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ABSTRACT Reliable quantification of the antibody response to severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2) is highly relevant, e.g., for identifying pos-
sible vaccine failure and estimating the time of protection. Therefore, we evaluated
five different anti-SARS-CoV-2 antibody assays regarding the quantification of anti-
spike (S) antibodies. Sera from 69 SARS-CoV-2-naive individuals 21 6 1 days after
vaccination with a single dose of BNT162b2 (Pfizer/BioNTech) were tested using the
following quantitative assays: Roche S total antibody, DiaSorin trimeric spike IgG,
DiaSorin S1/S2 IgG, Abbott II IgG, and Serion/Virion IgG. Results were further com-
pared to the percent inhibition calculated from a surrogate virus neutralization test
(sVNT). Individual values were distributed over several orders of magnitude for all
assays. Although the assays were in good overall agreement (r = 0.80 to 0.94), Passing-
Bablok regression revealed systematic constant and proportional differences, which
could not be eliminated by converting the results to binding antibody units (BAU) per
milliliter, as suggested by the manufacturers. Seven (10%) individuals had negative sVNT
results (i.e., ,30% inhibition). These samples were identified by most assays and yielded
significantly lower binding antibody levels. Although all assays showed good correlation,
they were not interchangeable, even when converted to BAU per milliliter using the
WHO international standard for SARS-CoV-2 immunoglobulin. This highlights the need
for further standardization of SARS-CoV-2 serology.

IMPORTANCE Reliable quantification of the antibody response to SARS-CoV-2 is highly
relevant, e.g., for identifying possible vaccine failure and estimating the time of pro-
tection. We compared the performance of five CE marked tests that quantify antibodies
against the viral spike protein. Our findings suggest that, although all assays showed
good correlation, their results were not interchangeable, even when converted to BAU
per milliliter using the WHO international standard for SARS-CoV-2 immunoglobulin.
This highlights the need for further standardization of SARS-CoV-2 serology.

KEYWORDS comparison, quantitative antibody assays, SARS-CoV-2, vaccination, assay
standardization, immunization, quantitative methods, serology

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody testing
played and still plays an essential role in the management of the coronavirus 2019

(COVID-19) pandemic (1). Detection of specific antibodies following SARS-CoV-2 infec-
tion is important at both the individual and population levels to identify those at risk
of infection (2). However, now, in the early vaccination era of the COVID-19 pandemic,
another essential role of SARS-CoV-2 serology is added: the determination of specific
antibodies after active immunization (3, 4).

The first SARS-CoV-2 antibody testing systems were designed to distinguish individ-
uals with prior COVID-19 infection from those who were still naive to this new virus (5).
Therefore, these immunoassays were usually developed as qualitative rather than
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quantitative tests and were designed by the manufacturer to achieve the highest pos-
sible specificity and high sensitivity. High specificity was indispensable, especially at
the beginning of the pandemic, because the extremely low seroprevalence rates led to
many false positives and low positive predictive values even with tests having a speci-
ficity of 99% (6). In contrast, the sensitivity of SARS-CoV-2 testing was often reduced to
ensure the high specificities needed for these assays (7). The lower antibody levels fur-
ther aggravated suboptimal sensitivities in mild/asymptomatic infections and during
the pandemic by the natural decline in antibody levels (8–13).

Various antigens have been used for this purpose, but essentially two types can be
distinguished: nucleocapsid (NC)- and spike protein (S)-based assays (14). Antibodies
directed against SARS-CoV-2 specific nucleocapsid antigens are induced early and
strongly in most infected individuals due to the virus nucleocapsid's typical strong im-
munogenicity (15). Furthermore, a very high specificity can be achieved by targeted
modification of the nucleocapsid antigen so that no cross-reactivity is observed even
with closely related viruses. The discriminatory properties of such nucleocapsid-based
antibody assays can therefore be excellent (16, 17). The physiological significance of
these antibodies, on the other hand, is unclear, and these surrogate markers for a pre-
vious infection are unlikely to be functionally relevant to confer protection or immu-
nity. The antibodies that react with the spike protein, however, act differently. At least
a proportion of these S-binding antibodies are likely to have the function of neutraliz-
ing antibodies (18). Thus, it is not surprising that numerous studies have shown a cor-
relation between spike protein binding assays and various forms of functional virus
neutralization assays (19–24).

In the context of SARS-CoV-2 vaccines, it is precisely these neutralizing antibodies
that are of paramount importance. The primary goal of active immunization is to induce
many SARS-CoV-2-specific neutralizing antibodies that ideally prevent the pathogen's
entry and thus infection or stop the systemic spread to prevent disease (25). The functional
virus neutralization assays are not feasible everywhere: assays with live viruses require bio-
safety level 3, but variants such as pseudotyped neutralization assays are also labor-inten-
sive and cannot be performed at high throughput (26–28). Classical antibody assays, which
measure the reactivity of antibodies in serum/plasma with defined antigens, can be per-
formed very rapidly and in high throughput, in contrast to neutralization tests.

Thus, anti-spike protein assays will play an important role in the future. However,
these test systems must be able to reliably quantitate SARS-CoV-2-specific antibody
levels, be comparable to each other, and have good to excellent agreement with the
presence of neutralizing antibodies. The comparability of antibody assays is expected
to be improved by the recent introduction of a first WHO international standard for
anti-SARS-CoV-2 immunoglobulin (NIBSC code 20/136) with reference to neutralizing
antibodies.

In the present work, we aimed to go a step further and compare five commercial
quantitative anti-spike protein antibody assays (4 of them with manufacturer's correc-
tion factor for the WHO standard) head-to-head in serum samples from 69 individuals
who received a single dose of BNT162b (Pfizer/BioNTech).

RESULTS
Measurement ranges differ between binding assays. Twenty-nine female (42%)

and 40 male (58%) participants with a median age of 42 years (29 to 51) were included.
Results from the five different antibody binding assays are presented in Table 1 and
Fig. 1. The Abbott S IgG assay showed the highest values with a median of
1,097.1 arbitrary units (AU)/ml (580.1 to 1,959.5 AU/ml) and the broadest range
(1.4 to 8,281.0 AU/ml). In contrast, the DiaSorin S1/2 IgG CLIA yielded the lowest
values (63.7 AU/ml [47.8 to 87.5 AU/ml]), and the levels ranged from below the
limit of quantification (,3.8 AU/ml, 1 sample) to 148.0 AU/ml. Two assays, the
DiaSorin Tris IgG (195.0 AU/ml [99.0 to 337.3 AU/ml]) and the Serion IgG (50 U/ml
[30 to 89 U/ml]), returned a result above the measuring range for the same donor
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(.800 AU/ml and .250 U/ml). However, both tests used their full available range
(lowest values, 1.8 AU/ml and ,3 U/ml). Roche S tAb (total antibody) electrochemilu-
minescence sandwich immunoassay (ECLIA) results fell between those of the other test
systems (79.6 U/ml [24.7-142.3 U/ml]), ranging from 0.4 to 508.0 U/ml.

The measured values indicate that the numerical results are strongly dependent on
the test system used. In the next step, we aimed to evaluate the overall agreement
between the test systems.

Agreement between results from different binding assays. Results from the Roche
S tAb assay correlated well with those of the other binding assays (Abbott S IgG r =
0.88, DiaSorin TriS IgG r = 0.83, DiaSorin S1/2 IgG r = 0.80, Serion IgG r = 0.82).
However, Passing-Bablok regression revealed relevant systematic proportional and
constant differences: Abbott S IgG= 82.51 15.54x, DiaSorin TriS IgG= 33.41 2.18x,
DiaSorin S1/2 IgG= 39.61 0.32x, Serion IgG= 12.31 0.65x.

The Abbott S IgG assay correlated at a r value of 0.90 with the remaining three test
systems (DiaSorin TriS IgG and S1/2 IgG and Serion IgG). In Passing-Bablok regression,
all constant and proportional errors were statistically significant: DiaSorin TriS
IgG = 24.51 0.13x, DiaSorin S1/2 IgG = 34.51 0.02x, Serion IgG = 6.21 0.04x.

The DiaSorin TriS IgG assay showed an excellent correlation with the remaining two
tests (DiaSorin S1/2 IgG r = 0.91, Serion IgG r = 0.94). In the Passing-Bablok regression,
nevertheless, marked deviations became apparent: DiaSorin S1/2 IgG= 30.51 0.16x,
Serion IgG =20.01 0.31x.

Finally, the DiaSorin S1/2 IgG and the Serion IgG correlated at a r value of 0.91, and
the Passing-Bablok regression equation was Serion IgG = 250.91 1.78x. All described
relationships, as well as related residual plots, are presented in Fig. 2.

Furthermore, we assessed whether the classification of results into tertiles (0 to
33.3%, 33.4 to 66.7%, and 66.8 to 100%) was comparable, e.g., whether a sample yielding

FIG 1 Results from binding assays (A) and sVNTs (B). Solid lines mark the medians. The dotted line
(B) marks the manufacturer’s threshold for positivity (30%).

TABLE 1Measures of position and spread for 5 S-protein based SARS-CoV-2 antibody assays
calculated from 69 samples taken 216 1 days after the first shot of BNT162b2

Measure

SARS-CoV-2 antibody test:

Roche S tAb Abbott S IgG DiaSorin TriS IgG DiaSorin S1/2 IgG Serion IgG
Median 79.6 1,097.1 195.0 63.7 50
5th percentile 4.3 207.5 36.4 20.5 12
25th percentile 24.7 580.1 99.0 47.8 30
75th percentile 142.3 1,959.5 337.3 87.5 89
95th percentile 265 3,812.4 545.3 105.2 169
Mean 96.4 1,494.2 230.4 66.3 69
SD 92.9 1,367.2 163.2 26.5 55
Range 0.4 to 508.0 1.4 to 8,281.0 1.8 to.800.0 ,3.8 to 148.0 2 to.250
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a result in the lowest tertile of test A was also in the lowest tertile of test B. Cohen’s
kappa was between 0.60 and 0.80, indicating a good agreement, for all but for one of
the 10 test combinations (Roche S tAb/Serion, kappa=0.59 [Table 2]).

In conclusion, the results of the investigated test systems correlate well but are not
necessarily interchangeable. Several manufacturers provided conversion factors related
to the WHO international standard for SARS-CoV-2 immunoglobulin, as described in
Materials and Methods. Next, we wanted to clarify whether comparing values con-
verted to binding antibody units (BAU) per milliliter instead of arbitrary values facil-
itates comparability.

Associations between standardized binding assay results. The numbers of BAU
per milliliter were calculated for the Abbott S IgG, the DiaSorin TriS IgG, and the Serion
IgG, according to the recently proposed conversion factors. Results from the Roche S
tAb ECLIA did not require conversion, as indicated by the manufacturer.

As shown in Fig. 3, the recalculation of BAU per milliliter did not solve the problem
of high proportional errors. The least proportional error could be observed for the rela-
tionship between Roche S tAb and Serion IgG. However, the same combination was
characterized by comparatively high variability (r = 0.82).

FIG 2 Comparison of binding assays by linear regression (dotted lines indicate the 95% confidence interval) (A) and residual plots (B).
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Correlation of binding assay results with a surrogate neutralization assay. In a
final step, the binding assays’ results were compared to percent inhibition of a surrogate
virus neutralization test (sVNT). In the sVNT, the tested samples yielded median values of
63% (50 to 76%), ranging from 6% to 92%. Figure 4A illustrates that all binding assays
except the DiaSorin S1/2 IgG showed a quadratic relationship with the sVNT. The binding
assays also differentiated those values clustered in the upper range of the sVNT. However,
for the DiaSorin S1/2, the quadratic curve approached a straight line, indicating a mostly
linear relationship between this binding assay and the sVNT within the observed range.

TABLE 2 Kappa values for 10 different test combinations regarding the classifications of
samples into tertiles

Test

Kappa± 95% confidence interval

Abbott S IgG DiaSorin TriS IgG DiaSorin S1/2 IgG Serion IgG
Roche S tAb 0.726 0.06 0.696 0.06 0.636 0.07 0.596 0.07
Abbott S IgG 0.646 0.07 0.746 0.06 0.646 0.07
DiaSorin TriS IgG 0.746 0.06 0.746 0.06
DiaSorin S1/2 IgG 0.806 0.05

FIG 2 Continued

Quantitative SARS-CoV-2 Antibody Assays

Volume 9 Issue 1 e00247-21 MicrobiolSpectrum.asm.org 5

https://www.MicrobiolSpectrum.asm.org


Seven (10%) of the individuals yielded sVNT results below 30% inhibition, which is
considered negative according to the manufacturer (Fig. 1). Binding assay results were
compared between positives and negatives in the sVNT by Mann-Whitney tests. The
median (interquartile range [IQR]) binding assay results for sVNT-negative and -positive
samples were as follows: Roche tAb, 7.2 U/ml (1.4 to 14.1 U/ml) and 80.9 U/ml (28.4 to
149.0 U/ml); Abbott S IgG, 233.8 AU/ml (138.8 to 436.0 AU/ml) and 1,234.3 AU/ml (710.2
to 2,246.9 AU/ml); DiaSorin S1/2 IgG, 28.4 AU/ml (22.4 to 42.5 AU/ml) and 67.5 AU/ml
(52.4 to 88.6 AU/ml); DiaSorin TriS IgG, 48.8 AU/ml (38.3 to 170.1 AU/ml) and 202.0 AU/
ml (124.0 to 339.0 AU/ml); and Serion IgG, 14 U/ml (12 to 27 U/ml) and 61 U/ml (36 to
100 U/ml). Values recalculated to BAU per milliliter, if applicable, are given in Fig. 4B.

DISCUSSION

SARS-CoV-2 antibody assays become important tools to evaluate the proportion of
people affected by COVID-19 and identify those who are still at infection risk. Now,
with the first vaccines available, a new field of use for SARS-CoV-2 antibody tests will
open up. First, many vaccinated individuals will be interested in confirming their own
vaccination success based on the detection of specific antibodies. Second, vaccination-
induced antibodies may be used as surrogate from which a protection correlate will be

FIG 3 Comparison of binding assay results converted to BAU per milliliter. Given are linear regression curves and their 95% confidence intervals. Dotted
diagonal lines represent lines of equality.
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estimated. To date, only limited information on the performance of quantitative SARS-
CoV-2 antibody assays is available, since most currently evaluated assays were devel-
oped in-house, as recently summarized by the CDC COVID-19 response group (29).
Only for a few commercially available quantitative CE-marked test systems are prelimi-
nary data on the performance given in the literature (17, 20, 30–32).

Although a protection correlate for immunity in SARS-CoV-2 has not been defined
yet, it is useful to begin this important preliminary work now (33). Therefore, we com-
pared different commercial SARS-CoV-2 antibody assays with spike protein reactivity
using a vaccination cohort to give a first insight into the comparability of these assays.

With regard to the numerical results, we were able to determine a broad distri-
bution of values for each individual test system, so that these were presented on
a logarithmic scale. This is in line with recently published reports, showing the
antibody response after a single dose of BNT162b2 vaccine (3, 4). Interestingly, in
agreement with a study involving .500 participants in an identical study setting,
we observed very similar mean values for the measurements with the DiaSorin S1/
S2 IgG: 66.3 AU/ml versus 68.6 AU/ml (3). Therefore, it is reasonable to assume
that our cohort is representative despite the moderate number of participants. In
addition, we were able to show that the results of the different test systems varied
by a factor of up to more than 50. This leads to the initial conclusion that a direct
comparability of the numerical results of different test systems is unlikely to be
given across the range of individual findings. Differences also occurred with
respect to measurement ranges, and upper measurement limits were exceeded in
2 of 5 systems (DiaSorin TriS IgG and Serion IgG), although the study cohort
reflects the antibody response before the administration of the second dose of
the Pfizer/BioNTech vaccine in SARS-CoV-2 naive individuals. However, it must be
mentioned that it is not yet known up to what level a differentiation of the
obtained values is meaningful. Nevertheless, it can be assumed that the average
values of completely vaccinated persons are significantly higher than those in our
collective, and thus, the upper measurement limits could frequently be exceeded

FIG 4 (A) Relationships between binding assay results and percent inhibition assayed using a surrogate virus neutralization test (threshold for positivity,
30% [dotted vertical lines]). Presented are quadratic regression lines and their 95% confidence intervals. (B) Comparison (Mann-Whitney tests) of
standardized (BAU per milliliter) binding antibody levels (except for DiaSorin S1/2 IgG, for which a conversion factor to BAU per milliliter is not available)
between samples with a positive (sVNT pos) or negative (sVNT neg) surrogate virus neutralization test result. **, P , 0.01; ***, P , 0.001; ****, P , 0.0001.
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in most assays. If clinically relevant, this could make additional dilution steps nec-
essary, which are not yet taken into account by the manufacturers.

Despite the different levels of measurement, all systems showed good correlations
with each other. When the measured values of the individual antibody tests were
assigned to tertiles, good agreement was shown between the lowest third, the middle
third, and the highest third of the results. Thus, one individual with known immuno-
suppressive therapy consistently showed no formation of antibodies in all five anti-
body binding assays tested. With defined cutoffs for low or high vaccination titers of
the different test systems, at least a partial transferability of a result from one to
another test system may therefore be expected.

Such transferability of results could also be anticipated via referencing the antibody
assays used to an international reference standard (29). Indeed, a first WHO international
SARS-CoV-2 antibody standard with the valence of 1,000 BAU/ml has recently become avail-
able. This standard was used by the manufacturers for four of the five assays studied.
However, this standardization was introduced not during the establishment of the test sys-
tem but post hoc as a reference to define a conversion factor of their own units in BAU per
milliliter. It is therefore not surprising that this subsequent correction did not reduce the
existing systematic deviations (Fig. 2) between the different tests. Only the Roche S tAb and
Serion IgG tests were able to approximate the equivalence line, although here a very wide
scattering of values around the trend lines was observed.

The in vitro binding of infection-associated antibodies to pathogen-specific antigens
in an antibody test are important markers to objectify a past infection or vaccination.
However, these do not necessarily say anything about the function of these antibodies
(1). Only those antibodies that will prevent the virus from binding to the cellular receptor,
the ACE2 receptor, via the surface spike protein (34, 35), act as neutralizing antibodies.
Tests to neutralize live viruses can only be performed in very specialized laboratories and
unfortunately, in the case of SARS-CoV-2, are not standardized, making comparability
almost impossible. For this reason, we chose to use a well-characterized surrogate virus
neutralization test (sVNT) as a functional reference (36–38). In this assay, a simple enzyme-
linked immunosorbent assay (ELISA) format is used to determine the inhibition of
conjugated receptor-binding domain (RBD) protein by neutralizing antibodies to the
plate-bound ACE2 receptor. The manufacturer suggests a threshold for positivity of 30%
inhibition. With the exception of the Serion IgG assay, where the median of samples with
negative sVNT results was borderline (14 U/ml), the medians of sVNT-negative samples
were above the thresholds for positivity in all other test systems. This implies that the cut-
off values given for the respective test systems are only valid for the diagnosis of a past
infection and do not necessarily represent a threshold value for the presence of sufficient
neutralizing activity.

In conclusion, we found good correlation between all evaluated assays; how-
ever, the values from the different test systems were not interchangeable, even
when converted to BAU per milliliter using the WHO international standard for
SARS-CoV-2 immunoglobulin. Furthermore, it should be noted that the thresholds
for positivity provided by the manufacturers are of diagnostic value and are not in-
dicative of sufficient inhibitory capacities.

MATERIALS ANDMETHODS
Study design and participants. This prospective observational study was performed using sera col-

lected in February 2021 from 69 individuals without a previous SARS-CoV-2 infection in the course of a
workplace vaccination campaign in the metropolitan area of Vienna, Austria. The samples were taken
21 6 1 days (mean 6 standard deviation) after the first dose of the Pfizer/BioNTech BNT162b2 vaccine.
We included vaccinated persons rather than individuals with a history of SARS-CoV-2 infection, in order
to be able to compare test systems following a more or less standardized stimulus. Further inclusion cri-
teria were an age of .18 years, whereas an insufficient amount of serum resulted in exclusion from the
study. The study protocol was reviewed and approved by the Ethics Committee of the Medical University of
Vienna (EK1066/2021). All participants provided written informed consent to donate blood for the evaluation
of diagnostic test systems (EK404/2012). The studied complied with the World Medical Association
Declaration of Helsinki regarding ethical conduct of research involving human subjects.
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Laboratory procedures. Serum was obtained and stored at 2 to 10°C for ,7days within the MedUni
Wien Biobank, a centralized facility for the preparation and storage of biomaterial with certified quality man-
agement (ISO 9001:2015) (39). All analytical procedures were performed at the Department for Laboratory
Medicine, Medical University of Vienna. The following CE-marked binding assays were applied:

The Roche Elecsys anti-SARS-CoV-2 S (Roche S tAb) is an electrochemiluminescence sandwich
immunoassay (ECLIA) and detects total antibodies directed against the receptor-binding domain
(RBD) of the viral spike (S) protein. It was measured on cobas e801 modular analyzers (Roche
Diagnostics, Rotkreuz, Switzerland). The quantification range is between 0.4 and 2,500.0 U/ml, and
0.8 U/ml is used as a cutoff for positivity.

The Abbott SARS-CoV-2 IgG II Quant-test (Abbott S IgG) is a chemiluminescence microparticle immu-
noassay (CMIA). It quantifies IgG-type antibodies against the RBD of the viral S-protein on an Abbott
Architect platform (Abbott, Abbott Park, IL, USA) between 21.0 and 40,000.0 AU/ml, with $50AU/ml as a
threshold for positivity.

The DiaSorin Liaison SARS-CoV-2 TrimericS IgG (DiaSorin TriS IgG) chemiluminescence immunoassay
(CLIA) quantifies IgG antibodies against a trimeric S-protein antigen on a DiaSorin Liaison (DiaSorin,
Stillwater, OK, USA). The quantification range is between 1.63 and 800 AU/ml. Samples with values of
$13AU/ml are considered positive.

The DiaSorin Liaison SARS-CoV-2 S1/2 CLIA (DiaSorin S1/2 IgG) detects IgG antibodies against an S1/
S2 combination antigen on a DiaSorin Liaison (DiaSorin, Stillwater, OK, USA). The quantification range is
between 3.8 and 400.0 AU/ml. The cutoff for positivity is .15AU/ml, whereby results between 12.0 and
15.0 AU/ml are considered borderline.

The Virion\Serion ELISA (enzyme-linked immunosorbent assay) agile SARS-CoV-2 IgG assay (Serion
IgG) (Institut Virion-Serion, Wuerzburg, Germany) was analyzed on a FilterMax F5 multiplate reader
(Molecular Devices, San Jose, CA, USA) and quantifies IgG antibodies against total S protein between 3
and 250 U/ml. The threshold for positivity is 15 U/ml, with values between 10 and 15 U/ml being consid-
ered borderline results.

Binding antibody units (BAU) per milliliter, which are traceable to the WHO international standard
for anti-SARS-CoV-2 immunoglobulin, were calculated by applying the following conversion factors, as
suggested by the manufacturers: Roche S tAb, (U/ml) � 1; Abbott S IgG, (U/ml) � (1/7); DiaSorin TriS
IgG, (AU/ml) � 2.6; Serion IgG, (U/ml) � 2.1.

We excluded prior SARS-CoV-2 infection by using the Roche Elecsys SARS-CoV-2 ECLIA on the cobas
e801 analyzer (Roche), which detects total antibodies to the viral nucleocapsid antigen. These antibodies
are not induced by vaccination with BNT162b2. This assay yields high diagnostic sensitivity (90%) and
specificity (99.7%) for infections that occurred at least 14 days before blood withdrawal (5). As suggested
by the manufacturer, results of a cutoff index (COI) of.1.000 were considered positive.

Neutralizing capacity was estimated by performing a surrogate virus neutralization test (sVNT)
(GenScript, Piscataway, NJ, USA). The assay was read on a FilterMax F5 multimodal plate reader.
According to the manufacturer, it shows excellent positive (100% [87.1 to 100.0%]) and negative
(100.0% [95.8 to 100.0%]) agreement with conventional plaque reduction neutralization tests
(PRNT50 and PRNT90) and has therefore already been used in various studies (36, 40, 41). Results of
$30% are considered positive.

Statistical analysis. Continuous data are given as medians and interquartile ranges; categorical
data are given as counts and percentages. Test systems were compared by Passing-Bablok regres-
sions. This method reveals differences between two test systems by estimating the slope (systematic
proportional differences) and the intercept (systematic constant differences) of a linear regression
line. The advantage of this well-established method over conventional linear regressions is that no
preconditions regarding the distribution of the measured values and the measurement errors have
to be met (42). Besides Passing-Bablok regressions, Cohen’s kappa (linear weights) and Spearman
rank correlations were applied to evaluate the agreement between binding assays. Kappa is a mea-
sure for assessing the compliance between two ratings. In detail, we evaluated the degree to which
the different test systems agreed to classify the test samples into tertiles (43). Spearman rank corre-
lation is a method to describe relationships between two variables that do not have to be linear. The
relationship between binding assays and results from the sVNT was described by quadratic curve fit-
ting. Statistical significance was assumed if P values were below 0.05. All analyses were performed
using MedCalc 19.6 (MedCalc, Ostend, Belgium), and graphs were drawn using GraphPad 9
(GraphPad, La Jolla, CA, USA). The underlying data can be requested by interested researchers from
the corresponding author.
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