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Abstract

Neural tube defects (NTDs) are among the most common complex congenital malformations 

observed in newborns. When the neural tube fails to close completely, severe malformations of the 

brain and/or spinal cord and subsequent neurologic impairment occurs. It is widely believed that 

nutritional, environmental and genetic interactions contribute to NTDs. It is well established that 

low folate levels during pregnancy increases a mother’s risk of having pregnancy complicated by 

an NTD, and providing periconceptional folate supplementation reduces this risk. The underlying 

genetic mechanisms of NTDs are still unclear. We review the many new approaches to better 

understand the etiology, especially the genetic etiology, underlying this family of birth defects.

Neural tube defects (NTDs) are characterized by a failure of neural tube closure during early 

embryonic development. The most frequent types of NTDs are spina bifida, which are 

defects of low spinal closure below the level of T12, and anencephaly, which results from 

incomplete closure of cranial neural tube. Failure of the neural folds to elevate results in the 

entire neural tube remaining open is referred to as craniorachischisis. The worldwide 

prevalence of NTDs is 0.5–1 per 1000 newborns, with variations among different 

populations [1]. The etiology of NTDs is complex, including both genetic and environment 

factors. In mice, so far there are more than 300 genes were linked to NTDs [2]. However, no 

causative mutations have been identified in humans to date. One possible reason is that there 

are very few large, multigenerational families that could be used to identify causative NTD 

genes using linkage mapping. Other obstacles to identifying NTD causative genes using 

mouse models is that most of these gene knockout models do not express an NTD phenotype 

as heterozygotes, yet the homozygous embryos most often suffer from in utero lethality.

In thinking about the genetic basis of NTDs, many investigators consider the notion that 

multiple, combined heterozygous variants in same gene, same pathway, genetic or physical 

interaction partner, work together to produce the NTD phenotype in humans. These 

combined functional variants could be inherited or result from germline de novo and/or 

somatic de novo mutations. However, it has been very difficult to directly test this 
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hypothesis, due to the limitations of our existing genome editing technologies. Recently, the 

development of next generation sequencing (NGS) techniques [3] and clustered regularly 

interspaced short palindromic repeats (CRISPR)-Cas9 genetic editing technique [4] provide 

an excellent opportunity to test this hypothesis.

Next generation sequencing (NGS) also called (high throughput) massive parallel 

sequencing including NGS-whole exome sequencing (NGS-WES), NGS-whole genome 

sequencing (NGS-WGS), and NGS-target enrichment sequencing. Compared with first 

generation (Sanger) sequencing, the newer approaches can generate large amounts of 

sequencing data in a short time at a reasonably low cost. For example, the human genome 

sequencing project took 13 years and cost over $3 billion dollars. Using the latest NGS 

equipment (eg. Illumina HiSeq 4000), sequencing a whole human genome can be completed 

in a week at a cost approaching $1,000. Since more than 300 genes have been reported to be 

involved in murine neural tube closure, it is highly likely that even more genes that 

contribute to the expression of human NTDs will be discovered. We believe that one 

approach to identifying new candidate NTDs genes in humans, is to appropriate the NGS-

WES and NGS-WGS methodologies/strategies that are currently being successfully used for 

identifying risk genes in autism spectrum disorder [5], a multifactorial disease similar to 

NTDs. For human NTDs, it is also assumed that multiple related (eg. in a pathway) 

functional variants combined can be the underlying genetic etiology of some cases. Thus far, 

millions of genetic variants have been identified; therefore, the potential combinations of 

multiple variants could be in the billions or trillions. To test whether combined rare variants 

in a pathway are human NTD genetic risk factors, scientists need to sequence thousands of 

NTD cases for all the known candidate pathway genes. The NGS-target enrichment 

sequencing technique is perfect for this purpose. Currently, there are three types of target 

capture/enrichment methods: multiple- PCR based method capture, hybrid capture (on-array 

or in-solution) and molecular inversion probes (MIP) capture [6]. Each method has its 

advantages and disadvantages. MIP has been successfully used for autism risk genes 

validation in a large sample size due to its low cost, ease of use, and template saving 

advantages [7]. We believe that this technique has the potential successfully enhance our 

understanding of NTDs risk genes/pathways by performing validation studies on large NTD 

cohorts.

The functional characterization of identified variants is important for judging whether the 

detected combination of variants is causative or not. The most direct way is to “knock-in” 

the variants into mice and then determine whether these variants induce an NTD phenotype, 

for murine neural tube closure shares much in common with human neural tube closure, 

perhaps more closely than neural tube closure in zebrafish or in Xenopus. The latest genetic 

editing technique, CRISPR-Cas9, can also be utilized for functional studies of identified 

gene variants. Compared with CRISPR-Cas9, traditional genetic editing techniques 

including homologous recombination, zinc finger nuclease, and transcription activator-like 

effector nuclease are laborious, expensive and time consuming. It usually takes 12–18 

months to make a knock in mouse line. CRISPR-Cas9 technology can easily generate 

genetically modified mice in one month [8,9]. Recently, Zhong and colleagues used 

CRISPR-Cas9 technology to edit androgenetic haploid embryonic stem cells (AG-haESCs), 

and successfully injected the genetically modified AG-haESCs into MII oocytes that 
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developed into liveborn mouse pups [10]. The combination of these two new techniques 

working together should vastly improve our ability to perform the functional screening of 

human NTDs variants quickly and efficiently. Most of the identified variants in human 

NTDs are heterozygous mutations, such as the functional variants identified in planar cell 

polarity (PCP) pathway genes including: VANGL2 [11], VANGL1 [12], CELSR1 [13], 

SCRIB [14], LRP6 [15], FZD6 [16] and DISHEVELLED2 [17]. PCP single gene knock out 

heterozygotes do not produce an NTD phenotype in mice, while PCP double heterozygotes 

do result in multiple types of NTDs in mice [18]. Based on the mouse data, it is easy to 

hypothesize that a double loss of functional variants in PCP genes could also cause NTDs in 

human. To test this hypothesis, we need to screen a large number (thousands) of NTD 

samples for PCP genes using one of the aforementioned NGS-target enrichment techniques 

in order to identify those variants combinations. AG-haESCs could be used to make genetic 

“knock in” mice that contain the same variants combinations as observed in human NTD 

cases. Whether or not these “knock in” mice present with NTDs phenotype will be the 

hallmark by which to judge the NTD causality of these variant combinations. The same 

methods could also be used for other candidate NTD gene pathways, such as the sonic 

hedgehog pathway, one-carbon metabolism pathway, cilia pathway, cell apoptosis pathway, 

and more.

In summary, NGS, CRISPR-Cas9 and AG-haESCs are the state-of-art techniques and tools 

whose utilization will advance our understanding of the etiology of NTDs.
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