resolution of current discrepancies, including those
regarding phagocytosis, found between different disease
models (56, 57, 117).

CONCLUSIONS AND PERSPECTIVES

In this review we have summarized the critical role phagocytosis
plays in both CNS homeostasis and disease. While much
progress has been made in recent years, many unanswered
questions remain. How phagocytosis in the CNS is influenced by
numerous factors, such as microenvironment or phagocytic
target, have yet to be fully resolved. Additionally, the
utilization of novel technologies, including in vivo imaging
techniques (217), iPSC-derived microglia (213) and high-
throughput screens (66), will likely contribute to further
identification of phagocytic pathways and consequences
of phagocytosis within the CNS. As targeting myeloid
cells in neuroinflammatory and neurodegenerative diseases
is receiving increased interest (218), drugs modulating
phagocytic pathways may emerge as novel therapeutics for
brain disease.
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