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Abstract: Fabry disease (FD) is a rare inherited disorder characterized by a wide range of systemic
symptoms; it is particularly associated with cardiovascular and renal problems. Enzyme replacement
therapy and pharmacological chaperone migalastat are the only approved and effective treatment
strategies for FD patients. It is well documented that alpha-galactosidase A (GLA) enzyme activity
deficiency causes globotriaosylceramide (Gb3) accumulation, which plays a crucial role in the
etiology of FD. However, the detailed mechanisms remain unclear, and the lack of a reliable
and powerful disease model is an obstacle. In this study, we created such a model by using
CRISPR/Cas9-mediated editing of GLA gene to knockout its expression in human embryonic stem cells
(hESCs). The cardiomyocytes differentiated from these hESCs (GLA-null CMs) were characterized by
the accumulation of Gb3 and significant increases of cell surface area, the landmarks of FD-associated
cardiomyopathy. Furthermore, we used mass spectrometry to compare the proteomes of GLA-null
CMs and parental wild type CMs and found that the Rab GTPases involved in exocytotic vesicle release
were significantly downregulated. This caused impairment of autophagic flux and protein turnover,
resulting in an increase of reactive oxygen species and apoptosis. To summarize, we established a FD
model which can be used as a promising tool to study human hypertrophic cardiomyopathy in a
physiologically and pathologically relevant manner and to develop new therapies by targeting Rab
GTPases signaling-related exosomal vesicles transportation.

Keywords: Fabry disease; human embryonic stem cells; CRISPR/Cas9 genomic editing; Mass
spectrometry proteomic analysis; hypertrophic cardiomyopathy; disease model
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1. Introduction

Approximately 3–5% of inherited hypertrophic cardiomyopathies result from lysosome storage
disorders [1]. One of these cardiomyopathies is Fabry disease (FD), which is caused by
alpha-galactosidase A (GLA) deficiency leading to accumulation of globotriaosylceramide (Gb3)
in several tissues. FD is particularly manifested in renal and cardiovascular dysfunctions [2]. A number
of in vivo and in vitro studies revealed that the loss of GLA results in left ventricular hypertrophy
and develops into heart failure, myocardial infarction and life-threatening arrhythmias due to Gb3
deposition. The levels of Gb3 and its deacylated derivative, globotriaosylsphingosine (lyso-Gb3) in
plasma and tissues are used as diagnostic biomarkers of FD, and are applied for the screening/monitoring
of FD patients by liquid chromatography-tandem mass spectrometry (LC-MS/MS) [3–6]. However, the
limited sample volume and variable levels of lyso-Gb3 in different matrices makes the quantitation
very challenging [7]. Furthermore, the detailed mechanism of how Gb3 accumulation results in
hypertrophic cardiomyopathy still needs to be elucidated. In order to develop new therapeutic
strategies for FD-associated vasculopathy, it is essential to understand the underlying pathogenesis
mechanisms, as well as to discover the potential prognostic biomarkers.

Previously, we generated CRISPR/Cas9-edited GLA-null human HEK293 cells; however, this
cell line may not be an appropriate model with which to study pathological events occurring
in cardiomyocytes [8]. The pluripotent stem cells, including embryonic stem cells (ESCs) and
induced pluripotent cells (iPSCs), offer a great potential for modelling human diseases as they can
be differentiated into the tissue affected by the pathology. Although several FD-specific iPSC lines
have been obtained from patients carrying different GLA gene mutations, which claimed to be useful
for FD cardiomyopathy research [9,10], one major limitation of such approach is the influence of
variable genetic background, which can be significant even for monogenic, dominant and highly
penetrant disease in FD [11,12]. Currently, CRISPR/Cas9 emerges as a powerful genome editing
technique, providing the opportunity to efficiently delete genes to establish isogenic cells [13–15].
Therefore, our strategy in this study was to generate GLA knockout in human pluripotent stem cells by
CRISPR/Cas9-mediated gene editing, and compare them with the parental cells of the same genetic
background to study the mechanisms of FD-associated cardiomyopathy.

Recently, it became increasingly clear that lysosomal storage disorders have an impact on
autophagic dysfunction [16]. Dysregulated ceramide metabolism can trigger cytotoxic signaling
cascades, including apoptosis and necroptosis, missorting and accumulation of these sphingolipids
in the membrane subdomains may destabilize lipid bilayer and cause their permeabilization [17].
Exosomes are small vesicles secreted upon fusion of multivesicular endolysosomal compartments
with the plasma membrane and are derived from the intraluminal vesicles (ILVs) of those organelles.
Exosomes may participate in the control of cellular homeostasis by promoting the release of intracellular
harmful components, including proteins, lipids or nucleic acids. Emerging evidence from the studies
of normal development, as well as multiple disease studies, is beginning to reveal a coordinated
exosome–autophagy response that functions to maintain homeostasis through lysosomal degradation
and release of cellular cargo [18–20]. However, little effort has been made to investigate the impact of
autophagic dysfunction in FD on biogenesis and secretion of exosomes.

In the current study, we applied CRISPR/Cas9-mediated genomic editing to deplete GLA expression
in ESC-derived cardiomyocytes to recapitulate FD cardiac hypertrophy in vitro and performed
proteomic analysis by LC-MS/MS. We identified that Rab GTPase signaling-related vesicle secretion
is the factor that may initiate or exacerbate the development of FD-associated cardiomyopathy.
Such information will be extremely important for potential application in the prevention of and in
interventions for the adverse effects of the cardiac hypertrophy in FD patients.
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2. Materials and Methods

2.1. CRISPR/Cas9 Plasmid Construction and Transfection

The CRISPR/Cas9 with T2A-eGFP co-expression vector pSpCas9(BB)–2A-GFP (PX458) was a
gift from Feng Zhang (Addgene plasmid). The exon 1 of GLA was selected for guiding RNA design
and the sequence (5′-AGGAACCCAGAACTACATCT-3′) was cloned into PX458 (abbreviated as
GLA-Cas9-GFP) as previously described [8]. The GLA-specific targeting plasmid was transfected into
hESC line (WA09) by electroporation using Nucleofector System (Lonza, Basel, Switzerland) following
the manufacturer’s protocol. Briefly, hESC cells were cultured to 80–90% confluence, then harvested
and washed with PBS without Ca2+ and Mg2+. Approximately 4 × 105 cells were resuspended in
the pre-mixture solution with 2 µg GLA-Cas9-GFP plasmid, and the optimized protocol (program
B016) was used for electroporation. The cells were plated on Matrigel-coated 6-well plate in mTeSR1
medium containing 10 µM Y27632. 48 h later, the proportion of cells expressing EGFP was enriched
by flow cytometry using FACSCalibur (BD Biosciences, San Jose, CA, USA). Three days later, cells
were detached with TrypLE (Invitrogen, Thermo Fisher Scientific, Waltham, MA, USA), separated into
single cells and seeded with a density of 1 cell/well of a 96-well dish.

2.2. Analysis of CRISPR/Cas9-Induced Mutations in GLA Gene

To identify the presence of indels in GLA gene, the genomic DNA was extracted and used for
PCR amplification of the target site with the primer pair 5′-CACACACCAACCTCTAACGATACC-3′

(forward) and 5′-CCAGGAAAGGTCACACAGAGAAAG-3′ (reverse). PCR products were TA-cloned
into pGEM-T Easy vector (Promega, Madison, WI, USA). Subsequently, DNA from the clones #19 and
#27 was sequenced using T7 forward and Sp6 Reverse primer. Vector NTI software was used to align
the results of sequencing and determine the indel spectra in GLA target site.

2.3. hESC Culture and Differentiation to Cardiomyocytes

The hESCs were cultured on tissue culture dishes coated with Geltrex (Life Technologies, Thermo
Fisher Scientific) in mTeSR1 culture medium (STEMCELL Technologies, Vancouver, BC, Canada) with
daily media changes. The cells were passaged every 3–4 days using Accutase (STEMCELL Technologies).
The undifferentiated phenotype of the hESCs was checked daily using a light microscope. In order to
differentiate hESCs to cardiomyocytes, they were dissociated by Versene (Life Technologies, Thermo
Fisher Scientific), resuspended in mTeSR1 + 5 µM Y27632 and seeded onto Geltrex-coated plates at a
density of 3 × 105 cells/cm2 and grown for the next four days with daily medium change. Following
that, the cells were treated with 6 µM CHIR99021 (Selleckchem, Houston, TX, USA) in insulin-free
RPMI/B27 medium (Life Technologies) for 24 h. The medium was replaced with basal medium for
another 2 days. At day 3, the culture medium was subsequently replaced with 5 µM IWP-2 (Tocris
Bioscience, Minneapolis, MN, USA) in insulin-free RPMI/B27 for 48 h. On day 7, the culture medium
was changed to RPMI/B27 containing insulin (Life Technologies, Thermo Fisher Scientific), and the
culture medium was refreshed every 3 days thereafter.

2.4. Alkaline Phosphatase Staining

Cells were washed in PBS twice, fixed with 80% alcohol for at least 2 h at 4 ◦C, followed by soaking
in ddH2O for 2–3 min, and 100 mM Tris-HCl (pH 8.2–8.5) for 5 min. Alkaline phosphatase substrate
working solution (Vector Laboratories, Burlingame, CA, USA) was added for 1 h and stained colonies
were visualized under light microscope.

2.5. Reverse Transcription-Polymerase Chain Reaction (RT-PCR)

Total RNA was isolated with TRIzol reagent (Invitrogen, Thermo Fisher Scientific) and quantified
by spectrophotometry at 260 nm. 3 µg of total RNA was reverse transcribed using SuperScript III
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Reverse Transcriptase (Invitrogen, Thermo Fisher Scientific) at 55 ◦C for 1 h into complementary DNA,
which was then used as the template for subsequent PCR reactions. The PCR reactions were run with
the following cycling conditions: 94 ◦C for 5 min, followed by 25 or 30 cycles at 94 ◦C (denaturation)
for 30 s, 58–62 ◦C for 30 s (annealing), 72 ◦C for 45 s (synthesis). The primer sequences are shown
in Supplementary Tables S1 and S2. Amplified RT-PCR products were analyzed on 2% agarose gels
and visualized using ethidium bromide staining and SPOT camera system (Diagnostic Instruments,
Sterling Height, MI, USA).

2.6. Immunofluorescence Staining

First, the cells were rinsed in PBS and fixed with 1% (v/v) paraformaldehyde for 10 min followed
by treatment with 70% ethanol (v/v) for 10 min at room temperature. The cells were permeabilized with
0.1% NP-40 (Sigma-Aldrich, St. Louis, MO, USA) for 20 min, then washed twice with PBS. To block
cells, blocking solution (0.3% BSA and 5% serum in PBS) was applied for 30 min. Cells were incubated
with primary antibodies in the blocking solution overnight at 4 ◦C, washed three times in PBS, then
stained with secondary antibodies at 1:200 in PBS for 1 h at room temperature. Cells were washed
three times in PBS, and nuclei were stained with Hoechst 33,342 (Life Technologies, Thermo Fisher
Scientific) at 1:5000 in PBS for 5 min at room temperature. Prior to imaging, cells mounted with
SlowFade Gold Antifade Mountant (Millipore, Sigma, Burlington, MA, USA). Images were obtained
using fluorescent microscopy and a digital camera. Antibody for characterization of pluripotency is
listed in Supplementary Table S3.

2.7. Measurement of Cardiomyocyte Size

The size of iPSC-derived cardiomyocytes was evaluated by measuring the cell area. Twenty
days after cardiac induction, the spontaneously beating embryoid bodies were dissociated into single
cells using Accutase™ (STEMCELL Technologies). These cells were then plated onto gelatin-coated
dishes for further experiments and analysis. Subsequently, the cellular images of cTnT-positive cells
were recorded at days 30, 40 and 60 post-induction of differentiation using FV10i confocal microscope
(Olympus, Tokyo, Japan). The pixel area of cTnT-positive cells was measured and analyzed using ImageJ
software package (NIH). About total two hundred cells were analyzed in five independent experiments.

2.8. Western Blotting

Cells were lysed in RIPA lysis buffer (0.5M Tris-HCl, pH 7.4, 1.5M NaCl, 2.5% deoxycholic
acid, 10% NP-40, 10 mM EDTA, protease inhibitor), and the protein lysates were subjected to
SDS-PAGE followed by electroblotting onto a PVDF membrane. Membranes were probed with the
following primary antibodies: α-galactosidase A, TSG101 (GeneTex, Irvine, CA, USA), CD63 (Santa
Cruz Biotechnology, Dallas, TX, USA), Calnexin (Abcam, Cambridge, MA, USA) GDRID2, VPS36,
VTI1A (Proteintech Group, Wuhan, Hubei, P.R.C), LC3 (Novus Biologicals, Centennial, CO, USA),
Rab11 and GAPDH (Cell Signaling Technology, Denver, MA, USA). The bands were visualized by
chemiluminescence detection reagents.

2.9. Lipid Extraction

The cells were grown to confluency on 150 mm cell culture dishes and harvested by scraping
into 700 µL PBS. The cell suspension was transferred into 16 mm × 100 mm glass tubes, and 1 mL
chloroform and 2.4 mL methanol were added. After water bath sonication, protein was precipitated by
centrifuging at 2400× g for 30 min. The supernatant was transferred to a new glass tube and 4.5 mL
chloroform and 1.2 mL 0.9% NaCl were added. The sample was centrifuged at 900× g for 5 min.
The upper aqueous phase was discarded, and the lower organic phase was washed twice with 2 mL
methanol and 0.8 mL 0.9% NaCl. The lower phase was extracted using a 1 mL glass syringe (Hamilton,
Reno, NV, USA) and transferred to a new glass tube. Lipids were dried under a stream of nitrogen.
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2.10. Quantification of Gb3 by Thin Layer Chromatography (TLC)

First, 100 nmole of total phospholipid was applied to a silica high performance TLC plate
(Sigma-Aldrich, St. Louis, MO, USA). The plate was first developed in a solvent system consisting of
chloroform/methanol (98:2), and air-dried. The plate was then developed in a solvent system consisting
of chloroform/methanol/acetic acid/water (61/31/5/3) and air-dried. Plates were submerged in 8% cupric
sulfate pentahydrate in water/methanol/H3PO4 (60:32:8), and charred for 10 min at 150 ◦C, or were
sprayed with 1% orcinol in 11% H2SO4 and charred at 130 ◦C for 5 min. Plates were scanned and
densinometry measured using ImageJ software. Lipids were quantified by running Gb3 standards on
a plate (Matreya LLC, State College, PA, USA).

2.11. Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) Analysis

LC-MS/MS analysis was performed using Orbitrap Mass Analyzer (Thermo Fisher Scientific),
according to the manufacturer’s protocol. Briefly, each sample of digested peptides was reconstituted
in 20 µL of 0.1% formic acid. Peptides were first separated by the nanoflow HPLC on Agilent 1100
(Agilent Technologies, Santa Clara, CA, USA) using C18 column (Agilent Technologies) with a flow
rate of 0.4 µL/min, and were ionized after passing through the nanospray tip (New Objective, Woburn,
MA, USA). LC gradient for the LC-MS/MS system ramped from 2–40% ACN in 120 min, and the
system was set up for automated data-dependent acquisition, with a mode of 200–2000 m/z full scan for
the maximum three most intense peaks from each Orbitrap MS scan. Peptides with +2 or +3 charge
were further subjected to CID. Spectra were obtained in raw data files with Xcalibur (version 2.0 SR2).
Protein identification was accomplished by TurboSEQUEST (Thermo Fisher Scientific) using the UniProt
database. A protein was confirmed once three peptides with Xcorr >2.5 were matched in sequencing.

2.12. Transmission Electron Microscopy

The morphology of differentiated cardiomyocytes was characterized using JEM-2000 EX II
transmission electron microscope (JEOL, Tokyo, Japan). The cardiomyocytes were covered with
400 mesh carbon-coated copper TEM grid. After 15 min, the grid was tapped with filter paper to
remove the excess water followed by staining with 1% phosphotungstic acid (Sigma-Aldrich) for
20 min. The samples were allowed to air-dry for 24 h and then observed under TEM.

2.13. Array-Based Comparative Genomic Hybridization (CGH-Array

Genomic DNA was isolated and intermittently sonicated using a Digital Sonifier 450 sonicator
probe (Branson Ultrasonics, Danbury, CT, USA). DNA samples were amplified using the GenomePlex
WGA kit (Thermo Fisher Scientific). Genomic DNA ULS Labeling Kit (Agilent) was used to label
the amplified DNA with either Cy3 or Cy5. As recommended by Agilent, 2.0–2.5 µg of amplified
DNA was used as the input starting material for each labeling reaction. Scanning and image analysis
were conducted according to Agilent Oligonucleotide Array-based CGH for Genomic DNA analysis
Protocol (version 4.0). Microarrays were scanned using an Agilent G2565BA DNA Microarray Scanner
(Agilent). Agilent Feature Extraction software (v9.1.3) was used to extract data from raw microarray
image files. Agilent CGH Analytics software (v3.4) was used to visualize, detect and analyze the
aberration patterns from CGH microarray profiles.

2.14. Exosome Isolation and Characterization

Exosomes were isolated from cell culture supernatants using Total Exosome Isolation Reagent
(Thermo Fisher Scientific) following the manufacturer’s protocol. Culture media samples were
centrifuged at 2000× g for 30 min to remove cells and debris. The supernatant was transferred to
sterile tubes and an exosome precipitation solution was added at a 2:1 ratio. Samples were mixed
and left overnight at 4 ◦C. Samples were then centrifuged at 10,000× g for 60 min and supernatant
carefully removed. The precipitated exosome pellets were re-suspended with PBS and either used
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immediately or stored at −80 ◦C until required. Immunoaffinity capture assay was used to characterize
the purity of exosomes using CD63 antibody-conjugated dynabeads. Exosomes were incubated with
antibody-conjugated dynabeads overnight and washed by PBS containing 0.1% BSA two times. Further,
CD63 PE-conjugated antibody was used to stain the exosome-bound dynabeads. All samples were
examined by flow cytometry using FACSCanto System (BD Biosciences) and FACSDIVA software was
used to analyze the population of exosomes.

2.15. Quantification of Isolated Exosomes

Acetylcholinesterase activity assay was performed using EXOCET Exosome Quantitation Kit
(System Biosciences, Palo Alto, CA, USA). Isolated exosomes were re-suspended with PBS and lysed
with lysis buffer. Each sample was incubated at 37 ◦C for 5 min and mixed with reaction buffer
in 96-well plates. Mixed samples were incubated for 20 min at room temperature and quantified
by spectrophotometry at OD 405 using standard samples containing known numbers of exosomes.
The final number of exosomes was converted to micrograms, per the manufacturer’s guideline.
To characterize exosomes, isolated exosome preparations were re-suspended with PBS and analyzed
using Zetasizer Nano dynamic light scattering system (Malvern Instruments, Malvern, UK).

2.16. Mitochondrial Superoxide Stress Quantification

Mitochondrial superoxide production was quantified using MitoSOX Red mitochondrial
superoxide indicator (Thermo Fisher Scientific) according to the manufacturer’s protocol. Briefly, the
cells were incubated with 5 µM MitoSOX Red in the culture medium in the dark for 60 min at 37 ◦C.
Stained cells were counterstained as desired and mounted and analyzed by fluorescent microscopy.

2.17. Annexin V Staining

Cells were washed once with PBS and analyzed using FITC Annexin V Apoptosis Detection Kit
(BD Biosciences) according to the manufacturer’s protocol.

2.18. GLA Enzyme Activity Assay

Cells were washed twice with 1X PBS and were lysed in 60 µL lysis buffer (27 mM sodium citrate,
46 mM sodium phosphate dibasic, 0.5% Triton X-100). 10 µL of cell lysate was added to 50 µL assay
buffer containing 6 mM 4-methylumbelliferyl-α-d-galactopyranoside (Sigma-Aldrich) and 117 mM
N-acetyl-D-galactosamine (Sigma-Aldrich) and incubated at 37 ◦C for 1 hr. The 4-methylumbelliferone
(Sigma-Aldrich) dissolved in methanol was used as standard ranging from 0.15 µM to 5000 µM.
Thereafter, 70 µL glycine-carbonate solution (pH 10.8) was then added to stop the reaction and
fluorescence was detected by microplate reader (em/ex = 365/448 nm). The enzyme activity was
normalized by protein concentration of cell lysate.

2.19. Statistical Analysis

The quantifiable data are presented as the means ± standard deviation (SD) and compared with
Student’s t-test by GraphPad Prism 6 (GraphPad Prism Software). * p < 0.05, ** p < 0.01, *** p < 0.005
and **** p < 0.001.

3. Results

3.1. CRISPR/Cas9-Mediated Knockout of Expression of GLA in hESCs

In order to investigate the functions of GLA and its therapeutic potential for FD, we performed
CRISPR/Cas9-mediated gene editing to knock out expression of this gene in human embryonic stem
cells (hESCs). The procedure was similar to that described in our previous work, where we established
the GLA-null HEK293 cell line [8]. Briefly, the GLA-specific single-guide RNA (sgRNA) was designed
by using Optimized CRISPR Design tool (http://crispr.mit.edu/) to introduce the frameshift mutations

http://crispr.mit.edu/
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in exon 1 of GLA gene as shown in Figure 1A. The parental male hESC line H9 (WA09) was transfected
with Cas9-encoding plasmid with EGFP reporter, along with the sgRNA. Following the transfection,
the proportion of the successfully transfected EGFP-expressing cells was enriched by FACS, and these
cells were seeded to 96-well dishes to obtain pure colonies. Out of 36 wells where the single cells were
seeded, the clones #20 to #24 and #28 did not grow up. The remaining 30 colonies were screened for
GLA protein expression by western blotting (Figure 1B). The GLA protein expression was completely
ablated in four clones (#3, #19, #26, and #27) and partially suppressed in two (#25 and #31) (Figure 1B).
By performing preliminary differentiation of these clones into cardiomyocytes (CMs), we found that
clone #26-derived CMs displayed slight GLA expression, which could be due to contamination with
parental non-edited cells, therefore, this clone was excluded from further analysis (Supplementary
Figure S1A). GLA mRNA levels in these CM clones were not significantly decreased as compared
to the control, only in clone #27-derived CMs mRNA levels were downregulated by approximately
50% (Supplementary Figure S1B). On the other hand, GLA enzyme activity was completely absent
in clones #3, #19, and #27, which was consistent with the complete absence of GLA protein in these
cells (Supplementary Figure S1C). Subsequently, the mutations introduced by CRISPR/Cas9 were
identified by Sanger sequencing in the remaining GLA-knockout hESC clones #3, #19, and #27. Clone #3
displayed mixed genetic background at the target site, due to putative non-homogeneous population,
therefore, it was also excluded from the analysis. (Supplementary Figure S1D). Two of GLA-null hESC
clones were selected for the following study because they were hemizygous for 2 bp deletion (clone
#19) and 1 bp insertion (clone #27) (Figure 1C). T7 Endonuclease I (T7E1) was used to confirm the
presence CRISPR/Cas9-introduced mutations in the GLA gene, whereby the cleaved mismatch products
were detected in clones #19 and #27 (Figure 1D). On the other hand, T7E1 assay revealed that there
were no CRISPR/Cas9-introduced mutations in the potential off-target genes predicted by Optimized
CRISPR Design tool (Suppl. 2). Therefore, by conducting the CRISPR/Cas9-mediated genome editing,
we successfully established two GLA-null hESC clones.
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Figure 1. CRISPR/Cas9-mediated knockout of expression of GLA in hESCs. (A) Schematic
depiction of sgRNA-guided Cas9 target site within exon 1 of GLA gene. The sgRNA sequence
(5′-AGGAACCCAGAACUACAUCU-3′) is labeled in blue font and PAM recognition sequence
highlighted in red. The gRNA targeting site in the GLA exon 1 region is highlighted in green
and the double-strand breaking site is indicated by the red arrowheads. The start codon is highlighted
in yellow. (B) Western blot screening of 30 CRISPR/Cas9-corrected clones for expression of GLA
protein. H9 cells were used as wild type parental control. GAPDH used as a loading control.
(C) Sanger sequencing analysis confirming two nucleotides deletion and one nucleotide insertion in
CRSIPR/Cas9-edited hESC clones #19 and #27, respectively. (D) T7E1 digestion assay of the mutants at
the target site in GLA gene. The mismatch T7E1 cleavage products are marked with white arrowheads.



Cells 2019, 8, 327 8 of 18

3.2. Characterization of GLA-Null hESC Clones

To confirm the pluripotency status of the established GLA-null hESC clones #19 and #27, several
stemness markers were detected by RT-PCR, thus confirming that CRISPR/Cas9-mediated GLA knockout
did not significantly influence the pluripotency gene expression in hESCs (Supplementary Figure
S3A). Both GLA-null hESC clones displayed typical pluripotent morphology features, including small
and tightly packed cells, high nucleus to cytoplasm ratio, and positive alkaline phosphatase activity
(Supplementary Figure S3B). The expression of pluripotency markers OCT4, NANOG, TRA-1-60 and
TRA-1-81 was verified by immunofluorescence staining (Figure 2A). Both null-GLA hESC clones were
able to spontaneously differentiate in vitro into embryoid bodies expressing markers of three germ
layers: HNF3β of endoderm, α-SMA of mesoderm, and nestin of ectoderm (Figure 2B). Both clones
exhibited normal karyotypes (Figure 2C). To summarize, both established GLA-null hESC clones
exhibited normal stem cell properties, and therefore, were suitable for differentiation into FD-specific
cardiomyocytes to investigate the mechanisms of involvement of GLA deficiency in the pathology of
FD cardiomyopathy.
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Figure 2. Characterization of CRISPR/Cas9-edited GLA-null hESC clones. (A) Immunofluorescence
staining demonstrating the protein expression of pluripotency markers OCT4, TRA-1-60, NANOG
and TRA-1-81 in GLA-null hESC clones #19 and #27. Nuclei stained with DAPI. (B) Embryoid
body formation assay showing differentiation of GLA-null hESC clones #19 and #27 into three germ
layers: endoderm immunoreactive for HNF3β, mesoderm immunoreactive for α-SMA, and ectoderm
immunoreactive for nestin. Nuclei stained with DAPI. (C) Representative karyograms GLA-null hESC
clones #19 and #27. Visualization was performed using Agilent CytoGenomics software.
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3.3. Recapitulation of FD-Specific Cardiac Abnormalities in GLA-Null Cardiomyocytes

Given the fact that CM hypertrophy is one of the symptoms of FD-associated cardiomyopathy,
we examined whether GLA-null CMs could recapitulate such features. hESCs were differentiated
into CMs according to the conventional CM differentiation protocol [21]. Both GLA-null CMs and
CMs derived from the parental H9 hESCs (H9 CMs) exhibited spontaneous contractions as early as
twelve days following initiation of cardiac differentiation. Noticeably, no significant differences in
the efficiency of cardiac differentiation were observed between GLA-null CMs and H9 CMs, which
suggested that the GLA deficiency did not significantly affect the differentiation of hESCs to CMs.
The accumulation of Gb3 in CMs is the most prominent hallmark of FD-associated cardiomyopathy.
Compared with H9 CMs, GLA-null CMs accumulated more Gb3, as was demonstrated by transmission
electron microscopy (Figure 3A) and thin layer chromatography (Figure 3B). GLA protein was not
expressed in #19 and #27 GLA-null CM clones at day 60 of differentiation (Figure 3C). Cardiac
hypertrophy is often accompanied by reactivation of fetal genes which are active during fetal cardiac
development and quiescent in adult hearts [22]. We measured the expression level of several of such
genes by qRT-PCR and showed that atrial natriuretic peptide (ANP), B-type natriuretic peptide (BNP),
but not troponin T (TnT) were upregulated in GLA-null CMs compared to H9 CMs. In addition,
GLA-null CMs were characterized by shifted balance between α- and β-cardiac myosin heavy chain
(MYH6/MYH7 ratio) expression, which is a common response to cardiac injury and a hallmark of
cardiac hypertrophy [23] (Figure 3D). Immunofluorescent staining of cardiac troponin T (cTnT) revealed
that GLA-null CMs were of significantly larger size (26% ± 9.7%, p < 0.001) as compared to the control
H9 CMs (Figure 3E,F), which was consistent with the phenotype of FD-associated cardiomyopathy.
In summary, we have shown that CRISPR/Cas9-edited hESC-derived GLA-null CMs recapitulated the
typical phenotype features of FD-affected CMs and, therefore, could be a useful model to study the
FD-associated cardiomyopathy.

3.4. Proteomic Analysis of GLA-Null CMs

To further investigate the potential mechanism of FD-related cardiomyopathy, we used proteomic
analysis. We focused our analysis to the genes that where downregulated by GLA knockout, i.e., whose
function was negatively affected. By applying LC-MS/MS, we identified 60 proteins downregulated in
GLA-null CMs as compared to H9 CMs with a false discovery rate (FDR) below 0.01. By performing gene
ontology (GO) analysis using FatiGO software [24], we found that these 60 proteins were significantly
enriched in cellular component GO terms related to extracellular vesicle transportation, secretion, and
exocytosis (Figure 4A,B). Among the downregulated proteins involved in regulated exosome release
were Ras-Related Protein Rab-11 (RAB11), Rho GDP-dissociation inhibitor 2 (GDIR2, ARHGDIB),
VPS36 and VTI1A (Supplementary Table S4). The levels of these proteins were validated and quantified
by western blotting; they were shown to be downregulated in GLA-null CMs (Figure 4C,D).
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Figure 3. Recapitulation of FD-specific cardiac abnormalities in GLA-null cardiomyocytes. (A) TEM
images showing the ultrastructure of parental type (H9) and GLA-null CMs. The red arrowheads
indicate the multilayered lysosomal structure. (B) Gb3 content in parental (H9) and GLA-null CMs
(clones #19 and #27) analyzed by TLC. (C) Western blot showing lack of expression of GLA in clones
#19 and #27 of GLA-null CMs as compared to the parental wild type CMs and hESCs (H9). Connexin
43 (Cx43) and NANOG served as cardiomyocyte and pluripotency markers, respectively. GAPDH
used as a loading control. (D) qRT-PCR analysis of expression several fetal heart markers in CM clones
#19 and #27. The results are expressed as fold change relative to H9 CMs. (E) Immunostaining of cTnT
showing significantly enlarged size of GLA-null CMs compared to H9 CMs. (F) Quantification of area
size of GLA-null CMs (green columns) and H9 CMs (blue columns). At least 200 cells were analyzed
individually and statistical difference is p < 0.001.
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terms in the list of 60 genes downregulated in GLA-null CMs. (B) Visualization of the most enriched
cellular component GO terms using REVIGO software. (C) Western blot showing expression of the
mediators of vesicular trafficking in GLA-null CMs #19 and #27 as compared to wild type control
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the mediators of vesicular trafficking. The data are presented as mean ± standard deviation error
bars from three independent experiments. (D) Flow cytometric analysis of CD63 expression in H9-
and GLA-null CM-derived exosome isolated with magnetic beads directly from cell culture medium.
(E) Quantification of exosome numbers in the supernatant from H9 and GLA-null CMs.

3.5. GLA-Null CMs Secrete More Exosomes Than H9 CMs

Given the fact that the proteome analysis revealed changes in proteins involved in vesicle
secretion, we further investigated whether the exosome biogenesis was affected in GLA-null CMs.
The exosomes were isolated from the culture medium, and their identity was confirmed by electron
microscopy. Multivesicular bodies were observed and exhibited the typical characteristic cup-shaped
morphology (Supplementary Figure S4A) and size (diameter between 50 and 150 nm). Exosome
size was measured by the Nanosight tracking system (Supplementary Figure S4B) and their identity
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was confirmed by detecting expression of exosomal markers TSG101 and CD63 (Supplementary
Figure S4C). Quantification of exosome though CD63 PE-conjugated fluorescence by flow cytometry
analysis revealed that at higher CD63 positive levels in exosomes derived from GLA-null CMs
compared to H9 CMs (Figure 4D). Next, we investigated the number of isolated exosomes from H9
and GLA-null CMs. Interestingly, GLA-null CMs produced significantly larger number of exosomes
than H9 CMs (10.8 × 108 vs. 5.1 × 108, p < 0.001) (Figure 4E). These results indicate that GLA-null CMs
increased the production and secretion of exosomes.

3.6. Vesicle Turnover Impairment Induces Cardiotoxicity in GLA-Null CMs

Several studies have shown that the molecular machinery and regulatory mechanisms are shared
between exosome biogenesis and autophagy [25,26], suggesting that these two processes are intimately
linked. Since the proteomic analysis revealed the downregulation of components of vesicular trafficking
machinery in GLA-null CMs, we hypothesized that dysfunctional autophagy pathway may underlie the
impairment of cellular homeostasis in FD-related cardiomyopathy. To investigate whether autophagy
flux impairment plays a role in cardiac phenotype of FD, we used western blotting to analyze the
expression of autophagy markers LC3-I and LC3-II. The levels of these proteins were monitored in
a time course of four hours after induction of autophagy with HBSS medium, and it was revealed
that LC3-II accumulated by two hours after autophagy induction in both H9 and GLA-null CMs
indicating to initiation of autophagy flux (Figure 5A,B). However, after four hours of autophagy
induction, LC3-II levels dropped significantly in H9, but remained high in GLA-null CMs, signifying
the digestion of autophagosome by lysosomes in the former and the block of autophagy flux in the latter
(Figure 5A,B). Previous studies have indicated that undigested material within the autophagosome,
including dysfunctional mitochondria, may be a source of free radicals, which in turn can result in
cellular dysfunction and apoptosis [27,28]. Mitochondrial integrity and turnover play an important
role in CM bioenergetics and function. MitoSOX Red staining demonstrated significant activation of
mitochondrial superoxide production in GLA-null CMs (Figure 5C). The quantification of the MitoSOX
Red staining intensity indicated that mitochondrial superoxide production in GLA-null CMs was
3.4-fold higher than that in H9 CMs (Figure 5D). To assess CM apoptosis, annexin V assay was used.
GLA-null CMs displayed 4-fold increase in staining with annexin V in comparison with H9 CMs
(Figure 5E,F). Furthermore, we observed significant 2-fold increase of lactate dehydrogenase (LDH),
a marker of necrosis, in the supernatant derived from GLA-null CMs (Figure 5G). Collectively, our
results demonstrate that GLA-null CMs were characterized by autophagy impairment and active
mitochondrial ROS production that caused apoptosis and necrosis.
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Figure 5. Vesicle turnover impairment induces cardiotoxicity in GLA-null CMs. (A) Western blot
showing expression of LC3 protein isoforms (LC3-I and LC3-II) in a time course of induction of
autophagy with HBSS medium. GAPDH was used as a loading control. (B) The expression levels of
LC3-II were measured by using ImageJ and the quantification results presented as mean ± standard
deviation error bars from three independent experiments. (C) Staining of mitochondrial ROS in
GLA-null CMs and H9 control CMs with MitoSOX Red. (D) MitoSOX Red fluorescence intensity
quantified by flow cytometry presented as mean ± standard deviation from three independent
experiments. (E) Flow cytometry analysis of annexin V-positive cells in populations of GLA-null
and H9 CMs. (F) Quantitation of annexin V-positive cells. (G) The level of LDH secreted by H9 and
GLA-null CMs. The data are presented as a fold change relative to H9 control. These data are presented
as mean ± standard deviation error bars from three independent experiments.

4. Discussion

The lysosome storage dysfunction (LSD) is the major factor in etiology of inherited hypertrophic
cardiomyopathy, including FD; however, the underlying mechanisms of FD-associated cardiomyopathy
are not fully understood. In order to expand the therapeutic strategies for FD, the construction of
in vitro disease models using primary human cells is essential and unavoidable. Whereas the patients’
cells can be used to directly model the effects of drugs on humans, their availability and capacity for
expansion are limited and finite compared to in vitro derived cell lines, especially for vital organs such
as heart and brain. These drawbacks restrict the capacity of these models to faithfully simulate human
disease. By comparison, ESCs can sidestep these limitations and thus provide a powerful and versatile
tool for disease therapy, as well as basic research. Combined with the advancements in genome editing
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technology though CRISPR/Cas9, it is now possible to model human diseases in a physiologically,
pathologically, and genetically relevant manner.

Mass spectrometry-based proteomics has been recognized as a powerful tool with a potential to
uncover detailed changes in protein expression [29]. To date, most of the proteomics studies performed
on FD patients examined FD-affected renal tissue or plasma; however, few studies of protein expression
have used FD-affected human heart tissue [30,31]. Although it has been revealed that Gb3 accumulation
induces endothelial KCa3.1 degradation in Gla-knockout mice through clathrin and Rab5C, which are
the critical components of endosome maturation machinery [32], the proteomic profiling performed in
our study revealed that GLA knockout led to the downregulation of Rab GTPases, including RAB11
subfamily, which are involved in recycling from an endosomal compartment to the plasma membrane,
and was shown to contribute to exosome secretion in neuronal cells [33], although the molecular
mechanism of RAB11 function in exosome secretion has yet to be deciphered, especially regarding
its downstream effectors. On the other hand, our proteomic profile also revealed downregulation
of Rho GDP-dissociation inhibitor 2 (GDIR2) in GLA-null CMs. This observation is consistent with
previously published clinic proteomic profiles, where PBMCs isolated from FD patients were analyzed,
and among the downregulated proteins were calnexin, Rho GDP-dissociation inhibitor 1 (GDIR1),
Rho GDP-dissociation inhibitor 2 (GDIR2), chloride intracellular channel protein [34]. Rho GDIs play
an important role in regulating Rho GTPases, which are members of the Ras superfamily of GTP
binding proteins that participate in the regulation of cytoskeleton and other cellular functions including
proliferation, differentiation, and apoptosis [35,36]. Rho GDI is ubiquitously expressed and binds to all
Rho family proteins, including RhoA [37]. The small G-protein RhoA regulates the actin cytoskeleton,
and its involvement in cell proliferation has also been established. In cardiomyocytes grown in vitro,
RhoA induces hypertrophic cell growth and gene expression [38,39]. In vivo, however, cardiac-specific
overexpression of RhoA leads to development of heart failure [40,41]. These correlated evidences
suggest that exosome secretion regulated by Rab GTPase/RhoGDI signaling pathway may utilize as a
target for the potential therapeutic strategy for FD-associated cardiomyopathy.

FD is characterized by failures of cellular autophagy associated with accumulation of glycogen
granules and intracytoplasmic vacuoles that contain autophagic material. Impairment of autophagic
flux in FD, which was manifested as defects of autophagosome maturation in renal endothelial cells and
mesangial cells [42,43]. Autophagy is an evolutionary conserved process of self-degradation of cellular
components by autophagosomes, which are delivered to the lysosomal machinery. Several studies have
shown that starvation-induced autophagy reduces exosome secretion due to the fusion of multivesicular
bodies with autophagic vacuoles [44]. In contrast, cellular stresses, such as senescence and ER stress,
increase exosome secretion [45,46]. It is not clear why cells respond to stress by releasing more
exosomes, but this could be an alternative way of eliminating waste products. The secreted exosomes
may be targeted to and degraded by phagocytes, but they may also have other destinations. Exosomes
secreted as waste are likely to affect neighboring cells and possibly induce pathological conditions.
Another possibility is that cells may communicate with neighboring cells about intracellular stress by
increasing exosome release. Therefore, preventing waste accumulation and rescuing the autophagic
ability in FD-affected CMs may be utilized as another therapy approach for FD cardiomyopathy.
It has been observed that exosomes derived from CMs harbor a variety of mRNAs, miRNAs and
proteins, which may be transferred to the adjacent endothelial cells and modulate their function [47].
Interestingly, exosomes derived from ESCs/iPSCs were shown to possess regenerative power on
CMs by augmenting and modulating endogenous repair mechanisms [48,49]. Emerging evidence
from the studies of normal development, as well as multiple disease studies, revealed that exosome
secretion and autophagy act in a coordinated manner to maintain homeostasis through lysosomal
degradation and/or release of cellular cargo [50]. Therefore, considering the role of exosomes in
physiological and pathological conditions, strategies that interfere with the release of exosomes and
impair exosome-mediated cell-to-cell communication could potentially be exploited therapeutically in
FD cardiomyopathy.
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The objective of the present study was to explore the influence of Gb3, a lysosomal glycolipid
accumulating in FD-affected cells, on modulation of cellular vesicle cycling and the possible mechanism
underlying cardiomyopathy. We demonstrated that disruption of GLA with CRISPR/Cas9 resulted
in the complete ablation of GLA protein expression in hESCs. Results from this study may provide
mechanistic insights into how Gb3 accumulation modulates vesicles formation, particularly the
autophagy flux in CMs. Such information may be extremely important for potential application in
prevention and intervention of adverse effects of FD-associated cardiomyopathy.

5. Conclusions

To summarize, in the present study we show that CRISPR/Cas9-mediated GLA knockout of
hESC-derived CMs can serve as an in vitro FD model for studying hypertrophic cardiomyopathy. Here,
we adopted CRISPR/Cas9-mediated genomic editing to successfully generate GLA-deficient hESC
clones (Figure 1). These GLA-deficient hESC clones displayed the properties of pluripotency, and were
differentiated into CMs, which exhibited the typical biochemical and pathological abnormalities
of FD including ablated GLA expression, enlarged cellular size, increased expression of cardiac
hypertrophy genes and Gb3 accumulation. Therefore, these GLA-null CMs clones recapitulated the
typical characteristics of FD-associated cardiomyopathy (Figures 2 and 3). To determine the global
protein expression changes involved in the hypertrophic response to GLA deficiency, we used proteomic
analysis and demonstrated markedly reduced expression of proteins involved in cytoskeleton dynamics
and secretion of extracellular vesicles (Figure 4). Since exosome biogenesis and autophagy are highly
interrelated processes, we have shown that GLA knockout led to autophagic impairment, which resulted
in increase of mitochondrial ROS production and cell death (Figure 5). Additional investigation of the
role of autophagy in FD is highly promising for the development of novel chemical modulation-based
therapeutic approaches that may be more economically viable than traditionally-used ERT.
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Abbreviation

LSD lysosomal storage disease
FD Fabry disease
Gb3 globotriaosylceramide
α-Gal A α-galactosidase A
ERT enzyme replacement therapy
CRISPR Clustered regularly interspaced short palindromic repeats
sgRNA single-guide RNA
Cas9 CRISPR-associated protein
KO knockout
hESCs human embryonic stem cells
CMs cardiomyocytes
MVEs multivesicular endosomes
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