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Abstract

Background: The Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm and the International
Breast Cancer Intervention Study breast cancer risk models are used to provide advice on screening intervals and
chemoprevention. We evaluated the performance of these models, which now incorporate polygenic risk scores (PRSs), using
a prospective cohort study. Methods: We used a case-cohort design, involving women in the Melbourne Collaborative Cohort
Study aged 50-75 years when surveyed in 2003-2007, of whom 408 had a first primary breast cancer diagnosed within 10 years
(cases), and 2783 were from the subcohort. Ten-year risks were calculated based on lifestyle factors, family history data, and
a 313-variant PRS. Discrimination was assessed using a C-statistic compared with 0.50 and calibration using the ratio of
expected to observed number of cases (E/O). Results: When the PRS was added to models with lifestyle factors and family
history, the C-statistic (95% confidence interval [CI]) increased from 0.57 (0.54 to 0.60) to 0.62 (0.60 to 0.65) using IBIS and from
0.56 (0.53 to 0.59) to 0.62 (0.59 to 0.64) using BOADICEA. IBIS underpredicted risk (E/O¼0.62, 95% CI ¼ 0.48 to 0.80) for women
in the lowest risk category (<1.7%) and overpredicted risk (E/O¼1.40, 95% CI ¼ 1.18 to 1.67) in the highest risk category (�5%),
using the Hosmer-Lemeshow test for calibration in quantiles of risk and a 2-sided P value less than .001. BOADICEA underpre-
dicted risk (E/O¼0.82, 95% CI ¼ 0.67 to 0.99) in the second highest risk category (3.4%-5%); the Hosmer-Lemeshow test and a
2-sided P value was equal to .02. Conclusions: Although the inclusion of a 313 genetic variant PRS doubles discriminatory
accuracy (relative to reference 0.50), models with and without this PRS have relatively modest discrimination and might
require recalibration before their clinical and wider use are promoted.

Breast cancer (BC) is the most common cancer and cause of can-
cer death for women worldwide with approximately 2.1 million
incident cases in 2018 (1), a substantial burden of disease (2).
Early detection by screening is a key strategy to reduce this
burden (3).

Mammographic screening of women aged 50 years and older
reduces breast cancer mortality (4). Refining eligibility and
employing more tailored screening intervals might lead to ear-
lier cancer detection. Several BC risk models exist (5) that can be

used to stratify women and inform risk-tailored advice on the
optimal age range, frequency, and modality of screening (6).
Even in the absence of detecting a pathogenic variant, these
models are used to stratify risk management approaches. There
is also considerable value in applying risk models to the general
population for targeted screening and chemoprevention.

A recent evaluation of 4 commonly used models, using
a sample enriched for having a family history of BC, found
that the International Breast Cancer Intervention Study (IBIS)
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model (7) and the Breast and Ovarian Analysis of Disease
Incidence and Carrier Estimation Algorithm (BOADICEA) model
(8,9) performed best in terms of calibration and discrimination
(10). Given that most women who are screened for BC are older
than 50 years, independent prospective studies of how different
risk models perform over a longer follow-up period in this age
group within an average-risk setting are needed.

Inclusion of common single nucleotide polymorphisms
(SNPs) associated with BC into risk models is likely to enhance
their performance. More than 160 SNPs have been found to be
associated with BC risk at a P value less than 5 x 10-8 (11), and
polygenic risk scores (PRSs) based on these risk-associated
markers improve risk stratification (12-15). These PRSs explain a
substantial proportion of familial risk (11), more so at an older
age, whereas rare moderate- and high-risk germline variants in
the major BC susceptibility genes explain a greater proportion
of familial risk at a younger age (16).

The latest versions of IBIS and BOADICEA have both incorpo-
rated a PRS into their predictions (distinct from additions post
hoc), but these updated models have yet to be prospectively
evaluated, particularly regarding calibration.

We aimed to evaluate if the addition of PRSs based on SNPs
to absolute risk estimates from the IBIS and BOADICEA models
adds value to discrimination and calibration using an indepen-
dent prospective community-based cohort study.

Methods

Study Design and Participants

The Melbourne Collaborative Cohort Study (MCCS) is a prospec-
tive cohort that includes 24 469 women from Melbourne,
Australia, aged between 27 and 76 years (99% were 40-69 years)
at recruitment (17). All participants were of White European de-
scent, including 12% born in Italy, 10% in Greece, and 7% in the
United Kingdom, and had attended baseline (1990-1994) and up
to 2 additional waves of active follow-up (1 in 1995-1998 and/or
1 in 2003-2007). Our analyses included women who were aged
50-75 years when they attended follow-up 2 (2003-2007; desig-
nated as the start of follow-up for this analysis), because this
age range aligns with current eligibility for government-funded
mammographic screening in Australia (18) and follow-up 2 had
the most complete data available. Women were eligible if they
had completed the baseline and follow-up 2 questionnaires and
had no prevalent breast or ovarian cancer prior to their follow-
up 2 visit (n¼ 12 673).

We used a case-cohort design to be more cost efficient than
genotyping the whole cohort (19). Supplementary Figure 1
(available online) shows that the case cohort consisted of 3098
women, comprising 408 women diagnosed with a first invasive
BC within 10 years after follow-up 2 visit and a random sample
of women attending follow-up 2 (hereafter called the subcohort)
of 2783 women (22% of the whole female cohort) of whom 93
were cases. Simulations had shown that this was an optimal
cost-effective sampling fraction to minimize the parameter var-
iances of interest (20). MCCS participants provided informed
consent, and the Cancer Council Victoria Human Research
Ethics Committee approved the study (17).

Risk Assessment

We used the latest versions (at the time of analysis) of the risk
models: BOADICEA version 5.0.0 (8,9) and IBIS version 8 b (7).

These models varied in their prediction period, underlying age-
specific incidences of BC, and predictors (Supplementary Table
1, available online).

At follow-up 2, MCCS participants completed a lifestyle
questionnaire that asked about their demographic characteris-
tics including age, alcohol intake, age at menarche, parity, num-
ber of sisters and children, age at first birth, menopausal status,
and use of oral contraceptive pill and menopausal hormone
therapy. Summary family history data on affected relatives
were obtained from questionnaires at follow-up 2 (first-degree
relatives) and follow-up 1 (aunts and grandmothers). Data from
the most recent questionnaires were used and supplemented
with that from older questionnaires if unavailable. To recon-
struct pedigrees, the following assumptions were made about
the year of birth (YOB) of participants’ relatives: mothers and
aunts (25 years before the participant’s YOB), grandmothers
(50 years before the participant’s YOB), sisters (participant’s
YOB), and daughters (25 years after the participant’s YOB).
Missing ages for affected and unaffected mothers, aunts, and
grandmothers were imputed to 70 years, whereas sisters were
imputed to the youngest of participant age at follow-up 2 or age
70 years. Weight at follow-up 2 was measured to the nearest
100 g using a digital electronic scale, and height was measured
at baseline to the nearest 1 mm, using a stadiometer. Body mass
index was defined as weight (kg) divided by height squared
(m2).

Mammography density measures, results from germline ge-
netic testing for BRCA1 and BRCA2 (or other rare variants), and
history of hyperplasia were unavailable for most female partici-
pants in the MCCS so were not included in our analyses.

Polygenic Risk Score

We genotyped all 3098 case-cohort participants using the
Illumina Infinium OncoArray-500K BeadChip and imputed the
missing autosome SNPs using the Michigan imputation server
with the 1000 Genomes Project reference panel (phase 3) (21).
We included SNPs that had genotype call rates of 95% or more,
imputation R2 of 0.3 or more, and minor allele frequency of 0.1%
or more. Post-quality control SNPs were used to generate a PRS
based on the genome-wide association study results published
by the Breast Cancer Association Consortium (BCAC) (11,13).
The same set of 313 SNPs and per allele odds ratio (using BCAC
estimates) were used for both IBIS and BOADICEA PRS (13); how-
ever, model-specific methods were used to construct them. The
PRS in the BOADICEA model was calculated by summing across
variants the product of the per allele log-odds ratio and the ef-
fective allele counts for each SNP (using BCAC estimates) and
then normalized using a population-based underlying risk and
allele frequency (9). The PRS for IBIS was calculated using the
relative risk of developing BC for each genotype, estimating the
average population relative risk accounting for the population-
based risk and allele frequency, applying this to the women’s
genotype, and then multiplying the SNP-specific relative risks
together (22).

Outcome Assessment

Incident cases and vital status were ascertained from record
linkage between the Victorian Cancer Registry; the Victorian
Registry of Births, Deaths and Marriages; the National Death
Index; and the Australian Cancer Database. Cases were women
notified to the registry with a first diagnosis of invasive
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adenocarcinoma of the breast (Third Revision of the
International Classification of Diseases for Oncology code C50)
during follow-up to June 30, 2016.

Statistical Analysis

Follow-up began from age at follow-up 2 attendance and
ended at 1) diagnosis of invasive BC, 2) follow-up time reach-
ing 10 years, 3) age 80 years (maximum age for estimating
risk in BOADICEA), or 4) censor date of June 30, 2016, which-
ever came first. Expected risk for the subcohort was esti-
mated by summing the percentage risk from outputs of IBIS
or BOADICEA for participants in the subcohort and then di-
viding by the sampling fraction (0.22) used to select the sub-
cohort. Death from causes other than BC was a competing
risk, with no censoring applied at death from other causes in
the main analysis.

We compared the performance of the models up to 10-year
risk in terms of discrimination and calibration. Calibration was
assessed by comparing the number of expected cases (E) within
the whole cohort with the number observed (O), where E was
calculated as the number expected in the subcohort multiplied
by the inverse of the sampling fraction. We calculated a robust
95% confidence interval (CI) for E/O by:

E
O

6
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�E2 ; �E is the mean expected cases
in the subcohort, and Var(�E) is the finite sample variance of the
mean expected cases from the subcohort.

Model discrimination was assessed using a concordance sta-
tistic (C-statistic) (23) and plotting the receiver operating charac-
teristic curve, accounting for incomplete follow-up, where 1
indicates perfect discrimination and 0.50 indicates discrimina-
tion no better than chance. We compared models (accounting
for correlation between models) using the Wald test with inclu-
sion of the following components: family history, lifestyle fac-
tors, and PRS sequentially.

Model calibration and discrimination were also examined by
categories of model-specific 10-year risk (quantiles), stratified
by age (50-64 and 65 years and older, because women in the lat-
ter group can be eligible for universal health care in some coun-
tries) (24) and by whether the women had an affected first- or
second-degree relative. We also examined model performance
for a shorter period of risk (5 years). Sensitivity analyses in-
cluded censoring at diagnosis of ductal carcinoma in situ during
follow-up (6 cases), accounting for competing risk of death be-
cause of other causes (for IBIS; BOADICEA does not provide this
option), and by applying updated Australian BC population inci-
dence rates for BOADICEA that take into account changes be-
tween 2010 and 2015 (25). The heterogeneity of calibration
across quantiles of risk was assessed using the Hosmer-
Lemeshow test.

We calculated the specificity of all risk models at fixed sensi-
tivity levels based on the full model (family history, lifestyle fac-
tors, and PRS) at a threshold of 3.4% for 10-year BC risk (26,27).
The 3.4% threshold corresponds to the 10-year risk of an aver-
age 60-year-old woman and is approximately double the 5-year
risk of 1.67% that has been used to define high risk for the pur-
pose of eligibility in some chemoprevention trials. We calcu-
lated the mean risk stratification (MRS), comparing models with
and without PRS (28). Analyses were performed using Stata (ver-
sion 16) and R (version 3.5.1).

Results

Characteristics of study participants in the case cohort are
shown in Table 1. Women in the random subcohort were rep-
resentative of those from the full cohort, with similar inci-
dence of BC. The 10-year risk with all predictors (including
PRS) had wider ranges than the models with family history
and lifestyle factors alone (Supplementary Figure 2, available
online).

Overall, for models using all predictors for which data
were available (age, family history, lifestyle factors, and PRS),
the E/O for BOADICEA was 0.85 (95% CI ¼ 0.77 to 0.94),
whereas for IBIS, it was 1.06 (95% CI ¼ 0.95 to 1.17) (Table 2).
IBIS underpredicted risk (E/O¼ 0.62, 95% CI ¼ 0.48 to 0.80) for
women in the lowest risk category (<1.7%) and overpredicted
risk (E/O¼ 1.40, 95% CI ¼ 1.18 to 1.67) in the highest risk cate-
gory (�5%); Hosmer-Lemeshow test for calibration in quan-
tiles of risk, 2-sided P value <.001. BOADICEA underpredicted
risk (E/O¼ 0.82, 95% CI ¼ 0.67 to 0.99) in the second highest
risk category (3.4%-5%); Hosmer-Lemeshow test, 2-sided
P value equal to .02 (Figure 1; Supplementary Table 2, avail-
able online).

In terms of discrimination, the C-statistics for the 2 models
were similar (Figure 2). For both IBIS and BOADICEA, the addi-
tion of a PRS provided double the discriminatory accuracy
(from reference 0.50) compared with the model that included
family history and lifestyle factors; C-statistics increased from
0.57 (95% CI ¼ 0.54 to 0.60) to 0.62 (95% CI ¼ 0.60 to 0.65) using
IBIS, and from 0.56 (95% CI ¼ 0.53 to 0.59) to 0.62 (95% CI ¼ 0.59
to 0.64) using BOADICEA, (Pdiff < .001) (Table 3). The addition of
family history made little difference to the model discrimina-
tory ability when compared with models that included age,
PRS, and lifestyle factors (Pdiff ¼ .56 for IBIS, Pdiff ¼ .39 for
BOADICEA).

Table 2 provides an overview of stratified calibration results.
IBIS was well calibrated in both age groups, but BOADICEA
underpredicted risk for women aged 65 years and older. For
women with a family history, the IBIS model underpredicted
risk when including only lifestyle factors and PRS (E/O¼ 0.80,
95% CI ¼ 0.66 to 0.97) but overpredicted risk (E/O¼ 1.38, 95% CI ¼
1.13 to 1.67) when BC family history information was included
(Supplementary Table 3, available online). This pattern was not
observed for BOADICEA.

Findings for IBIS did not differ when we considered different
assumptions regarding competing mortality events and after
censoring at diagnosis of ductal carcinoma in situ (results not
shown). Using updated Australian BC incidence rates reduced
the underprediction of overall risk for BOADICEA (from E/
O¼ 0.85, 95% CI ¼ 0.77 to 0.94, to E/O¼ 0.89, 95% CI ¼ 0.80 to
0.98), and E/O did not differ from 1 in any category of predicted
risk or when stratified by BC family history (Supplementary
Table 4, available online). Results for 5-year risk of BC were in
the same direction but had wider confidence intervals
(Supplementary Table 5, available online).

When we set a fixed sensitivity equivalent to a 3.4% 10-year
risk using full models of IBIS (sensitivity ¼ 55.2%) and
BOADICEA (sensitivity ¼ 43.4%), we found that specificity was at
least 6.6% higher for IBIS and 10.1% higher for BOADICEA for
those models that included PRS compared with their equivalent
model that did not include PRS (Table 4). The MRS based on 10-
year risk that included PRS varied on average by 1.5% for both
models, whereas the MRS without PRS was 0.9% and 0.7% for
IBIS and BOADICEA, respectively. The population average 10-
year risk for breast cancer was 3.2%.
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Discussion

We used prospective data to examine the performances of the
current IBIS and BOADICEA models, which now include a PRS
based on common genetic variants, to evaluate their potential
to inform eligibility for tailored screening and chemopreven-
tion. Using a prospective cohort of women aged 50 years and
older, we found that the addition of PRSs improved risk discrim-
ination and that family history offered little additional discrimi-
natory ability to 10-year risk estimates. Overall discrimination,
however, was relatively modest. Both models with all predictors
were not well calibrated when stratified by risk quantiles
according to the Hosmer-Lemeshow test. IBIS underpredicted
risk for women in the low-risk categories (<1.7%) and overpre-
dicted risk in the high-risk categories (�5%). On the other hand,
BOADICEA underpredicted risk for women in the second highest
category of predicted risk (3.4%-5%). BOADICEA’s calibration im-
proved with updated incidence data.

One reason for differences in calibration between IBIS and
BOADICEA could be related to differing PRS implementation.
BOADICEA accounts for the contribution of the PRS to the BC fa-
milial risk by splitting the polygenic component (capturing
unobserved familial effects not due to high- or moderate-risk
mutations) into a known component based on the PRS and a re-
sidual familial aggregation component (9), thus avoiding
double-counting the effect of the SNPs. IBIS, by contrast, treats
the observed PRS as an independent risk factor to family his-
tory, with no adjustment to the family history component, de-
spite the fact that this PRS explains 18% of the BC familial risk
(11). This could explain the overprediction observed with IBIS
for women with a family history of BC or for women in the top
category of predicted risks.

For models that included PRS and lifestyle factors, the addi-
tion of family history contributed little to discrimination.
Models with PRS also had higher specificities for a given sensi-
tivity compared with models without PRS, suggesting that

Table 1. Melbourne Collaborative Cohort Study participant characteristics

Characteristics Cases of BC (n¼ 408) Subcohort (n¼ 2783) Whole cohort (n¼ 12 673)

Mean age (SD), y 63.0 (6.9) 63.6 (7.2) 63.5 (7.2)
Mean height (SD), cm 161.8 (6.2) 161.1 (6.5) 161.0 (6.6)
Mean weight (SD), kg 73.0 (13.3) 70.6 (13.5) 70.8 (13.6)
Mean BMI (SD), kg/m2 27.9 (5.3) 27.2 (5.2) 27.4 (5.3)
Mean alcohol intake (SD), ethanol g/day 8.6 (11.1) 8.1 (11.4) 8.0 (11.5)
Mean menarche age (SD), y 12.8 (1.5) 13.0 (1.6) 13.0 (1.6)
Mean No. of live births (SD) 2.3 (1.5) 2.4 (1.5) 2.4 (1.5)
Mean age at first birth (SD), y 25.5 (4.7) 25.2 (4.5) 25.2 (4.6)
Mean age of menopause (SD), ya 50.1 (5.1) 49.7 (5.0) 49.6 (5.0)
Mean incidence of breast cancerb per 1000 person-years (95% CI) — 1.17 (0.96 to 1.43) 1.13 (1.02 to 1.24)
Oral contraceptive use, No. (%)

Never 110 (27.0) 830 (29.8) 3766 (29.7)
Former 296 (72.5) 1937 (69.6) 8858 (69.9)
Current 2 (0.5) 12 (0.4) 37 (0.3)
Missing — 4 (0.1) 12 (0.1)

Menopausal status,c No. (%)
Premenopausal 344 (84.3) 7 (0.3) 37 (0.3)
Postmenopausal 64 (15.7) 2425 (87.1) 11 025 (87.0)
Missing — 1 (0.0) 3 (0.0)
Unable to determine — 350 (12.6) 1608 (12.7)

Menopausal hormone therapy use,d No. (%)
Never 184 (45.1) 1424 (51.2) 6524 (51.5)
Former 200 (49.0) 695 (25.0) 3101 (24.5)
Current estrogen 8 (2.0) 32 (1.1) 151 (1.2)
Current other hormone replacement therapy 61 (15.0) 222 (8.0) 939 (7.4)
Current user but missing type 20 (4.9) 144 (5.2) 680 (5.4)
Missing 35 (8.6) 266 (9.6) 1278 (10.1)

Family history of breast cancer (first or second degree), No. (%)
No 292 (71.6) 2185 (78.5) 9925 (78.3)
Yes 116 (28.4) 598 (21.5) 2748 (21.7)

Mean PRS distribution (SD)
IBIS 0.12 (0.64) �0.12 (0.62) —
BOADICEA 0.50 (1.05) 0.09 (1.02) —

aWomen whose reason for periods stopping were due to having had a natural menopause or a bilateral oophorectomy. — ¼ not applicable; BC ¼ breast cancer;

BOADICEA ¼ Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm model (version 5.0.0); IBIS ¼ International Breast Cancer Intervention

Study model (version 8 b); PRS ¼ polygenic risk score based on 313 single nucleotide polymorphisms associated with breast cancer.
bStandardized incidence rate.
cPostmenopausal is defined as had menstrual period in last 12 months and currently using hormone replacement therapy (or missing) and aged at least 55 years; or no

menstrual period in last 12 months (or missing) and periods stopped naturally; or no menstrual period in last 12 months (or missing) and periods stopped because both

ovaries were removed; or no menstrual period in last 12 months (or missing) and periods stopped because of hysterectomy or other reason (or missing) and aged at

least 55 years.
dType of hormone replacement therapy based on assumption of estrogen for those who have had a hysterectomy and combined estrogen and progesterone for those

on hormone replacement therapy but have not had a hysterectomy.
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adding PRS helps minimize false-positives and reduce overscre-
ening. However, our results show that ignoring family history
information can result in substantial underprediction of risk for
women with a BC family history. Future research is needed to
explore the extent to which the collection of genomic informa-
tion negates the need to collect family history data for BC risk
discrimination and how this depends on the extent of family
history data. Genomic data do not change over time so only
have to be collected once and are more reliably measured than
family history, especially for more distant relatives.

The IBIS model with all predictors overpredicted risk for
women with a family history of BC, whereas BOADICEA was
reasonably well calibrated. Contrastingly, analyses of the

Prospective Family Study Cohort multigenerational family his-
tory data found better calibration for women with a family his-
tory for IBIS and BOADICEA without the PRS (10). This difference
may be because of more complete, extensive, and verified BC
family history collection by the Prospective Family Study
Cohort, whereas the MCCS relied solely on self-report from par-
ticipants about BC-affected family members. The MCCS might
better reflect how such data are collected in the general
population.

This study shows that BC risk models benefit from having
the flexibility to update their underlying population-based inci-
dence rates if BC incidence changes over time, as shown from
considering calibration using the BOADICEA model. This

Table 2. Calibration and discrimination statistics for IBIS and BOADICEA 10-year risk scoresa

Risk model
Case-cohort,

No.
Subcohort,

No.
Expected

No. of cases
Observed

No. of cases
Expected/Observed
ratio (robust 95% CI)

Concordance
statistic (95% CI)

Overall
IBIS 3098 2783 431.3 408 1.06 (0.95 to 1.17) 0.62 (0.60 to 0.65)
BOADICEA 3098 2783 346.9 408 0.85 (0.77 to 0.94) 0.62 (0.59 to 0.64)

Age 50-64 years at baseline
IBIS 1732 1549 256.8 235 1.09 (0.95 to 1.25) 0.64 (0.60 to 0.67)
BOADICEA 1732 1549 220.7 235 0.94 (0.82 to 1.07) 0.65 (0.62 to 0.68)

Age 65-75 years at baseline
IBIS 1366 1234 174.6 173 1.01 (0.86 to 1.18) 0.60 (0.55 to 0.65)
BOADICEA 1366 1234 126.6 173 0.73 (0.63 to 0.85) 0.58 (0.53 to 0.62)

No family history of breast cancer
IBIS 2401 2185 272.3 292 0.93 (0.83 to 1.05) 0.61 (0.58 to 0.65)
BOADICEA 2401 2185 249.1 292 0.85 (0.76 to 0.96) 0.61 (0.57 to 0.64)

Family history of breast cancer
IBIS 697 598 159.7 116 1.38 (1.13 to 1.67) 0.63 (0.58 to 0.68)
BOADICEA 697 598 98.1 116 0.85 (0.70 to 1.02) 0.61 (0.56 to 0.66)

aModel: age, family history, lifestyle factors and PRS. CI ¼ confidence interval; BOADICEA ¼ Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation

Algorithm model (version 5.0.0); IBIS ¼ International Breast Cancer Intervention Study model (version 8 b); PRS ¼ polygenic risk score based on 313 single nucleotide

polymorphisms associated with breast cancer.
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Figure 1. Calibration of 10-year breast cancer risk scores for IBIS and BOADICEA models by quantile of risk. The dashed line represents the predicted risk. The solid line

represents the observed cumulative incidence. The models include age, family history, lifestyle factors, and polygenic risk score, based on the case cohort (n¼3098).

For more detailed estimates, see Supplementary Table 2 (available online). Categorization is based on the distribution of raw 10-year breast cancer risk for each of the

respective risk prediction models. Numbers and estimates are based on up to 10-year breast cancer risk, which has been adjusted for length of follow-up. Two-sided P

values represent the Hosmer-Lemeshow test statistic across all 4 risk quantiles. BOADICEA ¼ Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation

Algorithm model (version 5.0.0); IBIS ¼ International Breast Cancer Intervention Study model (version 8 b).
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flexibility enables users to better apply the models to their pop-
ulations. The importance of using population-specific incidence
has been shown previously for the Breast Cancer Risk
Assessment Tool (BCRAT) (29,30).

Although we found that discrimination was superior for BC
models that included a PRS, cost-benefit analyses are warranted
to determine whether such improvements outweigh the bur-
dens on women and clinicians that arise from obtaining geno-
mic information. These burdens include any adverse
consequences to a woman’s psychological well-being as well as
how genomic information might affect their relatives’ risks of
BC. There are currently poor genomic literacy (31) and a lack of
benefit in genomic risk disclosure on screening (32) and risk re-
duction behaviors (33,34). Moreover, the optimal starting age,

frequency, and modality of screening will be important factors
in determining the utility of PRS-based risk stratification. We
look forward to findings from clinical trials examining risk-
stratified screening in primary care (6).

Strengths of our study include having PRS and 10 years of
prospective follow-up data. Limitations include the lack of com-
plete data for all model inputs, particularly mammographic
density and mutation status in high-risk genes (such as BRCA1
and BRCA2). The inclusion of these factors might dilute the ef-
fect of adding PRS to the models, depending on family history,
although the estimated population frequency of mutation car-
riers is low (35). Our current evaluation was conducted using a
sample of European ancestry, and replication is required for
other ethnic groups. Also, these results may not be applicable
for women younger than 50 years, who may be candidates for
chemoprevention. Evaluation in other populations is warranted.
Nevertheless, our examination of this in an average-risk sample
helps determine if the models have wider reach beyond high-
risk populations.

In conclusion, for Australian women aged 50-75 years, the
addition of a 313-variant PRS to current risk models (age, life-
style, and family history) improves discrimination for estimat-
ing 10-year BC risk by twofold (from reference 0.50), although
the discrimination remains relatively modest. Family history
data do not appear to appreciably improve discrimination once
a PRS is included. Both models might need recalibration.
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Figure 2. Receiver operating characteristic curves for IBIS (dashed line) and

BOADICEA (solid line) breast cancer risk models (family history, lifestyle factors,

and polygenic risk score). The case cohort consisted of 3098 women. The area

under the curve was 0.62 (95% confidence interval ¼ 0.60 to 0.65) for IBIS and

0.62 (95% confidence interval ¼ 0.59 to 0.64) for BOADICEA. The dotted line repre-

sents the line of no discrimination. For more detailed comparisons, see Table 3.

BOADICEA ¼ Breast and Ovarian Analysis of Disease Incidence and Carrier

Estimation Algorithm model (version 5.0.0); IBIS ¼ International Breast Cancer

Intervention Study model (version 8 b).

Table 3. Discrimination statistics for IBIS and BOADICEA 10-year risk scores, by risk models

Variables inputted into the models

IBIS BOADICEA

Concordance statistic (95% CI) Pa Concordance statistic (95% CI) Pa

Age 0.50 (0.47 to 0.53) <.001 0.51 (0.48 to 0.54) <.001
Age, PRS 0.61 (0.58 to 0.64) .03 0.59 (0.57 to 0.62) .02
Age, family history 0.53 (0.50 to 0.56) <.001 0.52 (0.49 to 0.55) <.001
Age, lifestyle 0.56 (0.53 to 0.59) <.001 0.56 (0.53 to 0.59) <.001
Age, family history, PRS 0.61 (0.58 to 0.64) .01 0.60 (0.57 to 0.63) .04
Age, family history, lifestyle 0.57 (0.54 to 0.60) <.001 0.56 (0.53 to 0.59) <.001
Age, lifestyle, PRS 0.62 (0.59 to 0.65) .56 0.61 (0.59 to 0.64) .39
Age, family history, lifestyle, PRS 0.62 (0.60 to 0.65) — 0.62 (0.59 to 0.64) —

aTwo-sided P values for the Wald test comparing model with all variables included. CI ¼ confidence interval; BOADICEA ¼ Breast and Ovarian Analysis of Disease

Incidence and Carrier Estimation Algorithm model (version 5.0.0); IBIS ¼ International Breast Cancer Intervention Study model (version 8 b); PRS ¼ polygenic risk score

based on 313 single nucleotide polymorphisms associated with breast cancer.
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