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Simple Summary: Gastrointestinal (GI) cancers, including esophageal, gastric, colorectal, liver, and
pancreatic cancers, remain as one of the leading causes of death worldwide, with a large proportion
accounting for fatalities related to metastatic disease. The active involvement of fascin-1 in forming
membrane protrusions crucial for cellular movement has been identified as an important molecular
mechanism behind the phenotypic switch from the localized to the metastatic tumor. Thus, fascin-1
expression status in the malignant tissue has been utilized as an important component in determining
the patient’s clinicopathological outcomes. In this review, we provide an up-to-date literature review
of the role of fascin-1 in the initiation and metastatic progression of GI tract cancers, its involvement
in patients’ clinical outcomes, and its potential as a therapeutic target.

Abstract: Gastrointestinal (GI) cancers, including esophageal, gastric, colorectal, liver, and pancreatic
cancers, remain as one of the leading causes of death worldwide, with a large proportion accounting
for fatalities related to metastatic disease. Invasion of primary cancer occurs by the actin cytoskeleton
remodeling, including the formation of the filopodia, stereocilia, and other finger-like membrane
protrusions. The crucial step of actin remodeling in the malignant cells is mediated by the fascin
protein family, with fascin-1 being the most active. Fascin-1 is an actin-binding protein that cross-links
filamentous actin into tightly packed parallel bundles, giving rise to finger-like cell protrusions, thus
equipping the cell with the machinery necessary for adhesion, motility, and invasion. Thus, fascin-1
has been noted to be a key component for determining patient diagnosis and treatment plan. Indeed,
the overexpression of fascin-1 in GI tract cancers has been associated with a poor clinical prognosis
and metastatic progression. Moreover, fascin-1 has received attention as a potential therapeutic target
for metastatic GI tract cancers. In this review, we provide an up-to-date literature review of the role
of fascin-1 in the initiation of GI tract cancers, metastatic progression, and patients’ clinical outcomes.
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1. Introduction

Gastrointestinal (GI) cancers, such as esophageal, gastric, colorectal, pancreatic, and
liver cancers, are associated with a dismal prognosis [1]. According to the annual cancer
statistics report, the digestive system will represent the second most common site for the
origin of carcinogenesis in the United States (US) in 2021 [1]. Similar projections were made
for the year 2020 [2]. Many GI tract cancer-related deaths are associated with metastasis;
thus, patients whose cancer is disseminated onto secondary sites have worse prognosis,
outcome, and reduced treatment options. The most common metastatic sites for GI tract
cancers are the liver, lungs, and peritoneum [3,4].

Metastasis of primary carcinoma includes the processes such as local invasion, in-
travasation, survival in the circulation, extravasation, and colonization (Figure 1) [5]. The
local invasion requires changes in the gene expression repertoire that would yield cell
migration, epithelial-to-mesenchymal transition (EMT), degradation of extracellular matrix,
and angiogenesis [5].
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Manipulating the expression, activity, and assembly of the cytoskeletal components
such as actin, tubulin, and intermediate filaments is essential for gaining migratory and
invasive properties [6]. In part, the initiation of the cell movement is due to the poly-
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merization of actin into filaments [6]. The actin filaments are packed and bundled at the
leading edge of the cell to create a membrane protrusion such as filopodia and lamellipo-
dia, which are responsible for adhesion-based cellular movement through protrusion and
retraction. Filopodia are the finger-like protrusions structured by the parallel actin filament
bundles. Lamellipodia are the planar protrusions composed of the branched actin filament
networks [7]. Therefore, actin polymerization has been regarded as an important step for
advancing carcinogenesis and has been actively studied as a therapeutic target [8]. The
cross-linking and bundling of the actin filaments are, in part, facilitated by the protein
family called Fascin (Figure 1) [9]. There are three isoforms in this protein family: fascin-1,
fascin-2, and fascin-3 [10]. The human fascin-1 protein is a 493-amino acid-long protein
and weighs 55 kDa [10]. It is composed of four tandem β-trefoil domains giving rise to the
bi-lobed structure, as visualized by the crystal structure [11]. The putative actin-binding
domain (ABD)-1, which is highly conserved, is located between the amino acid residues 33
and 47, while the ABD-2 is yet to be elucidated [11].

Fascin-1 creates actin bundles by forming tight cross-links between 10–30 actin fila-
ments [12]. This process is highly dynamic, as the dissociation and re-binding of fascin-1 to
actin polymers constantly occur. These packed bundles create the architectural support for
filopodia and lamellipodia [12]. Moreover, in addition to the cytoplasmic actin, fascin-1 has
been implicated in stabilizing mitochondrial and nuclear actin. In this manner, it supports
the cellular metabolic stress resistance and chromatin modifications [13]. Thus, fascin-1
has been portrayed as a protein with a large role in promoting cancer invasion, migration,
and formation of regional and distant metastasis. Furthermore, due to its upregulation in
cancer, fascin-1 has been studied as a novel biomarker and a potential therapeutic target.
There has been increased interest in utilizing fascin-1 as a biomarker for evaluating the
disease progression and assessing outcomes among gastrointestinal cancer. However, its
expression, cell lines, and precise role in different types of GI cancers are unclear.

Hence in this review, we discuss the up-to-date literature on the expression pattern
of fascin-1 in GI tract cancers and its implication in disease pathogenesis. Our main focus
is the feasibility of utilizing fascin-1 as the clinicopathological parameter for assessing
disease stage and patient outcome. Furthermore, we will discuss the therapeutic potential
of fascin-1 in GI tract carcinogenesis.

2. Methods

A literature search was performed using the PubMed, Embase, SCOPUS, and Web of
Science databases to April 2021 to identify articles related to Fascin and gastrointestinal
cancer. The inclusion criteria for our search were Fascin, liver cancer, esophageal cancer,
colorectal cancer, pancreatic cancer, and gastric cancer. The exclusion criteria included oral
cancer, small intestinal cancer, inflammatory bowel disease, biliary cancer, review articles,
posters, commentary articles, abstracts, and articles where full text is not available. The
keywords used in our search strategy included “fascin” with either of the following gas-
trointestinal cancers: “liver cancer”, “esophageal cancer”, “colorectal cancer”, “pancreatic
cancer”, and “gastric cancer”. The results of the search are shown Figure 2.

A total of 383 studies were identified after the initial search. After evaluating each
result, 47 papers were excluded because they were not relevant to our topic of interest.
Using our inclusion and exclusion criteria, 9 abstracts, 9 review articles, 1 commentary
article, and 11 articles whose full text was not available were removed. At the end, a total
of 114 articles were included for our review.
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3. Fasin-1 and Esophageal Squamous Cell Carcinoma
3.1. Expression Pattern of Fascin-1 in ESCC and Its Potential as a Prognostic Marker

Among gastrointestinal cancers, metastatic esophageal cancers have one of the worst
five-year prognoses [14]. Recent studies have shown that fascin-1 plays an important role
in the pathogenesis and metastasis of esophageal cancers. One of the reasons was a higher
fascin-1 expression in esophageal squamous cell carcinoma (ESCC) in comparison to the
healthy esophageal epithelium (Table 1) [15–19]. Furthermore, fascin-1 expression was seen
to increase progressively from the normal esophageal epithelium to invasive esophageal
cancers [16–19]. High levels of fascin-1 were correlated with cell proliferation, lymph node
invasion, and distant metastasis [19,20].

Table 1. Overexpression pattern of fascin-1 in GI tract cancers as an unfavorable prognostic and diagnostic marker for
advanced carcinogenesis, regional and distant metastases, and overall survival.

Type of
Cancer Refs. Methods

Correlation Between High Fascin-1 Expression and:
Independent

FactorLymph Node
Metastasis

Distant
Metastasis

Reduced
Survival Other Clinicopathological Outcomes

Esophageal
Cancer

[18] IHC,
rt-PCR, WB

+ N/A N/A
Stage-dependent progression of ESCC

N/ACell proliferation

[19] IHC + N/A + Tumor stage (III and IV) +

[20] IHC + + N/A
Tumor differentiation

N/APoor differentiation
T4 stage

[21] IHC + + + Advanced tumor +

Gastric
Adenocar-

cinoma

[22] rt-qPCR + + N/A
Tumor differentiation

N/AAdvanced tumor

[23] IHC + N/A +

Tumor size

N/A
Depth of invasion

Lymphatic and venous invasion
UICC staging
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Table 1. Cont.

Type of
Cancer Refs. Methods

Correlation Between High Fascin-1 Expression and:
Independent

FactorLymph Node
Metastasis

Distant
Metastasis

Reduced
Survival Other Clinicopathological Outcomes

Gastric
Adenocar-

cinoma

[24] IHC + - +

Extent of primary tumor

-

Age
Serosal invasion

Histopathological grading
TNM staging
Recurrence

[25] IHC N/A N/A + TNM staging
N/AHigh-grade histopathological differentiation

[26] IHC N/A N/A + Tumor size +

[27] IHC + N/A +

High clinical stage

+High T stage
Lymphovascular invasion

The intestinal type of Lauren classification

Colorectal
Adenocar-

cinoma

[28] IHC + + +

Tumor grade and stage

+
Mucinous differentiation

Extranodal tumor extension
Increased recurrence rate

Cancer progression

[29] IHC N/A N/A N/A
Tumor size

N/AHistological type
Degree of dysplasia

[30] IHC and
qPCR + + N/A High expression in stage III/IV CRC N/A

[31] IHC N/A N/A + Worse prognosis for stage III/IV patients N/A

[32] IHC N/A N/A + Advanced tumor depth +

[33] IHC N/A N/A N/A
Advanced dysplasia

N/AHigh-grade histopathological differentiation
Advanced T stage

[34] IHC + N/A + Invasive tumors and advanced cancer stage N/A

[35] IHC N/A N/A N/A Adenocarcinoma type without mucosal
component N/A

[36] IHC N/A N/A +
Increased tumor budding

N/ASystemic inflammation
Decreased memory T-cells

[37] IHC + + +

Progressive anatomic disease extent

+Higher T classification
High-grade tumors

Increased vascular invasion

[38] IHC N/A + + Increased recurrence rate +

[39] IHC N/A N/A N/A High expression in anti-EGFR resistant CRC N/A

Hepatocell-
ular

Carcinoma

[40] IHC + + + Histological differentiation
N/AMetastasis

[41] IHC + + +
Advanced Differentiation

N/ATumor size
Regional and distant metastasis

[42] IHC N/A N/A N/A No correlation with clinicopathological
parameters N/A
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Table 1. Cont.

Type of
Cancer Refs. Methods

Correlation Between High Fascin-1 Expression and:
Independent

FactorLymph Node
Metastasis

Distant
Metastasis

Reduced
Survival Other Clinicopathological Outcomes

Pancreatic
Adenocar-

cinoma

[43] IHC N/A N/A N/A Advanced PanIN, stage-dependent N/A

[44] IHC + + +
Advanced tumor grade

N/AAdvanced T stages
Histological grade and clinical stages

[45] IHC N/A N/A + Increased recurrence rate
N/AIncreased vascular invasion

[46] IHC N/A N/A N/A Advanced PanIN, stage-dependent N/A

[47] IHC N/A N/A + Advanced tumor grade N/A

[48] IHC N/A N/A + Histological grade
N/AAmerican Joint Committee on Cancer Stage

[49] IHC N/A N/A N/A N/A: High background with anti-fascin-1 N/A

[50] IHC N/A N/A N/A N/A: Antibody with high specificity but
low sensitivity N/A

In addition, elevated fascin-1 mRNA and protein levels were associated with the ESCC
histological type and tumor stages III and IV [19]. Patients with high fascin-1 status in ESCC
exhibited a significant reduction in overall and disease-free survival parameters. Therefore,
fascin-1 was labeled as an unfavorable prognostic tool for ESCC overall survival [19].

Staining for other oncogenic proteins alongside fascin-1 in ESCC improved prognostic
predictions (Figure 3) [21,51–53]. Performing immunohistochemistry (IHC) with epidermal
growth factor receptor (EGFR), specificity protein 1 (Sp1), and fascin-1 antibodies served as
a good prognostic tool for ESCC patient survival [21]. They proposed that this approach
could aid in more accurate clinical risk stratification [21]. Furthermore, Tan and colleagues
included determination of fascin-1 protein status as a critical component of the diagnostic
model they developed [51]. These studies were supported by the systematic review
performed by Wang et al. [52]. Lastly, fascin-1 auto-antibody levels were elevated in
the serums of early-stage ESCC patients [54]. Although these studies identified fascin-1
as a promising prognostic tool for ESCC, further investigations are needed to test the
therapeutic potential of this protein in ESCC.
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3.2. Outcome of Fascin-1 Overexpression in ESCC

The contribution of fascin-1 to the aggressive phenotype of ESCC was deduced by
performing the loss of function studies via RNAi technology and the subsequent network
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analyses of gene expression [55] (Figure 4). When fascin-1 was silenced in the ESCC cell line,
in vitro and in vivo experiments demonstrated that the cells acquired lower proliferation,
invasive and migratory capacities [56,57]. The degradation of fascin-1 elicited a dramatic
decrease of c-erbB-2, β-catenin, MMP-2, and MMP-9 protein levels [56]. Furthermore, Ortiz
et al. showed that loss of fascin-1 produced cell growth inhibition and the detachment of
cells from the collagen-coated plate. Furthermore, when they tracked tumor formation
in vivo, they discovered that the growth of tumors with low fascin-1 expression significantly
declined [58]. Lastly, silencing of fascin-1 in ESCC leads to downregulation of Cysteine-
rich, angiogenic inducer 61 (CYR61) and Connective tissue growth factor (CTGF) in the
TGFα-dependent manner [57]. The reconstitution of these proteins in the fascin-1 silenced
cell line resulted in higher proliferative and invasive capacities [57]. Therefore, fascin-1
interacted with the complex protein network to influence esophageal carcinogenesis.
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3.3. Regulation of Fascin-1 Expression in ESCC

By examining the fascin-1 promoter in normal and ESCC cells, Hou et al. discovered
that fascin-1 overexpression was not dictated by the promoter methylation, but that it was
likely to occur due to its promoter transactivation [59]. On this note, fascin-1 was regulated
by the Sp1, which acted as its activator (Figure 4) [60]. The signal for this transcriptional
upregulation was initiated by the epidermal growth factor (EGF), and it was relayed by
the Erk1/2 signaling cascade [60]. Furthermore, on the post-transcriptional level, fascin-1
mRNA stability in ESCC depended on the tumor suppressor microRNAs and the long
noncoding RNA, TTN-AS1 [61–65]. miR-145, miR-143 miR-133a, and miR-133b interacted
with the 3′ UTR of fascin-1 mRNA and resulted in a significant decrease in its expression,
which in turn inhibited ESCC cell growth and invasion [61–64]. Long noncoding RNA,
TTN-AS1, however, stabilized the fascin-1 mRNA in ESCC by sponging miR-133b [65].

Fascin-1 protein possesses four phosphorylation sites (tyrosine 23, serine 38, serine 39,
and serine 274), which regulate its function and further affect cell behavior and filopodia
formation in ESCC [66]. Phosphorylation on these sites had an inhibitory effect on fascin-1
function, and it decreased the extent of cell migration and filopodia formation in ESCC [66].
Furthermore, while high fascin-1 mRNA and protein levels were correlated to the unfa-
vorable outcome of ESCC, elevation in phosphorylated fascin-1 on Ser-39 was associated
with the improved patient prognosis [67]. Kinases that mediate this process are yet to be
determined [66,67].
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4. Fascin-1 and Gastric Carcinoma
4.1. Expression Pattern of Fascin-1 in GC and Its Potential as a Prognostic Marker

Investigations that used tissue microarray and IHC found that fascin-1 mRNA and
protein levels were significantly upregulated in gastric carcinoma (GC) [22,68]. Fascin-1 was
primarily localized in the cytoplasm of the vascular endothelial cells, lymphocytes, smooth
muscle cells, adenomas, and adenocarcinoma cells [23]. Moreover, its expression was
predominantly confined to the tumor edges at the sites with active actin remodeling [24].

High fascin-1 expression in GC positively correlated with tumor size, depth of inva-
sion, lymphatic and venous invasion, lymph node metastasis, and UICC staging (Table 1).
Furthermore, fascin-1 was more expressed in older GC patients [23]. Fascin-1 overexpres-
sion pattern was associated with more advanced TNM stages and poorly differentiated
tumors [22,25]. Moreover, it was related to the GC tumor size [26]. Kim and colleagues
found a positive correlation between high fascin-1 expression in GC and high clinical-stage,
high T stage, and the intestinal type of Lauren classification [27]. They also correlated
increased fascin-1 levels with nodal metastasis and lymphovascular invasion [27]. The
same correlation between fascin-1 expression and the extent of the primary tumor, age,
serosal invasion, positive lymph node metastasis, histopathological grading, TNM stage,
and cancer recurrence was noted in an additional independent study [24]. However, there
was no significant association with the occurrence of distant metastasis in their analyses
and the classification of the histological tumor subtypes according to the Lauren’s crite-
ria, such as intestinal or diffuse type of GC [24]. The systemic meta and bioinformatic
analyses performed by Zheng et al. noted similar association trends between fascin-1
expression and poor clinicopathological outcomes [68]. Lastly, high fascin-1 levels, along
with increased SMAD-4 expression, were associated with worse outcomes of the diffuse
type of Epstein-Barr virus (EBV)-associated gastric cancer [69]. Patients with upregulated
fascin-1 in GC had poorer outcomes, with significantly reduced overall and disease-free
survival [23–27,68,69]. Fascin-1 has also labeled the independent variable in multivariate
analysis [26,27]. Therefore, these studies proposed that fascin-1 can be employed as a diag-
nostic and prognostic marker for GC and a valuable prediction tool for clinical outcome
of patients. Lastly, performing dual staining with other GC oncogenes, such as cortactin,
cortactin-421, and cadherin-17, could provide more precise clinicopathologic features of
gastric carcinogenesis (Figure 3) [23,25,26].

4.2. Regulation of Fascin-1 Expression in GC

The oncogenic protein, zinc finger protein 139 (ZNF139), was labeled as a potent
fascin-1 activator in GC (Figure 5) [70]. Suppression of ZNF139 with RNA interference
technology significantly downregulated fascin-1 mRNA and protein levels in GC cell
lines [70]. Furthermore, Kim et al. discovered that galectin-1, a β-galactoside-binding
protein, induced fascin-1 mRNA and protein levels [71]. It did so by stabilizing the GSK-
3β/β-catenin/TCF4 complex and chaperoning it into the nucleus [71]. Fascin-1 expression
was also activated by the oncogenic cytokine, transforming growth factor (TGF)-β [72,73].
The TGF-β-elicited upregulation of fascin-1 heavily depended on the activated SMAD3
signaling pathway, which was observed by the increased phosphorylation of SMAD3 [72].
Moreover, Fu et al. discovered that JNK and Erk signaling pathways were indispensable
for TGF-β-directed activation of fascin-1 [73]. The chemical inhibition of these pathways
abrogated TGF-β-elicited upregulation of fascin-1 [73]. TGF-β was overexpressed in GC
and was secreted by the tumor microenvironment to promote invasion and metastasis [73].
This ability was heavily dependent on increased fascin-1 levels [73]. Indeed, the GC cell
line treated with TGF-β but had silenced fascin-1 did not show migratory and invasive
properties [73]. The reverse was true upon fascin-1 reconstitution [73]. In GC, fascin-1
was also transcriptionally activated by signal transducer and activator of transcription
(STAT)-3 [74,75]. The stimulating signal came either via interleukin (IL)-6 or Fas signaling
pathways [74,75]. The interaction of IL-6 with its receptor transduced the activation signal
by recruiting NfκB and STAT3 to the fascin-1 promoter [74]. Upregulation of fascin-1
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mRNA and protein along the Fas/STAT3 signaling pathway increased cell migration
in vitro and GC metastasis to the lungs in vivo [75]. Thus, IL-6/STAT3/NfκB/fascin-1 and
Fas/STAT3/fascin-1 axes were identified as novel therapeutic targets for advanced GC and
metastases [74,75]. Furthermore, the authors suggested that inhibitors that target IL-6, Fas,
and STAT3 signaling pathways could abolish fascin-1 expression and could be used as an
adjuvant treatment strategy for GC [74,75].
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MicroRNA, such as miR-133a, miR-133b, miR-145, miR-326, and miR-429, were labeled
as potent fascin-1 post-transcriptional suppressors [76–80]. In its 3′ UTR region, fascin-
1 mRNA possesses binding elements for miR-133a, miR-133b, miR-145, miR-326, and
miR-429 [76–80]. Upon successful association between the miRNAs and their binding
elements in the 3′ UTR region of the target, they elicited degradation of fascin-1 mRNA
and subsequent reduction in its protein levels [76–80]. These studies also showed that the
miRNAs in question are downregulated in GC and suggested that their loss resulted in
fascin-1 overexpression in GC [76–80]. Indeed, reconstitution of miR-133b and miR-326
in GC cell lines elicited drastic reduction of fascin-1 mRNA and protein and led to the
inhibition of proliferation, migration, and invasion [76,80]. Thus, activating these miRNAs
could serve as a potential therapeutic agent.

5. Fascin-1 and Colorectal Cancer (CRC)
5.1. Expression Pattern of Fascin-1 in CRC and Its Potential as a Prognostic Marker

IHC of resected sporadic and familial colorectal adenomas and adenocarcinomas
showed increased fascin-1 expression in comparison to the healthy colon, where the basal
expression was minimal [28,29,81]. Fascin-1 was localized in the cytoplasm at the invasive
front of tumor cells and the endothelial cells of tumor blood vessels [30]. Interestingly,
fascin-1 expression was focal during the initial stages, but diffused in more advanced
forms of CRC [31]. Moreover, this protein was overexpressed in inflammation-driven colon
cancer in a manner that corresponded with the disease severity and progression [82]. Its
expression was also associated with the onco-proteins expression of Epstein-Barr virus and
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human papillomaviruses, which were present in 36.27 and 53.84% of CRC tissues in the
Syrian population, respectively [83,84].

High immunoreactivity of fascin-1 was positively correlated with the poor clinico-
pathological outcomes of CRC [85,86]. High fascin-1 expression was associated with
advanced dysplasia, greater tumor burden, and tumor depth [32,33,85,86]. Moreover,
elevated fascin-1 levels were related to a higher T classification and advanced tumor stage,
with the highest expression level recorded in stages III/IV of CRC [34,85,86]. Further-
more, tumors that possessed high fascin-1 levels exhibited a greater capacity to invade
regional lymph nodes and develop extranodal tumor extensions [85,86]. Furthermore,
they were more likely to disseminate and metastasize onto distant secondary sites [85,86].
The presence of fascin-1 in the secondary tumor metastasis was not recorded [30]. Mu-
cinous differentiation of tumor and its classification into the histological subtypes was
also related to the fascin-1 expression [33,35]. In addition, Roseweir and colleagues noted
that the increased expression levels of the EMT markers and fascin-1 were associated
with tumor budding, higher systemic inflammation, and fewer memory T-cells [36]. CRC
patients whose surgical resection showed high fascin-1 levels increased the likelihood of
cancer recurrence [85,86]. Moreover, they exhibited lower overall and disease-free survival
rates [32,34,37]. Lastly, fascin-1 was defined as a CRC independent factor in multivariate
analysis [32,37,38].

These investigations suggested that fascin-1 could be utilized as an effective diagnostic
and prognostic tool (Table 1). Namely, fascin-1 could serve as a poor prognostic marker
for advanced and more aggressive CRC [31,33,37,85]. Furthermore, it was proposed to
serve as a poor prognostic marker for regional and distant metastasis [34,37,38]. Testing its
expression levels in biopsies and surgical resections could predict the patient’s survival
rate and the possibility of cancer recurrence [32,34,37,38]. High expression of fascin-1 was
also detected in tumors that harbored K-Ras mutation, which is resistant to the available
anti-epidermal growth factor receptor (anti-EGFR) CRC therapy [39]. Therefore, Kocer et al.
suggested that determination of fascin-1 status along with K-Ras mutations in tumors could
aid in a more precise diagnosis of anti-EGFR resistant CRC [39]. Lastly, several studies
tested additional markers that can be utilized in conjunction with fascin-1 to give a more
precise diagnosis and prognosis (Figure 3). Namely, staining with BMI1 proto-oncogene,
polycomb ring finger (BMI1) alongside fascin-1 served as a better prognostic factor for
overall survival [87]. Fascin-1 staining in more advanced CRC was inversely correlated
with staining for proliferation marker, Ki67 [31]. A study performed by Roseweir and
colleagues found that fascin-1 is a valuable prognostic tool that can stratify patients’ sur-
vival rates when combined with other EMT markers, such as E-cadherin, Snail, Zeb1, and
β-catenin [36]. Finally, incorporating IHC scores for fascin-1 and resistin was instrumental
in evaluating CRC patients’ overall survival [81].

5.2. Outcome of Fascin-1 Overexpression and Suppression in CRC

It is evident from the experiments of manipulated fascin-1 expression in vivo and
in vitro that fascin-1 is a component of colorectal carcinogenesis that defines its migration
and invasive properties (Figure 4). Schoumacher et al. conditionally overexpressed fascin-
1 in the mouse model of CRC, where unregulated cell proliferation was elicited by the
Apc gene mutation [88]. They observed in vivo that overexpression of fascin-1 increased
intestinal tumor burden, earlier disease onset, and reduced survival upon fascin-1 overex-
pression [88]. It was rationalized by the observation that fascin-1 promotes cytoskeletal
remodeling, loss of cell-to-cell contact, and active organization of filipodia and lamellipodia
in CRC cell line, thus equipping dysplastic cells for movement and invasion [29,30,89].
Kanda and colleagues made similar observations in the inflammation-associated colon
cancer cell model and further discovered that fascin-1 is implicated in the resistance to cell
programmed death driven by the loss of cell-to-cell adhesion, anoiksis [90]. Furthermore,
abolishing fascin-1 expression via RNA interference technology in CRC cell lines elicited al-
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terations in the finger-like cell protrusions, interrupted proper turnover of focal adhesions,
and inhibited cell migration, yielding less invasive and metastatic xenograft tumors [91,92].

5.3. Fascin-1 as a Therapeutic Target in CRC

A handful of newly synthesized and re-purposed therapeutics have been tested as
active fascin-1 inhibitors and suppressors of colorectal carcinogenesis. Montoro-García et al.
discovered that compound G2 inhibited fascin-1-directed actin remodeling (Table 2) [93].
This action elicited the collapse of filopodia and minimized migration and invasive prop-
erties of CRC in vitro and in vivo [93]. Administration of 100 mg of G2 per kg of body
weight did not elicit any significant toxic effect to the athymic nude mice [94]. The possible
side effects of this drug are yet to be investigated. Furthermore, Mahmoud and colleagues
synthesized novel polymethoxylated chalcones and their analogs and examined their ther-
apeutic potential against the CRC with K-Ras mutation [95]. They found that compounds
3 and 14 successfully downregulated fascin-1, abolished EMT, and reduced cancer cell
invasion and metastasis [95]. However, additional studies are necessary to investigate the
efficacy of these compounds in vivo, as well as to address any potential side effects. More-
over, antidepressant imipramine was identified as a novel fascin-1 inhibitor (Table 2) [96].
Imipramine effectively reduced fascin-1 mRNA and protein levels, interrupted cytoskeletal
remodeling and filopodia formation, and prevented metastasis in a dose-dependent man-
ner [96]. The case-control study that consisted of 31,953 cancer cases and 61,591 controls
found that the usage of imipramine may lead to the prevention of colorectal cancer and
glioma [97]. At the moment, there are two ongoing clinical trials investigating the effects of
imipramine on recurring glioblastoma (NCT04863950) and ER+ and triple-negative breast
cancer (NCT03122444). Lastly, raltegravir which is an FDA-approved inhibitor of human
immunodeficiency virus-1 integrase, elicited the disorganization of actin cytoskeleton, and
disrupted the invasive and metastatic properties of the cell by directly targeting fascin-
1 [98]. This experiment was carried out in human CRC cell lines HCT-116 and DLD-1, and
in zebrafish model of invasion [98]. Its safety and efficacy is yet to be examined in human
CRC treatment.

Table 2. Description of the experiments that examined the inhibitory effects of different compounds on fascin-1 expression
in colorectal cancer, hepatocellular carcinoma, and pancreatic adenocarcinoma.

Compound Cancer Type Cell Lines In Vivo Models Clinical Trial Data Ref.

Compound G2

Colorectal Cancer

HCT-116, DLD-1 Zebrafish model of
invasion No [93]

Polymethoxylated
Chalcones 3/14

HCT-116, LoVo,
HT-29, NCE-1 E6/E7 Unknown No [95]

Imipramine

SW-480, DLD-1,
HCT-15, HCT-116,

HT-29, LS174T,
SW-620, LoVo

Zebrafish model of
invasion No [96]

Raltegravir HCT-116, DLD-1 Zebrafish model of
invasion No [98]

Natural Killer
Lysine

Hepatocellular Carcinoma

SMMC-7721,
97-H, HepG2 Unknown No [99]

Doxycycline Unknown Thiocetamide HCC
animal model No [100]

Salinomycin Pancreatic Adenocarcinoma
AsPC-1, Colo357,

MiaPaCa-2,
PANC-1, Panc02

Orthotopic
injection of Panc02

in C57Bl/6 mice
No [101]
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5.4. Regulation of Regulation of Fascin-1 in CRC5

Knowledge of the transcriptional, post-transcriptional, and post-translational regu-
lation of fascin-1 in CRC can be utilized to develop new therapeutic or to re-purpose the
already approved FDA treatment regimens (Figure 5). Myc-nick, a truncated cytoplas-
mic product of the transcription factor myc, induced fascin-1 expression focal adhesion
turnover, and change of cells’ morphology, which increased their mobility and promoted
cancer metastasis [102,103]. Lack of regulation via tumor suppressor p53, along the Nf-κB
axis, was also implicated in overexpression of fascin-1 [104]. Namely, activation of Nf-κB
signaling pathway upon deleterious p53 mutation upregulated fascin-1 in CRC cell line;
however, it was abolished when p53 was overexpressed [104]. Thus, activating p53 or
suppressing the Nf-κB pathway can be one of the means of reducing the fascin-1 expression
and the related cancer phenotype [104]. In addition, Chen et al. remarked that mTOR
stimulated fascin-1 expression levels in colon carcinoma cells HT-29 [92]. This activation
was successfully reduced by using mTOR inhibitor rapamycin [92]. Moreover, by ma-
nipulating the activation status of mTOR’s suppressor, AMP Kinase, the authors either
increased fascin-1 expression (upon miR-451-driven degradation of AMPK) or abolished it
(upon treatment of AMP Kinase activator, AICAR) [92]. Lastly, on the transcriptional level,
fascin-1 expression was also dictated by the Wnt signaling pathway, which was mediated
by the transcription factor, β-catenin [30].

Long noncoding RNA, LINC00152 which acts as a competing endogenous RNA
sponging with miR-632 and miR-185-3p and is under activation of Yes-associated protein
1 (Yap1) was recognized as a potent fascin-1 activator in CRC cell models and the pro-
moter of malignant proliferation and metastasis in vivo [105]. In inflammation-associated
colon cancer, fascin-1 protein levels were stabilized by the miR-146a-elicited proteasomal
degradation [82]. Contrary to this, expression of miR-663, miR-145 and miR-133a was
significantly abolished in CRC and inversely corelated with fascin-1 expression pattern;
all three microRNAs were not only able to decrease fascin-1 expression, but were also
able to ameliorate carcinogenesis progression [106–109]. The therapeutic potential of these
miRNAs in fascin-1 suppression is yet to be investigated.

On the post-translational level, Rac was instrumental in stabilizing the interaction
between fascin-1 and PKCγ at the lamellipodia frontline of the colon cancer cells [110].
The interactions of these proteins were vital for upholding the cellular morphology with
the protrusions, and their disruption ameliorated invasive carcinoma properties [110].
Moreover, Liu et al. recognized Tiam1 (T lymphoma invasion and metastasis 1) as the
upstream Rac regulators, with the potential to activate fascin-1 in CRC [110,111] Thus,
evaluating therapeutic potential of Rac, Taim1, and/or PKCγ for inhibition of fascin-
directed reactions can be beneficial [110,111].

6. Fascin-1 and Hepatocellular Carcinoma
6.1. Expression Pattern of Fascin-1 in HCC and Its Potential as a Prognostic Marker

The mRNA and protein status of fascin-1 in the resected hepatocellular carcinoma
(HCC) tissues were elevated in comparison to the healthy liver samples [40–42,112].
Moreover, elevated fascin-1 expression was noted in the interdigitating dendritic cell
sarcoma [113]. In HCC sections, fascin-1 was primarily expressed in the poorly differ-
entiated parts of the specimens, and it was associated with the loss of typical trabecular
HCC structures [112]. In addition, Huang and colleagues noted that in HCC collected
from 77 participants, fascin-1 overexpression was positively correlated with the histolog-
ical differentiation of cancer, regional invasion of lymph nodes, and distant metastasis
(Table 1) [40]. Iguchi et al. made similar observations in the larger cohort and described
tumors that exhibited fascin-1 upregulation as larger in size and less differentiated than the
control [41]. In both studies, the survival time and the recurrence rate were significantly
reduced in patients with elevated fascin-1 levels [40,41]. Thus, they proposed that fascin-1
could serve as a promising poor prognostic factor for advanced HCC, overall survival, and
regional and distant metastasis [40,41]. In contrast to these studies, Lin and colleagues
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showed that performing IHC with anti-fascin-1 antibody did not exhibit significant correla-
tions with the clinicopathological parameters of the HCC [42]. Therefore, additional studies
are needed to investigate the diagnostic and prognostic potentials of fascin-1 in HCC.

6.2. Outcome of Fascin-1 Overexpression in HCC

Fascin-1 overexpression was also recorded in HCC cell lines, and it played a paramount
role in promoting EMT, enhancing migratory and invasive properties of the cell, as well as
contributing to the multidrug resistance trait (Figure 4) [112,114,115]. The promotion of
EMT properties was true under normoxic and hypoxic conditions, and it required interac-
tion with the functional MMP-2 and MMP-9 [112,114]. Overexpression of fascin-1 elicited
resistance to doxorubicin, which was evident in the observation that silencing fascin-1 with
RNAi technology increased cells’ sensitivity to this anti-cancer drug [114].

6.3. Fascin-1 as a Therapeutic Target in HCC

Due to its expression pattern in HCC and the traits that it provides to the malignant
cells, fascin-1 can serve as a promising therapeutic target to suppress advanced HCC and
metastasis. Thus far, recombinant porcine natural killer lysin (rpNK-lysin) and doxycycline
have been tested in this capacity (Table 2) [99,100]. NK-lysin is a cationic anti-microbial pep-
tide secreted by the interleukin-2 stimulated natural killer cells and cytotoxic T lymphocytes
that halters HCC cell line proliferation and reduces their invasiveness and migration [99].
These effects were possible due to rpNK-lysin-elicited downregulation of fascin-1 in a dose-
and time-dependent manner [99]. The rpNK-lysin treatment further led to the disruption
of the actin polymerization, the collapse of the finger-like protrusions, and the inhibition of
tumor invasion and metastasis [99]. At the maximum non-toxic concentration, rpNK-lysin
had a selective cytotoxic effect for the HCC cells, while affecting less than 20% of normal
hepatocytes [99]. Furthermore, doxycycline successfully inhibited fascin-1 expression,
and suppressed HCC proliferation and metastasis, and improved the animal survival
outcomes [100]. The adverse effect associated with the doxycycline treatment for HCC and
as a fascin-1 inhibitor are yet to be elucidated.

6.4. Regulation of Fascin-1 Expression in HCC

Although some interactive partners of fascin-1 that influence its expression and activity
in HCC are known, the complete transcriptional and post-transcriptional network has not
been fully elucidated (Figure 5). One of these partners is fatty acid synthase (FASN), which
co-localized with fascin-1 in HCC cell lines and whose expression pattern in HCC resembled
one of fascin-1 [116]. The importance of their interaction was evident upon decreasing the
FASN expression, which elicited significant downregulation of fascin-1, MMP2, MMP9, and
EMT markers, and abolished EMT process, and inhibited cell migration and invasion [116].
Moreover, the vasoactive neuropeptide, urotensin II (UII), which promotes cell migration
and invasion, was portrayed as a fascin-1 activator [117]. In particular, UII was shown
to increase fascin-1 expression and encourage actin polymerization and increase the JNK
and NADPH Oxidase activities [117]. UII may communicate the fascin-1 activation signal
via JNK and NADPH Oxidase, as the inhibition of their activities elicited decrease of
fascin-1 expression [117]. Thus, investigating the inhibitors of FASN and UII to abolish
the metastatic properties of HCC driven by fascin-1 expression is promising. Moreover,
miR-539, miR-145, and miR-133a were identified as tumor and fascin-1 suppressors in
HCC [118,119]. Their expression pattern in HCC was inversely correlated [118,119]. Their
upregulation resulted in abolition of fascin-1 expression, migratory and invasive traits
of the cell, and the growth and proliferative capacity of HCC xenograft [118,119]. Thus,
authors suggested that directly targeting these miRNAs would abrogate the metastatic and
invasive profile of HCC elicited by fascin-1 overexpression [118,119].
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7. Fascin-1 and Pancreatic Cancer
7.1. Expression Pattern of Fascin-1 in Pancreatic Carcinomas

The apparent differential expression of fascin-1 between the healthy pancreatic tissue
and carcinoma exemplifies this protein as a strong marker for diagnosis, prognosis, and
treatment of pancreatic tumors. Fascin-1 exhibited modest basal expression levels in the
healthy pancreas, with a moderate increase after the age of 60 years [43,44]. Upon the car-
cinogenesis initiation, the fascin-1 expression diverged based on the type of pre-cancerous
neoplasms and carcinomas. In particular, the pancreatic intraepithelial neoplasia (PanIN),
which often gives rise to pancreatic adenocarcinoma (PDAC), exhibited a steady and consis-
tent trend of fascin-1 overexpression during the carcinogenesis progression [43,45,46]. The
trend encompassed a slight elevation of fascin-1 expression in PanIN-1 compared to the
normal pancreatic ducts and a sharp rise along with the PanIN-2 and PanIN-3 (carcinoma
in situ) transitions [43,45,46]. The increase in fascin-1 expression often culminated in the
PDAC; the abundance of fascin-1 protein has been well recorded in the PDAC biopsy
tissues obtained from patients [44,47,120]. Thus, fascin-1 upregulation was marked as an
early to intermediate event in PDAC neoplastic progression [46]. Fascin-1 was primarily
detected in the cytoplasm of tumor, stromal, and endothelial cells, with the focal and
diffuse localization to the filopodia [45].

Alterations in fascin-1 expression patterns have been implicated in less common types
of pancreatic tumorigenesis. The intraductal tubulopapillary neoplasms (ITPN) exhibited
negative immunopathological scores for fascin-1, mucin-2, mucin-5ac, and trypsin [121].
Furthermore, the status of fascin-1 in the intraductal papillary mucinous neoplasms (IPMN)
correlated with the increased histological grade [122]. This expression pattern contrasted
with the one found in pancreatic non-ductal neoplasms, where fascin-1 was present in
solid pseudopapillary tumors, pancreatoblastomas, and undifferentiated carcinomas with
osteoclastic-like giant cells [123]. Furthermore, fascin-1 overexpression was recorded in
the ampulla of Vader adenocarcinoma, and it was correlated with poorer differentiation,
higher histological grades, and poorer overall survival [48]. In addition, the rare pancreatic
extranodal follicular dendritic cell (FDC) sarcoma, composed of epithelioid and spindle cells
with abundant intracytoplasmic hyaline globules, was positive for fascin-1 expression [124].
Acini cell carcinoma and the neuroendocrine tumor did not express fascin-1 [47].

7.2. Fascin-1 as a Prognostic/Diagnostic Marker in PDAC

The expression levels of fascin-1 in PDAC samples were positively associated with the
poorly differentiated tumor (Table 1) [44,45,125]. Furthermore, the fascin-1 expression was
observed in tumors with higher histological grades, advanced T stage, and the American
Joint Committee on Cancer stage [44,47]. Moreover, PDACs that overexpressed fascin-1
demonstrated increased vascular penetration, invasion of the regional lymph nodes, as
well as metastatic dissemination onto the distant secondary organs [44]. In addition, high
fascin-1 expression in PDAC positively correlated with the shorter remission and survival
times [47,48]. Based on these observations, as well as the expression trend described along
the PanIN development, it has been suggested that fascin-1 can be regarded as the tumor
biomarker and as a prognostic tool for advanced PDAC [43–47,120].

Studies also investigated the role of anti-fascin-1 antibody in endoscopic ultrasound-
guided fine-needle aspiration (EUS-FNA) for precise pancreatic carcinoma staging and
diagnosis [49,50]. They found that the anti-fascin-1 antibody exhibited high specificity but
low sensitivity, which resulted in the incorrect prediction of the cancer stage and diagno-
sis [49,50]. Therefore, it was considered ineffective in cancer diagnosis, followed by the
EUS-FSA [49,50]. Lastly, performing co-staining for this protein and additional markers
such as actinin-4, PSCA and mucin5 gave a more accurate PDAC diagnosis (Figure 3) [46].
In addition, performing IHC to visualize extracellular matrix metalloproteinase inducer
(EMMPRIN) alongside fascin-1 enhanced diagnosis precision of PDAC progression, metas-
tasis, and overall patient survival [44].
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7.3. Outcome of Fascin-1 Overexpression and Suppression in PDAC

Experiments that manipulated endogenous fascin-1 levels in the in vitro and in vivo
models of pancreatic carcinoma unveiled that fascin-1 expression and activity represent
vital determinants of tumor aggressiveness and its ability to colonize secondary sites
(Figure 4). Overexpression of fascin-1 in the pancreatic carcinoma cell line, MIA-PaCa-
2, elicited apparent actin remodeling in the cytoplasm, followed by the change in cell
morphology portrayed by the prominent finger-like protrusions [47,126]. These cells also
gained motility abilities, which was evident in the prominent cell migration as well as
in the disruption of the cell-to-cell adhesion and cell aggregation [47,126]. Perhaps the
mechanistic rationale behind this phenomenon was the upregulation of the MMP-2 upon
fascin-1 overexpression along with the Protein Kinase C (PKC)/ERK pathways axis [47].
Moreover, xenograft studies using this cell line showed that although the overexpression of
fascin-1 augmented tumor invasion to the skin, it did not change the proliferative capacity
of pancreatic carcinoma when compared to the control [126]. PDAC cells that overexpressed
fascin-1 exhibited the multidrug resistance phenotype towards drugs such as docetaxel
and TS-1, which is a combination of 5-fluorouracil and tegafur (a metabolically activated
5-fluorouracil prodrug) [127,128]. Upon silencing of fascin-1, however, the pancreatic
carcinoma cells exhibited lower migration and invasion rates [45]. Lack of these abilities
carried in the mouse model of pancreatic ductal adenocarcinoma, KPC (K-RasLSL.G12D/+,
Trp53R172H/+, Pdx-1-Cre) mouse, which upon the disruption of fascin-1 gene, exhibited
less tumor burden, longer survival time, and the later onset of the tumor formation [45].

7.4. Fascin-1 as a Therapeutic Target in PDAC

The valuable role of fascin-1 in the PDAC progression, invasion, and metastasis places
it in the group of effective therapeutic targets for PDAC treatment. The antibiotic and an
ionophore, salinomycin, was identified as one of the therapeutics that effectively inhibited
fascin-1 and suppressed PDAC progression (Table 2) [101]. They discovered that salino-
mycin treatment of PDAC cell line successfully relocated fascin-1 from the filopodia [101].
This elicited the disruption of actin remodeling, the creation of the circular dorsal ruffle
formation, and the inhibition of cancer metastasis to the secondary sites [101]. Salinomycin
treatment was well tolerated by the animals during the course of treatment [101].

7.5. Regulation of Fascin-1 in PDAC

Notch-4 signaling pathway coupled to the Akt signaling was identified as the fascin-1
activator in the PDAC (Figure 5) [128]. Furthermore, the epithelial-to-mesenchymal transi-
tion transcription factor, Slug, was noted as a prominent fascin-1 transcriptional activator
in the pancreatic carcinoma [45]. Lastly, the PDAC invasion and metastasis was dictated
by the hypoxic microenvironment, via hypoxia inducible factor 1 α (HIF-1α) elicited up-
regulation of fascin-1 [47]. On the contrary, fascin-1 expression was downregulated by
miR-133a [129]. Thus, inhibitors of Slug, HIF-1α, Notch4, and Akt signaling pathways,
and activators of miR-133a, in theory, could be utilized to abrogate fascin-1 expression in
PDACs and to ameliorate invasiveness and metastatic abilities of pancreatic carcinogenesis.

8. Conclusions

Fascin-1, a monomeric actin-binding protein, is responsible for bundling and cross-
linking actin filaments at the cell’s leading edge. It promotes the formation of pseudopodia
that mediate cellular movement, which is crucial for metastatic dissemination of the pri-
mary tumor. Although the basal expression of fascin-1 in the GI tract is minimal, it increases
GI tract carcinogenesis progression. High fascin-1 expression is associated with dismal
GI tract cancer clinicopathological outcomes, as it is correlated with decreased patient
survival time, histological stages of cancers, and regional and distant metastases (Figure 6).
Therefore, fascin-1 has been portrayed as a promising diagnostic marker that would pro-
vide a more precise histopathological stage of cancer and an unfavorable prognostic tool
for advanced GI tract carcinogenesis, overall survival, and metastasis. The significance
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of its involvement as an oncogene is evident from the in vivo and in vitro experimental
findings that its loss-of-function is sufficient to abrogate proliferation, migration, and
invasive properties of GI tract cancers. Therefore, suppressing its expression and activity
by pharmacological agents has been examined as an adjuvant therapeutic strategy for this
type of carcinogenesis. This can be done by targeting fascin-1 directly, or indirectly by
modulating its activators and suppressors via pharmacological means.
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nificance of its involvement as an oncogene is evident from the in vivo and in vitro exper-
imental findings that its loss-of-function is sufficient to abrogate proliferation, migration, 
and invasive properties of GI tract cancers. Therefore, suppressing its expression and ac-
tivity by pharmacological agents has been examined as an adjuvant therapeutic strategy 
for this type of carcinogenesis. This can be done by targeting fascin-1 directly, or indirectly 
by modulating its activators and suppressors via pharmacological means. 

 
Figure 6. Mechanism and role of fascin-1 in the tumor progression. 
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Abbreviation
ABD actin-binding domain
BMI1 BMI1 proto-oncogene, polycomb ring finger
CTGF Connective tissue growth factor
CRC colorectal carcinoma
CYR61 Cysteine-rich, angiogenic inducer 61
EBV Epstein-Barr virus
EGFR epidermal growth factor receptor
EMMPRIN extracellular matrix metalloproteinase inducer
EMT epithelial-to-mesenchymal transition
ESCC esophageal squamous cell carcinoma
EUS-FNA endoscopic ultrasound-guided fine-needle aspiration
FASN fatty acid synthase
GC gastric carcinoma
GI tract gastrointestinal tract
HCC hepatocellular carcinoma
HIF-1α hypoxia inducible factor 1
IHC immunohistochemistry
IPMN intraductal papillary mucinous neoplasms
ITPN intraductal tubulopapillary neoplasms
MMP-2 matrix metalloproteinase-2
MMP-9 matrix metalloproteinase-9
PanIN pancreatic intraepithelial neoplasia
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PDAC pancreatic adenoracinoma
PKC Protein Kinase C
rpNK-lysin recombinant porcine natural killer lysin
TGF-β transforming growth factor
Sp1 specificity protein 1
STAT3 signal transducer and activator of transcription
Tiam1 T lymphoma invasion and metastasis 1
UII urotensin II
ZNF139 zinc finger protein 139
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