
ORIGINAL RESEARCH
published: 26 October 2020

doi: 10.3389/fnins.2020.00907

Frontiers in Neuroscience | www.frontiersin.org 1 October 2020 | Volume 14 | Article 907

Edited by:

Chiara Bartolozzi,

Italian Institute of Technology (IIT), Italy

Reviewed by:

Melika Payvand,

ETH Zurich, Switzerland

Guoqi Li,

Tsinghua University, China

Qingjiang Li,

National University of Defense

Technology, China

*Correspondence:

Yansong Chua

james4424@gmail.com

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 06 November 2019

Accepted: 04 August 2020

Published: 26 October 2020

Citation:

Gopalakrishnan R, Chua Y, Sun P,

Sreejith Kumar AJ and Basu A (2020)

HFNet: A CNN Architecture

Co-designed for Neuromorphic

Hardware With a Crossbar Array of

Synapses. Front. Neurosci. 14:907.

doi: 10.3389/fnins.2020.00907

HFNet: A CNN Architecture
Co-designed for Neuromorphic
Hardware With a Crossbar Array of
Synapses
Roshan Gopalakrishnan 1, Yansong Chua 1*, Pengfei Sun 1, Ashish Jith Sreejith Kumar 1,2

and Arindam Basu 2

1 Institute for Infocomm Research, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore, 2 School

of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore

The hardware-software co-optimization of neural network architectures is a field of

research that emerged with the advent of commercial neuromorphic chips, such as

the IBM TrueNorth and Intel Loihi. Development of simulation and automated mapping

software tools in tandem with the design of neuromorphic hardware, whilst taking

into consideration the hardware constraints, will play an increasingly significant role

in deployment of system-level applications. This paper illustrates the importance and

benefits of co-design of convolutional neural networks (CNN) that are to be mapped

onto neuromorphic hardware with a crossbar array of synapses. Toward this end, we

first study which convolution techniques are more hardware friendly and propose different

mapping techniques for different convolutions. We show that, for a seven-layered CNN,

our proposed mapping technique can reduce the number of cores used by 4.9–13.8

times for crossbar sizes ranging from 128 × 256 to 1,024 × 1,024, and this can be

compared to the toeplitz method of mapping. We next develop an iterative co-design

process for the systematic design of more hardware-friendly CNNs whilst considering

hardware constraints, such as core sizes. A python wrapper, developed for the mapping

process, is also useful for validating hardware design and studies on traffic volume

and energy consumption. Finally, a new neural network dubbed HFNet is proposed

using the above co-design process; it achieves a classification accuracy of 71.3% on

the IMAGENET dataset (comparable to the VGG-16) but uses 11 times less cores for

neuromorphic hardware with core size of 1,024 × 1,024. We also modified the HFNet

to fit onto different core sizes and report on the corresponding classification accuracies.

Various aspects of the paper are patent pending.

Keywords: neuromorphic computing, neuromorphic chip, hardware constraints, deep learning, neural network,

crossbar array, convolution, convolutional neural network

1. INTRODUCTION

Over the past decade, GPUs have emerged as a major hardware resource for deep learning tasks.
However, fields, such as the internet of things (IoT) and edge computing are constantly in need of
more efficient neural-network-specific hardware (Basu et al., 2018; Deng et al., 2018; Alyamkin
et al., 2019; Roy et al., 2019). This encourages competition among companies, such as Intel,

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2020.00907
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2020.00907&domain=pdf&date_stamp=2020-10-26
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:james4424@gmail.com
https://doi.org/10.3389/fnins.2020.00907
https://www.frontiersin.org/articles/10.3389/fnins.2020.00907/full

Gopalakrishnan et al. HFNet: A Hardware-Friendly CNN

IBM, and others to propose new hardware alternatives, leading
to the emergence of commercially available deep learning
accelerators (Barry et al., 2015; Jouppi et al., 2017) and
neuromorphic chips (Esser et al., 2016; Davies et al., 2018;
Pei et al., 2019). Deep learning accelerators are application
specific integrated circuits (ASICs) tailored for artificial neural
networks (ANN), whereas, neuromorphic chips can fall in two
categories (Bose et al., 2019): (1) ASICs with biologically inspired
spiking neural networks (SNN), which contain networks of
neurons and synapses for computation and communication, or
(2) ASICs with analog computing by exploiting dense non-
volatile memory based crossbars to accelerate matrix-vector
multiplications. Our paper is not concerned with any specific
hardware but any neuromorphic architecture relying on analog
crossbars for matrix-vector multiplications.

A schematic of a generic crossbar-based neuromorphic chip is
shown in Figure 1. The chip has “N” number of neuromorphic
cores. Network on chip (NoC) or router interfaces are not shown
for illustration purposes. Each neuromorphic core contains a
crossbar array of synapses as shown in the first inset of the figure.
The rows and columns of the crossbar correspond to input axons
and output neurons, respectively. These axons and neurons are
interconnected to each other and represented in the form of
blue dots at these intersections. Within each intersection of the
crossbar between the word line and the bit line is a synaptic device
that has memory and can perform in-memory computation
(as shown in the second inset). The crossbar structure is well-
suited for performing matrix-vector multiplication (MVM) (Hu
et al., 2016) along each column in a crossbar architecture. For
instance, a neuromorphic core with a core size of 256 × 256,
input voltages from the respective 256 axons are fed through
each word line (red horizontal lines). The bit line (yellow vertical
lines) collects all of the weighted current at each synaptic node
(256 × 256) and delivers to the respective output neurons for
integration. The neuromorphic core size refers to the number of
axons (axon size, AS)× the number of neurons (neuron size, NS)
in a single neuromorphic core. The weighted current depends
on the memory element at each intersection of the word line
and bit line. In analog devices, using Kirchoff’s current law, the
total current flowing into each neuron from the respective bit
lines is the sum of currents flowing through each intersection
in every column. This corresponds well with how inputs in a
neural network is the weighted sum of input voltages (

∑

(Input×
Weight)). Considering such a neuromorphic chip, there are
several hardware constraints: firstly, at the single device, we may
have low bit precision of synaptic weights and output activations
(Ji et al., 2018; Deng et al., 2020), synaptic noise and variability
(Ambrogio et al., 2014a,b). Secondly, in the chip architecture, we
have a limited number of neuromorphic cores and a limitation
in the core size of each neuromorphic core and the fan-in/fan-
out degree of each neuron (Ji et al., 2018; Gopalakrishnan et al.,
2019b).

The neuromorphic chip considered in this paper is based
on a crossbar architecture (Prezioso et al., 2015) of non-
volatile memory synapses. Crossbar architecture fits well for
fully connected neural networks, such as the multi-layered
perceptron (MLP). Given that one of the popularly used layers

in SNNs are fully connected ones (Diehl and Cook, 2015),
crossbar architectures are a natural fit. However, with recent
advancement in research related to conversion of ANNs to
SNNs (Rueckauer et al., 2016) and training of convolutional
SNNs (Wu et al., 2019), one of the main challenges is to
efficiently map the neurons in a CNN onto the neuromorphic
chip while fulfilling hardware constraints, such as core size,
number of cores and fan-in/fan-out (Ji et al., 2016). Given
existing CNNs and neuromorphic hardwares, how can we best
map the CNN onto the hardware using the least number of
cores? This requires understanding of the computation at each
crossbar array and how best to map each convolutional layer
onto the core. We may then ask what convolution layers are
best suited for mapping onto neuromorphic hardwares. This is
the first major contribution of this paper and these questions
are addressed under section Mapping. Existing neuromorphic
chips have a mapping framework which is hardware specific.
IBM TrueNorth (Akopyan et al., 2015) uses Matlab based Corelet
(Amir et al., 2013) which is specific to their hardware. Within
Corelet, a mapping technique is implemented as a minimization
problem (Akopyan et al., 2015). SpiNNaker and BrainScaleS use
a simulator-independent Python wrapper, PyNN (Andrew et al.,
2009). Sequential mapping is used in SpiNNaker while neural
engineering framework (NEF) is used for Neurogrid (Voelker
et al., 2017). Neutrams (Ji et al., 2016) implements an optimized
mapping technique based on the graph partition problem:
Kernighan-Lin (KL) partitioning strategy for network on chip
(NoC). For mapping CNNs onto neuromorphic hardwares, an
iterative process is implemented using a Python wrapper, which
is also discussed in section 2.3.2.

While developing deep neural networks that are to be mapped
onto a neuromorphic chip, one need not in principle be aware
of the underlying hardware architecture. The mapping above
assumes that the CNNs and hardware constraints are given. We
may however further ask how software and hardware co-design
can give us both CNNs and neuromorphic hardwares that are
mapped using fewer cores while achieving similar classification
accuracies. Specifically, given a neuromophic hardware with
square crossbar array, we would like to design a CNN that
utilizes fewer cores (section Co-design). In this regard, one may
take two approaches, either design the network from scratch
so as to satisfy the hardware constraints (Esser et al., 2016) or
modify an existing CNN, such as reducing the number of features
(feature maps) in each convolution layer without having to
split the convolution matrix among different cores (“core matrix
splitting”) whereby axons and weight matrix of a particular layer
are split onto multiple cores (detailed in subsection 2.2.1). This
is the second major contribution of this paper, and the proposed
novel hardware-friendly CNN, HFNet, is obtained by iteratively
modifying the layers of existing CNNs (VGG, MobileNet, NIN,
and Squeezenet; this is discussed in section 2) and the number
of features (feature maps) in some layers are altered so as to fit
onto cores of different sizes. This is done to avoid core matrix
splitting. Finally, the different versions of HFNet are trained and
their classification accuracies on the IMAGENET dataset (Deng
et al., 2009) tested so as to study the trade-off between accuracies
and core sizes (section 3.2). This work is mainly focused on

Frontiers in Neuroscience | www.frontiersin.org 2 October 2020 | Volume 14 | Article 907

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Gopalakrishnan et al. HFNet: A Hardware-Friendly CNN

FIGURE 1 | A schematic of a neuromorphic chip with N number of neuromorphic cores. The first inset shows the crossbar array of synapses within each core. A

memory device is used to implement each synapse at the crossbar intersection (as shown in the second inset).

mapping of feedforward deep neural networks (DNN). During
the investigation of mapping techniques, we understood that
designing and mapping of a CNN must be performed in close
relation to each other for better hardware utilization. Hence, as a
beginning, we have limited the design space to just feedforward
networks instead of skipped connections. We have considered
the better-performing feedforward CNN MobileNet as an initial
candidate for mapping and later modified to HFNet based on
mapping and traditional deep learning techniques.

The trained CNNs have full precision weights and activation
values for fair comparison with existing CNNs. Hardware
limitations on synapses, such as low precision weights and
variability issues are not within the scope of our work.

The paper is organized as follows. Section 2 mainly contains
two subsections, one on mapping and another on co-design.
Mapping describes the computation and mapping in a crossbar
array. Co-design is illustrated with the issue of core matrix
splitting and then the motivation and design flow of the proposed
hardware-friendly neural network, HFNet. Section 3 provides an
experimental framework for the two subsections, mapping and
co-design in section 2. The classification accuracy of different
versions of HFNet on the IMAGENET dataset is included
here. The paper is concluded in section 4 with a discussion of
future works.

2. MATERIALS AND METHODS

2.1. Mapping
2.1.1. Computation in a Crossbar Architecture
The crossbar array of synapses in a neuromorphic chip can be
used to perform convolutions. Mathematically, convolution is
the sum of dot product of feature and input matrices (Figure 2).
In CNNs, the input matrix will be the activations from the

prior layer while the filter matrix is the convolution filter
kernel, saved as weights, W after training. Since these weights
can be either positive or negative, one way of implementing
convolution on a crossbar array is to split the weights into
positive and negative matrices along with two copies of input
matrices in positive and negative values. The details of the
matrix generation is shown in Figure 2, which incorporate
the convolution operation in crossbar arrays as described in
(Yakopcic et al., 2016). A single column crossbar gives the
output of an element of the convolution operation, which is
provided to the corresponding neuron. Convolution operation is
extended across multiple columns of synapses to be computed
in parallel. This requires the weights and inputs to be
represented in a toeplitz matrix, as shown in Figure 2 (Yakopcic
et al., 2017), Figure 3 illustrated such an implementation. This
implementation doubles the hardware resources required, which
is also the case in IBM Truenorth (Esser et al., 2016), where
two synapses are required to implement the ternary weights −1,
0, +1. IBM Truenorth also uses toeplitz structure or structured
kernels for mapping (Appuswamy et al., 2016). In order to
mitigate the aforementioned doubling of hardware requirement
in a neuromorphic hardware, one can implement two memory
devices at each synapse to represent both the positive and
negative weights by subtraction. This implementation does not
need two copies of weights; generating a single weight toeplitz
matrix is sufficient.

2.1.2. Mapping on a Crossbar Architecture
Crossbar architecture is efficient for implementing a fully
connected neural network and its mapping is straightforward.
However, mapping a convolution layer in a CNN onto a crossbar
architecture is not and requires further consideration for efficient
mapping. An example of convolution operation in between layers

Frontiers in Neuroscience | www.frontiersin.org 3 October 2020 | Volume 14 | Article 907

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Gopalakrishnan et al. HFNet: A Hardware-Friendly CNN

FIGURE 2 | Division of network parameters–weights and input activations into positive and negative matrices. Here, W2, W4, W6, and W8 are negative, whereas the

remaining weights are positive. Note that the text color codes are in correspondence to the color codes used in Figure 3. Adapted from Gopalakrishnan et al. (2019a).

of a CNN is illustrated in Figure 4A. We consider a 4 × 4 input
layer. Convolution of this input layer with two weight filters
of size 2 × 2 and stride of 1 will result in an output layer
of size 3 × 3 × 2. If this same network was considered fully
connected between input layer of 16 neurons and output layer
of 18 neurons, then, for such a network of full connection, a
core size of 16 × 18 is required, which will have 100% synaptic
utilization in the core. The mapping of CNNs onto a crossbar
array will, however, require a layer-wise core size of 4 × 18
in the above example, while the input will have to be fed in
over many time steps, in order to have 100% synaptic utilization
(with duplication of synaptic weights). Hence, CNN mapping
onto crossbar architecture will always lead to some weights not
being used and we want to explore what mapping techniques
can reduce this wastage. Mapping convolution onto a crossbar
architecture can be constructed by any of the methods as shown
in Figure 4. Note the numbering of neurons in each layer along
with the color of each weight for better illustration of the different
methods of mapping.

• Block method: as shown in Figure 4B, one could see that
mapping is done in a straightforward manner without
optimization. Here, the input sequence is repeated in the rows
of a crossbar array; the neurons across the feature maps in a
layer are arranged in the columns of the crossbar array and
the weights are laid down according to the connections of the
input axons and output neurons. This kind of implementation

results in the weight matrices being mapped onto the crossbar
array in blockwise manner, hence the name. Each block
of weight matrix in Figure 4B are repeated from the same
layers with the weight matrix being flattened into a row
with size of kernel width × kernel height × number of

feature maps (2 × 2 × 2) in the layer. Throughout the
crossbar array these weight blocks (2 × 2 × 2) are repeated

diagonally. In this method, one can find that the neurons

across feature maps (N11 and N21 are the first and second
neurons, respectively) are selected for mapping in the crossbar

array and hence early layers of convolution which contain less

feature maps maybe implemented using this method for better

hardware utilization.
• Toeplitz method: the weight matrices are arranged in the

toeplitz matrix or circular matrix format as shown in

Figure 4C. This optimized method of mapping is commonly

used in a neuromophic core with crossbar array of synapses.
Here, the neurons are selected from a single feature map of
a particular layer instead of selecting neurons across feature
maps (note that the neurons are chosen from first channel
of output layer in cyan color). The corresponding axons are
selected from the previous layer and is arranged sequentially
without any repetitions. The weight matrix per column of a
crossbar array is the flattened structure of weight matrix in a
particular layer of a neural network architecture. This weight
matrix per column repeats along each columns in a circular

Frontiers in Neuroscience | www.frontiersin.org 4 October 2020 | Volume 14 | Article 907

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Gopalakrishnan et al. HFNet: A Hardware-Friendly CNN

FIGURE 3 | Computation in a crossbar architecture within a single neuromorphic core. Follow the color codes representing the partitioning of input and weight

matrices and its corresponding mapping onto the crossbar array. Taken from Gopalakrishnan et al. (2019a).

shift with respect to the strides of convolution in the particular
layer as shown in Figure 4C. This method maps each feature
map of a layer in crossbar arrays rather than mapping neurons
across the feature maps as in block method. The toeplitz
method of mapping is therefore suitable for certain type
of convolutional layers, such as the depthwise convolutional
layer, in which convolutions are separately performed in each
feature map, independent of other feature maps within a layer
(Howard et al., 2017; Gopalakrishnan et al., 2019a) or suitable
for layer wise computations, such as pooling.

• Hybrid method: Considering the two aforementioned
methods, one may combine the block and toeplitz methods
of mapping in two different ways, as shown in Figures 4D,E.
In Figure 4D, we select the neurons within a feature
map (N11, N12, N13, etc. in cyan color from the same
feature map of output layer) and lay down the weights in
the toeplitz matrix manner. This toeplitz method is then
repeated in a blockwise manner throughout the crossbar
array, mapping a set of neurons across the feature maps of
a particular layer in the neural network architecture. This
can be viewed as implementing the toeplitz method in a
blockwise manner. We can also implement block method

in the toeplitz manner as shown in Figure 4E, where the
neurons across a feature map (N11 in cyan and N21 in
magenta as group of neurons from different feature maps
of output layer) are selected for mapping using the block
method, though without any repeated axons, while the entire
block is repeated in a toeplitz manner throughout the crossbar
array, mapping a set of neurons across the feature maps of a
convolutional layer.

2.2. Co-design
2.2.1. Core Matrix Splitting
For the toeplitz and hybrid method of mapping techniques, as
shown in Figure 4, the axons of the neuromorphic core are
arranged sequentially without any repetition as compared to
the block method of mapping. Such sequential input of axons
is possible only with the circular or toeplitz arrangement of
weight filters in a crossbar architecture. In fact, the mapping of
CNN layers onto crossbar architecture involves conversion of
two-dimensional arrays into one-dimensional arrays. The two-
dimensional convolutional operations in a CNN is converted to
a one-dimensional convolutional operation along each columns
of a crossbar architecture. The neurons in the output layer

Frontiers in Neuroscience | www.frontiersin.org 5 October 2020 | Volume 14 | Article 907

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Gopalakrishnan et al. HFNet: A Hardware-Friendly CNN

FIGURE 4 | Methods of mapping onto a single neuromorphic core: (A) an example of convolution operation between layers for illustrating different mapping

techniques. Input of size 4 × 4 and filter weights of size 2 × 2 × 2 is considered for convolution to obtain an output of size 3 × 3 × 2. (B) Block method, (C) toeplitz

method and hybrid method, (D) toeplitz method in blockwise manner, and (E) block method in toeplitz manner.

is mapped onto the crossbar array with its corresponding
one-dimensional array of input axons in a sequence and
extending the one-dimensional weight matrix along each column
of crossbar by circularly shifting the one-dimensional weight
matrix with respect to corresponding convolutional strides (as
shown in Figure 4C). Two adjacent convolutional operation
shares a portion of input section with respect to the strides.
This shared portion of input while convolution is reflected as
weight connections along the rows of the core. The number
of weight connections along each row implies the fan-out of
that particular axon in the core, whereas the weight connections
along the column implies the fan-in of that particular neuron
in the core. For the toeplitz method of mapping, a section
of any CNN layer with a rectangular dimension of neuronrow
and neuroncol to a crossbar array, the number of axons

to be selected for such a section of CNN layer can be
expressed mathematically:

Naxons = K × K + K × S× (Neuroncol − 1)+ S× S×
(Neuroncol − 1)× (Neuronrow − 1)+

K × S× (Neuronrow − 1)

(1)

where,
Naxons = total number of axons to be selected from layer N-1.
K = convolution filter size. Here, we have only considered
same width and height for kernel filter size.
S= stride
Neuronrow = number of neurons across row to be selected
from layer N.

Frontiers in Neuroscience | www.frontiersin.org 6 October 2020 | Volume 14 | Article 907

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Gopalakrishnan et al. HFNet: A Hardware-Friendly CNN

FIGURE 5 | Core matrix splitting: splitting of weighted sum of inputs into two cores and summing up of intermediate activations in a third neuromorphic core.

Neuroncol = number of neurons across column to be selected
from layer N.
To decide on core size, a major restriction comes from the

below inequality:

Naxons < Axon size,AS (2)

where Axon size and AS the number of physical axons per core.
In general, we would like to minimize AS to have smaller cores,
and we thus need to minimizeNaxons. In this case, the selection of
neurons, Neuronrow and Neuroncol, in a layer becomes primary
step in mapping. To perform the optimization, we further
consider that output size (Osize) is constant, i.e.,

Osize = Neuronrow × Neuroncol = A (3)

where A ∈ R is a constant. The optimization problem can be
now framed as choosing Neuronrow and Neuroncol to minimize
Equation (1) subject to the constraint in Equation (2). Do note
that Equation (1) considers only a single feature map; this can
be easily extended to multiple feature maps by multiplying right
hand side of Equation (1) with the respective number of feature
maps in each layer.

Now, denoting Neuronrow and Neuroncol by x and y,
respectively, for brevity of notation, Equation (1) can be reduced

as follows:

Naxons = K × K + K × S× (Neuroncol − 1)+ S× S×
(Neuroncol − 1)× (Neuronrow − 1)+

K × S× (Neuronrow − 1)

= K × K + K × S× (y− 1)+ S× S× (y− 1)× (x− 1)

+K × S× (x− 1)

= K2 + KS(x+ y− 2)+ S2(xy− y− x+ 1)

= (K2 − 2KS+ AS2 + S2)+ (x+ y)(KS− S2)

(4)

where we have used xy = A from Equation (3). Since (KS −S2)
> 0, minimizing Equation (4) is equivalent to minimizing (x+y).
We show in the following theorem that (x+y) is minimized
for x= y.

Theorem: For any given a ∈ R, then x = y, for argmin (x+y),
such that x× y = A, x,y ∈ R.

Proof :

Let x+ y = Z

then x+ A
x = Z

dZ
dx

= 1− A
x2

(5)

at minima dZ
dx

= 0,

∴ 1− A
x2

= 0

Frontiers in Neuroscience | www.frontiersin.org 7 October 2020 | Volume 14 | Article 907

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Gopalakrishnan et al. HFNet: A Hardware-Friendly CNN

x = ±
√
A

If x, y > 0, then Z is minimum ∴ x = y =
√
A

From the theorem and its proof, we can see that for optimized
mapping, a square shaped selection of neurons is always better.
This implies that, for optimized mapping,Neuronrow =Neuroncol
in Equation (1). Hence, substituting Neuronrow = Neuroncol =
“Nneurons” in Equation (1), we get,

Nneurons = (
√

Naxons − K)/S+ 1 (6)

If we consider input channels in Equation (1), then the above
equation becomes

Nneurons = (
√

Naxons/C − K)/S+ 1 (7)

where, C = number of input channels for each layer.
This equation can be used to determine the design

co-mapping of the convolutional neural network onto a
neuromorphic chip with crossbar array of synapses, where the
hardware constraint is given by the axon size and the convolution
layer design is with respect to K, S, and C for each layer. This
suggests that mapping and designing of a CNN must co-exist for
the better utilization of a neuromorphic hardware.

It can also be seen from the optimized mapping that the
time delay of the hardware design is less. The design space
exploration of core size, [axon size (AS)× neuron size (NS)] w.r.t
Naxons,Neuronrow, andNeuroncol becomes [Naxons×(Neuronrow×
Neuroncol)] = [Naxons × N2

neurons]. This implies that the search
space for neuron size is reduced to only square numbers
(N2

neurons) instead of all the factors (Neuronrow × Neuroncol) of
the neurons in a core (NS = 256, 512, etc). The fact that a
unique HFNet is trained for each topology saves on many days
of training.

In the event that the fan-in degree of a single neuron in a layer
exceeds the maximum number of axons in a neuromorphic core
[Naxons > AS in Equation (1) when Neuronrow = 1 and Neuroncol
= 1], mapping of that particular neuron has to be split among
multiple cores, as shown in Figure 5. In general, if the output of
each neuron undergoes a non-linear activation, the final output
would deviate from the intended output:

given, W = (W1,W2),

f (f (
∑

W1A)+ f (
∑

W2A) 6= f (
∑

WA))
(8)

This method of splitting is termed as core matrix splitting
(Figure 5). Additional hardware considerations have to be
made to communicate only intermediate results without the
activation function. Additional cores are also required for
mapping. In order to avoid core matrix splitting, a hardware-
friendly approach is considered by grouping neurons across
feature maps while training in the IBM TrueNorth chip (Esser
et al., 2016). In this work, we adopt a different approach
by modifying existing CNN architectures and training them.
We consider other forms of convolution operations, such as
depthwise and pointwise convolutions [network-in-network (Lin

et al., 2013) and MobileNet (Howard et al., 2017)] while co-
designing the CNN with the core size in mind so as to avoid core
matrix splitting.

2.2.2. Overview of Convolution Layers in a CNN
Standard convolution can be computationally intensive and
also hard to map onto square neuromorphic cores of limited
sizes. To map them, we would have to consider cores of
different shapes. Given these square cores, we considered other
computationally less intensive convolution techniques, namely,
depthwise, pointwise, and group convolution.

2.2.2.1. Depthwise convolution
In depthwise convolution, the convolution operation is
independently applied to each input channel so as to obtain
its corresponding output feature map (Howard et al., 2017).
In general, the number of output channels from a depthwise
convolution is the same as the number of input channels,
although this may be changed by outputting multiple channels
per input channel (depth multiplier parameter). The depthwise
convolution is typically followed by pointwise convolution,
which is discussed in section 2.2.3. For depthwise convolution,
weights from within rather across feature maps are mapped
first. Hence, the toeplitz method is better suited for mapping
depthwise convolutions.

As shown in Figure 6, the input matrix is convolved with
Finmaps different filters, each of size K × K. The output of each
depthwise convolution involving a filter and a single input
channel is O × O × 1, and Finmaps such filters compute an output

of dimensions O × O × Finmaps. The depth multiplier is set to
one here. The computational cost, C, of depthwise convolution
is given below:

C = O2 × K2 × Finmaps × D (9)

where,
O = output size after convolution
K = filter size
Finmaps = number of input channels
D = depth multiplier.

2.2.2.2. Pointwise convolution
Pointwise convolution is a special case of the standard
convolution operation whereby the filter size per channel is 1 ×
1 (Lin et al., 2013). The entire filter therefore has a shape of 1 ×
1 × Finmaps × Foutmaps, where F

in
maps is the number of input channels

and Foutmaps, the number of output channels. Since the filter size
is reduced, the computational complexity is also reduced by an
order of the square of the filter size. Its computational cost, C, is
given below:

C = O2 × Finmaps × Foutmaps (10)

where,
O = output size after convolution
Finmaps = number of input channels

Foutmaps = number of output channels.

Frontiers in Neuroscience | www.frontiersin.org 8 October 2020 | Volume 14 | Article 907

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Gopalakrishnan et al. HFNet: A Hardware-Friendly CNN

FIGURE 6 | Illustration of depthwise convolution. Note that depth multiplier is set to one here. The filter size is K × K × 1 with F inmaps such filters to obtain an output

size of O × O×F inmaps. Adapted from Gopalakrishnan et al. (2019a).

FIGURE 7 | Illustration of group convolution adapted from Gopalakrishnan

et al. (2019a).

While we can use either the toeplitz or hybrid method of
mapping for pointwise convolution layers depending on the
CNN architecture and the core sizes, the block method in toeplitz
is preferred if AS < NS; otherwise the toeplitz method in block is
preferred (AS > NS).

2.2.2.3. Grouped convolution
Grouped convolution is a convolution technique whereby
the standard convolution is applied separately to an input
matrix diced into equal parts along the channel axis. As
shown in Figure 7, the input is divided into equal parts
along the channel axis, and group convolution is then applied
separately. The individual outputs are then combined into
a final output, with variations, such as stacked convolution,
dependent stacked convolution and shuffled group convolution
(Zhang and Sun, 2018). Computational complexity of grouped
convolution is calculated as per standard convolution. It
is therefore more hardware friendly as each neuron has
a lower fan-in/fan-out degree when mapped. Either the
toeplitz or hybrid method of mapping may be used for
grouped convolutions.

2.2.3. Insights From Different CNNs

2.2.3.1. MobileNet
Depthwise and pointwise convolutions and depthwise separable
convolutions are introduced in MobileNet (Howard et al., 2017).
For pointwise convolution, one may think of it as duplicates of
full connections between inputs and outputs in the same location
channel-wise. This is ideal for efficient mapping onto crossbar
array of synapses with good core utilization. The application of
depthwise and then pointwise convolution (depthwise separable
convolution) has a much lower fan-in degree per neuron
compared to the standard convolution, which helps to avoid core
matrix splitting. As such, depthwise separable convolution is the
preferred method in our co-design of CNN architectures.

2.2.3.2. VGGNet and NIN
VGGNet (Simonyan and Zisserman, 2014) gradually shrinks
the size of feature maps by applying max pooling after two
convolutions in the shallow layers and every three layers
afterwards. Intuitively, this approach improves classification
accuracy, which we also validate as shown in results in section
3. Using fewer feature maps when each map is large effectively
reduces the fan-in degree of the neurons and avoid core
matrix splitting.

2.2.3.3. Other insights
Global average pooling (GAP) as used in Network in network
(NIN) (Lin et al., 2013) or SqueezeNet (Iandola et al., 2016)
helps to reduce fan-in degree of neurons. Instead of using fully
connected layers in the deeper layers of the CNN, which have
high fan-in degree, one may use GAP for a more hardware-
friendly design. Maxpooling is also not hardware friendly. The
toeplitz mapping method is required for maxpooling, resulting
in poor core utilization. We would therefore avoid maxpooling
when co-designing the hardware-friendly CNN. The reduction
in feature map size achieved by maxpooling may also be achieved
by increasing the stride size of prior convolution layer with no
significant loss in accuracy, even if functionally, they are different

Frontiers in Neuroscience | www.frontiersin.org 9 October 2020 | Volume 14 | Article 907

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Gopalakrishnan et al. HFNet: A Hardware-Friendly CNN

FIGURE 8 | Hardware-friendly CNN in modular form: standard convolution,

depthwise separable convolution, and global average pooling.

(Springenberg et al., 2014). Hence, the above insights (listed
below) help to guide our co-design of the hardware-friendly CNN
(section 2.2):

• Combined usage of standard convolution and depthwise
separable convolutions,

• Excluding pooling between standard convolutions,
• And replacement of fully connected layers with GAP at end

of CNN.

2.2.4. Co-design Methodology

2.2.4.1. Hardware-friendly CNN
We adopt the modular form of the CNN as shown in Figure 8 for
a hardware-friendly architecture. The iterative process of the co-
design is described in Figure 9. We first initiate certain design
parameters, such as “NC” number of convolutional layers and
“NDP” number of depthwise separable convolution layers. Setting
NC and NDP depends on the input size and the stride size of each
convolution, which affects the classification accuracy of the CNN.
The singular GAP layer is added to end of the CNN.

The complete step by step co-design process is shown in the
flowchart (Figure 9):

• After setting the number of layers in each module, we
next decide on the number of feature maps per layer, with
the constraint of avoiding core matrix splitting (Figure 9).
Fimaps_HF (HF denotes hardware friendly) for each layer i

depends on the number of axons in each core (axon size,
AS) and constraining the fan-in degree of a neuron in i (fan-
in ≤ AS) to avoid core matrix splitting. For the standard
convolution layer, the number of feature maps denoted by
Fmaps can be calculated as below:

Fmaps ≤
AS

Kwidth × Kheight
(11)

where,
Kwidth and Kheight are respectively the width and height of
the convolution kernel.
AS = axon size of crossbar array in a neuromorphic core.
Equation (11) is the maximum possible number of feature

maps, Fmaps, when in Equation (1) we set Neuronrow = 1 and
Neuroncol = 1. By so doing, we set the reference number of
featuremaps in i, Fi

maps_ref
to be less than the fan-in (maximum

possible axon connections) degree of a neuron. In such a case,
toeplitz mapping may also be used.

• For pointwise convolution, we need to ensure that Fmaps ≤
axon size. Core matrix splitting is not an issue for depthwise
convolutions with small kernel size. Hence, for depthwise
separable layers, fan-in degree of pointwise convolution is the
key delimiting factor. The co-designed CNN is thenmapped to
obtain number of cores used, and it is then trained and tested
for classification accuracy (section 2.3). If it is not satisfactory,
the process is repeated with different initial parameters, NC

and NDP.

2.3. CNN Training and Mapping
2.3.1. CNN Training
The co-designed CNNs are trained using Tensorpack (Wu, 2016).
We use “Momentum” Optimizer (momentum of 0.9) with batch
size of 48, and weight regularization with decay of 0.0005. We
initialized the weights using “He normal” initializer. The learning
rate is adjusted using a heuristic whereby it is reduced by 10 every
30 epochs. The learning rate was initialized at 0.01 and reduced
three times prior to termination. We trained the network for 100
epochs on the IMAGENET dataset. Accuracy is chosen from the
best testing accuracy across five trials.

2.3.2. CNN Mapping
The calculation for the number of cores is obtained using the
python wrapper, mapping, and debugging (MaD) framework
(Gopalakrishnan et al., 2019b), which also map the CNN onto
cores. The mapping function outputs the weight matrices for
the crossbar array in each core, a connectivity list between cores
and an estimate of total number of cores needed for mapping.
MaD also allows us to carry out inference in Python on the core
level, which is useful for validating the correctness of themapping
done, and also study communication across cores, such as traffic
volume and energy consumption estimation.

The methods and techniques mentioned in this paper is not
restricted to any kind of neural network like ANN or SNN. The
mapping and designing methods are useful for both ANN and
SNN, especially with convolutional layers in their architecture. In
fact, the simulations are all done for ANN models and not SNN.
All the codes used for generating results in this manuscript is
publicly available at https://github.com/roshan-gopalakrishnan/
NeuromorphicComputing.git.

3. EXPERIMENTAL FRAMEWORK AND
RESULTS

This section is also divided into two subsections: mapping and
a proposed CNN, the HFNet. In section 3.1, we benchmark the
different mapping techniques based on cores used. In 3.2, we
propose a hardware-friendly CNN, the HFNet, and report on
(1) the cores required for mapping, (2) classification accuracy
and cores required with and without maxpooling and full
connections, (3) classification accuracy and cores required for
different core sizes, (4) comparison of the MobileNet and HFNet,
and (5) the results when grouped convolution replaces depthwise
separable convolution.

Frontiers in Neuroscience | www.frontiersin.org 10 October 2020 | Volume 14 | Article 907

https://github.com/roshan-gopalakrishnan/NeuromorphicComputing.git
https://github.com/roshan-gopalakrishnan/NeuromorphicComputing.git
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Gopalakrishnan et al. HFNet: A Hardware-Friendly CNN

FIGURE 9 | Co-design flowchart: step by step methodology for co-design of hardware-friendly CNN.

3.1. Mapping Results
We first study the advantage of using the hybrid method over
the toeplitz method of mapping a CNN for classifying CIFAR-10
(Krizhevsky, 2009) (Figure 10). As mapping of pooling layers is
done with the toeplitz method andmapping fully connected layer
requires core matrix splitting, we consider only the convolutional
layers for illustrative purposes. The CNN is designed in the
following manner: 32 × 32 × 3 (stride 2) – 16 × 16 × 4 – 14
× 14 × 8 – 12 × 12 × 12 – 10 × 10 × 16 – 8 × 8 × 20 – 6 × 6
× 24 – 4 × 4 × 28. All 7 convolutional layers have kernel filter

size 3 × 3 and stride of 1, unless otherwise stated. We consider
four different core sizes for mapping: 128 × 256 (similar to IBM
TrueNorth), 256 × 256 (NC chip-V1), 512 × 512 (NC chip-V2),
and 1,024× 1,024 (NC chip-V3). The benchmarkingmetric is the
number of cores needed to map the CNN. From the bar graph in
Figure 10, it is observed that hybrid method always utilize less
number of cores compared to the toeplitz method and number of
cores required decrease with core sizes, irrespective of mapping
methods. Quantitatively, 13.88, 15, 16.98, and 4.94 times fewer
cores are utilized in the case of hybrid mapping compared to

Frontiers in Neuroscience | www.frontiersin.org 11 October 2020 | Volume 14 | Article 907

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Gopalakrishnan et al. HFNet: A Hardware-Friendly CNN

FIGURE 10 | Benchmarking of mapping methods. The bar graph shows the number of cores utilized for both hybrid and toeplitz mapping against different core sizes.

We consider only the convolution layers in the CNN.

toeplitz mapping on neuromorphic chip with core sizes 128 ×
256, 256× 256, 512× 512, and 1,024× 1,024, respectively.

3.2. Hardware-Friendly CNN: The HFNet
Using the co-design process as described in section 2.2, we
propose the HFNet. It is a hybrid architecture, based on our
insights (Figure 8), that borrows from the VGGNet, MobileNet,
and NIN so as to improve mapping on neuromorphic cores. As
shown in Figure 8, the shallow layers are standard convolutional
layers (VGGNet), followed by depthwise separable convolutions
(MobileNet), and fully connected layers with large fan-in degrees
are replaced with GAP (NIN).

The detailed input, output size of each layer in the HFNets
for different core sizes are given in Table 1. We have named
different versions of the HFNets for different core sizes (256 ×
256, 512 × 512, and 1,024 × 1,024, respectively) as HFNet-V1,
HFNet-V2, and HFNet-V3. Core size determines the number
of axons (AS) × number of neurons (NS) in a single core. The
second convolution layer in HFNet-V2 (1) has Fmaps = 56,
which is the maximum it can have (Equation 11) to avoid core
matrix splitting. A kernel size of 3 × 3 is used for standard and
depthwise convolution.

3.2.1. Maxpooling and Fully Connected Layers
This experiment investigates the performance of the proposed
architecture with and without maxpooling and fully connected
layers (Table 1). HFNet-V3 with maxpooling replaces all
convolution layers with stride of two with convolution layer with
stride of 1 and an additional maxpooling layer. For HFNet-V3

with full connections, a fully connected layer (1,024 × 1,000)
is added on top of the average pooling layer in HFNet-V3
while changing the last pointwise convolution layer to 7 × 7
× 1,024 instead of 7 × 7 × 1,000. From Table 2, it can be
seen that there is only very slight improvement in classification
accuracies when maxpooling or full connection is used. This
further validates our design criteria for HFNet. The number
of cores required for HFNet-V3 with pooling layer is huge, as
mapping of pooling layers is done using the toeplitz method.
The number of parameters is higher for HFNet-V3 with fully
connected layer. All CNNs considered in this experiment is
illustrated in Supplementary Material.

3.2.2. Number of Cores and Classification Accuracy
Here we study both the number of cores required for mapping
and the classification accuracy (IMAGENET) for the HFNets
(Figure 11) and three other popular CNN architectures, namely
VGGNet (VGG-16), MobileNet, and REMODEL [a modification
of VGG-16 for mapping the final fully connected layers onto
IBM TrueNorth (Shukla et al., 2019)]. We consider two core
sizes: the minimum 128 × 256 and the maximum size 1,024 ×
1,024. Note that VGG-16 and REMODEL require core matrix
splitting for mapping onto a 1,024 × 1,024 core. Mapping of all
CNNs onto 128 × 256 cores requires core matrix splitting. As
expected, the number of cores used by MobileNet and HFNet are
∼10 times fewer compared to VGG-16 and REMODEL. It can
be seen that HFNet-V1 uses the least number of cores among all
models. The table (Figure 11) shows the classification accuracy
of the CNNs on IMAGENET. The HFNet-V3 is as accurate

Frontiers in Neuroscience | www.frontiersin.org 12 October 2020 | Volume 14 | Article 907

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Gopalakrishnan et al. HFNet: A Hardware-Friendly CNN

TABLE 1 | Neural network architecture (NN archi.) for different core sizes.

NN HFNet model (core size)

archi. HFNet-V1 (256 × 256) HFNet-V2 (512 × 512) HFNet-V3 (1,024 × 1,024)

Layers Input size Output size Input size Output size Input size Output size

Ca 226 × 226 × 3 112 × 112 × 16 226 × 226 × 3 112 × 112 × 32 226 × 226 × 3 112 × 112 × 32

C 114 × 114 × 16 56 × 56 × 28 114 × 114 × 32 56 × 56 × 56 114 × 114 × 32 56 × 56 × 64

C 58 × 58 × 28 28 × 28 × 64 58 × 58 × 56 28 × 28 × 256 58 × 58 × 64 28 × 28 × 256

Db 30 × 30 × 64 28 × 28 × 64 30 × 30 × 256 28 × 28 × 256 30 × 30 × 256 28 × 28 × 256

Pc 28 × 28 × 64 28 × 28 × 256 28 × 28 × 256 28 × 28 × 256 28 × 28 × 256 28 × 28 × 256

D 30 × 30 × 256 14 × 14 × 256 30 × 30 × 256 14 × 14 × 256 30 × 30 × 256 14 × 14 × 256

P 14 × 14 × 256 14 × 14 × 256 14 × 14 × 256 14 × 14 × 512 14 × 14 × 256 14 × 14 × 512

D 16 × 16 × 256 14 × 14 × 256 16 × 16 × 512 14 × 14 × 512 16 × 16 × 512 14 × 14 × 512

P 14 × 14 × 256 14 × 14 × 256 14 × 14 × 512 14 × 14 × 512 14 × 14 × 512 14 × 14 × 512

D 16 × 16 × 256 14 × 14 × 256 16 × 16 × 512 14 × 14 × 512 16 × 16 × 512 14 × 14 × 512

P 14 × 14 × 256 14 × 14 × 256 14 × 14 × 512 14 × 14 × 512 14 × 14 × 512 14 × 14 × 1,024

D 16 × 16 × 256 14 × 14 × 256 16 × 16 × 512 14 × 14 × 512 16 × 16 × 1,024 14 × 14 × 1,024

P 14 × 14 × 256 14 × 14 × 256 14 × 14 × 512 14 × 14 × 512 14 × 14 × 1,024 14 × 14 × 1,024

D 16 × 16 × 256 14 × 14 × 256 16 × 16 × 512 14 × 14 × 512 16 × 16 × 1,024 14 × 14 × 1,024

P 14 × 14 × 256 14 × 14 × 256 14 × 14 × 512 14 × 14 × 512 14 × 14 × 1,024 14 × 14 × 1,024

D 16 × 16 × 256 14 × 14 × 256 16 × 16 × 512 14 × 14 × 512 16 × 16 × 1,024 14 × 14 × 1,024

P 14 × 14 × 256 14 × 14 × 256 14 × 14 × 512 14 × 14 × 512 14 × 14 × 1,024 14 × 14 × 1,024

D 16 × 16 × 256 7 × 7 × 256 16 × 16 × 512 7 × 7 × 512 16 × 16 × 1,024 7 × 7 × 1,024

P 7 × 7 × 256 7 × 7 × 1,000 7 × 7 × 512 7 × 7 × 1,000 7 × 7 × 1,024 7 × 7 × 1,024

D 9 × 9 × 1,000 7 × 7 × 1,000 9 × 9 × 1,000 7 × 7 × 1,000 9 × 9 × 1,024 7 × 7 × 1,024

P 7 × 7 × 1,000 7 × 7 × 1,000 7 × 7 × 1,000 7 × 7 × 1,000 7 × 7 × 1,024 7 × 7 × 1,000

GAPd 7 × 7 × 1,000 1 × 1 × 1,000 7 × 7 × 1,000 1 × 1 × 1,000 7 × 7 × 1,000 1 × 1 × 1,000

aConvolution layer.
bDepthwise convolution layer.
cPointwise convolution layer.
dGlobal average pooling.

TABLE 2 | With and without pooling and fully connected layers.

HFNet-V3 With pooling

layer

With FC∗

layer

Classification accuracy (%) 71.3 71.6 71.5

Number of parameters (M) 6.46 6.46 7.51

Storage for parameters (MB) 24.63 24.63 28.63

Number of cores (1,024 × 1,024) 4,720 10,940 4,721

∗Fully connected.

as VGG-16 while 2.2% more accurate than the MobileNet.
It also utilizes less number of cores than the MobileNet. All
HFNet models considered in this experiment is illustrated in
Supplementary Material.

3.2.3. Augmenting the HFNet
This experiment adds more hardware-friendly layers to HFNet-
V3 to investigate the increase in classification accuracies.
We report the accuracy results for the adding depthwise

separable convolution layer to end of HFNet-V3 (HFNet-V3-
M0), one or two standard convolution layers to front of
HFNet-V3 (HFNet-V3-M1 andHFNet-V3-M3, respectively) and
both these two layers (HFNet-V3-M2). Figure 12 illustrates
these additions. Table 3 shows the corresponding results. As
expected, the additional layers lead to improved accuracies,
with a standard convolution layer having a larger impact than
depthwise separable convolution, while having less total number
of parameters. This further validates the insight from VGGNet:
the retaining of larger feature maps at shallow layers improves
accuracy. It can be seen that adding depthwise separable
convolution layers has a larger increase in number of parameters
compared to standard convolution in shallow layers but has
a smaller increase in number of cores. Adding two standard
convolutions does not lead to better accuracy compared to one
standard and one depthwise separable convolution. Best accuracy
is obtained for HFNet-V3-M2 among all variants of the HFNet.
All CNNs considered are illustrated in Supplementary Material.

3.2.4. Comparison With Modified MobileNets
In this experiment, we compare the HFNets with modified
MobileNets that are more hardware friendly. The MobilNet is
chosen as it also uses the hardware-friendly depthwise separable

Frontiers in Neuroscience | www.frontiersin.org 13 October 2020 | Volume 14 | Article 907

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Gopalakrishnan et al. HFNet: A Hardware-Friendly CNN

FIGURE 11 | Comparing different CNNs: the bar graph shows the number of cores required for mapping different CNNs. The table shows the classification accuracy

on IMAGENET for the CNNs. Classification accuracy of HFNet-V3 is close to VGG-16 and MobileNet, while requiring a smaller number of cores.

FIGURE 12 | Illustration of adding different convolutions to the baseline model, HFNet-V3: HFNet-V3-M0 has one more depthwise separable convolution.

HFNet-V3-M1 has one more standard convolution. HFNet-V3-M2 has one more standard and one more depthwise separable convolution. HFNet-V3-M3 has two

more standard convolutions.

convolution which also uses less parameters. The modified
MobileNets are HF-MobileNet-V1 and HF-MobileNet-V2, such
that the number of parameters are close to HFNet-V3-M1
and HFNet-V3, respectively. We also compare MobileNet with

modified version of HFNet-V2, HFNet-V2-M0, by increasing
parameters of HFNet-V2 to be close to those of MobileNet.
From Table 4, the performance of HF-MobileNet-V2 (71.4%)
compared to HFNet-V3 (71.3%) is better by only 1% while

Frontiers in Neuroscience | www.frontiersin.org 14 October 2020 | Volume 14 | Article 907

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Gopalakrishnan et al. HFNet: A Hardware-Friendly CNN

TABLE 3 | Addition of layers to HFNet-V3.

1 DP∗ layer 1 Conv layer 1 DP + 1 Conv layer 2 Conv layer

HFNet-V3-M0 HFNet-V3-M1 HFNet-V3-M2 HFNet-V3-M3

Classification
71.5 72.2 72.7 72.6

accuracy (%)

Number of
7.52 6.64 7.7 6.75

parameters (M)

Storage for
28.68 25.3 29.35 25.73

parameters (MB)

Number of
4855 6960 6948 11664

cores (1,024 × 1,024)

∗Depthwise separable convolution.

TABLE 4 | Comparison of HFNets with hardware-friendly MobileNets.

HFNet- HF- HFNet-V3 HF- HFNet- MobileNet

V3-M1 MobileNet-V1 MobileNet-V2 V2-M0

Classification
72.2 71.9 71.3 71.4 70 69.1

accuracy (%)

Number of
6.64 6.62 6.46 6.42 4.21 4.24

parameters (M)

Storage for
25.3 25.22 24.63 24.46 16.05 16.14

parameters (MB)

Number of
6,960 7,642 4,720 7,529 3,949 6,964

cores (1,024 × 1,024)

MobileNet accuracy is 70.4% in Keras.

MobileNet (69.1%) compared to HFNet-V2-M0 (70%) is worse
by 0.9% and HF-MobileNet-V1 (71.9%) compared to HFNet-
V3-M1 (72.2%) is worse by 0.3%. Here, all the classification
accuracies are trained using Tensorpack and Tensorflow
framework. Note that MobileNet accuracy in Keras is 70.4%,
1.3% higher compared to Tensorpack result, but for a fair
comparison we report accuracy results for CNN’s trained using
Tensorpack. Comparing MobileNets and HFNets with similar
accuracy and parameter size, HFNet-V3 utilizes 2,809 less
cores than MobileNet-V2, HFNet-V2-M0 utilizes 3,015 less
cores than MobileNet and HFNet-V3-M1 utilizes 682 fewer
cores than MobileNet-V1. The results show that the accuracies
are close while there is a big difference in the number of
cores utilized to make HFNet variants more hardware friendly.
HFNets are therefore more neuromorphic hardware friendly
than the hardware-friendly versions of existing deep learning
architectures like MobileNet. The difference in number of
cores for mapping is compared in Supplementary Material

with respect to core utilization in each layer for HFNet-V3
and MobileNet.

3.2.5. Grouped Convolution
Here we replace depthwise separable convolution with grouped
convolution (Esser et al., 2016): HFNet-GC. HFNet-GC is
compared with HFNet-V3-M2, as it is modified from HFNet-
V3-M2 by using approximately the same parameter size
in each layer. To do so, we set the group convolutions
to eight groups in each HFNet-GC layer. From Table 5,

TABLE 5 | Comparison of HFNet with grouped convolutions (GC).

HFNet-V3-M2 HFNet-GC

Classification
72.7 59.8

accuracy (%)

Number of
7.7 6.91

parameters (M)

Storage for
29.35 26.38

parameters (MB)

Number of
6,948 11,424

cores (1,024 × 1,024)

TABLE 6 | Number of cores for different core shapes.

Core shape Number of cores

64 × 4,096 111,642

128 × 2,048 58,098

256 × 1,024 26,424

512 × 512 14,263

1,024 × 256 14,069

2,048 × 128 28,240

4,096 × 64 56,480

classification accuracy for HFNet-GC is around 13% less than
the HFNet-V3-M2, while number of cores required almost
doubled. HFNets with depthwise separable convolutions are

Frontiers in Neuroscience | www.frontiersin.org 15 October 2020 | Volume 14 | Article 907

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Gopalakrishnan et al. HFNet: A Hardware-Friendly CNN

hence more hardware friendly than HFNets with grouped
convolutions. The architecture of HFNet-GC is illustrated in the
Supplementary Material.

4. DISCUSSION AND CONCLUSION

In our work, we first study what convolutions are more hardware
friendly and how to best map them onto a neuromorphic
hardware. We next identify deep learning techniques to avoid
which result in poor core utilization or even result in core
matrix splitting. We then propose a framework for the design
of more hardware-friendly CNNs, and implement it using a
Python wrapper (MaD). As a result of the above, the HFNet
is proposed. Different versions of the HFNet are also proposed
using the framework, that have better classification accuracy
with more cores used when mapped. The framework thus
allows us to propose different CNNs in a more principled
manner by changing design parameters. We then evaluate it by
comparison with other CNNs in terms of classification accuracy
on IMAGENET, number of parameters, and cores required
for mapping. It is able to achieve very comparable accuracy,
using about the same number of parameters as per other more
hardware-friendly CNNs but with substantially fewer mapped
cores. Here, we have shown results on one of the biggest andmost
popular datasets in visual classification, IMAGENET, our results
are quite generally applicable for visual tasks which is already
covering a very big application space. Second, it has been shown
that networks pre-trained on IMAGENET can be used as feature
extractors for spectrograms for audio analysis (Acharya and Basu,
2020); our method can thus potentially generalize to other types
of datasets as well. We have also proposed an optimized mapping
technique by considering a square shaped selection of neurons.
As shown inTable 6, we further explore how different core shapes
(64 × 4,096, 128 × 2,048, 256 × 1,024, 512 × 512, 1,024 × 256,
2,048 × 128, 4,096 × 64) affect the number of cores used to map
the HFNet-V3. Overall, the trend in cores used agree with the
intuition provided in the proof (section 2.2.1), which is based on
real numbers; while core sizes are based on integers which may
lead to some discrepancy. We further note that cores required is
not symmetric about 512 × 512, with larger input dimensions
using less cores (e.g., 4,096 × 64 against 64 × 4,096). This is due
to avoiding core matrix split while mapping.

The HFNet is a hardware-friendly CNN that is designed using
an iterative process that takes into account how best it can be
mapped on a neuromorphic hardware with crossbar array of
synapses while achieving good accuracy. One hard constraint
while mapping is avoiding core matrix splitting. As shown
in section 3, a typical HFNet requires thousands of cores for
mapping. This is still larger than most neuromorphic chips. For
future work, we will consider how onemaymap theHFNet onto a
neuromorphic chip with limited number of cores.While we try to
optimize synaptic resources and reduce “wastage” by minimizing
unused synapses, it might be possible to reuse these synapses to
provide a degree of fault tolerance in the hardware by providing
redundancy. Current explorations of fault tolerance mostly show
reduction in performance degradation after retraining a neural
network with faults (Lee et al., 2014; Feinberg et al., 2018);

however, there might be scope to optimize the fault tolerance
by providing some extra synapses. We feel this is an important
avenue of future work. We would also consider quantized CNNs,
both weight and activations, in future work, which is beyond
the scope of current work. Other hardware constraints, such as
synaptic noise in novel devices, will be considered in future work.

Considering chip area, it maybe that only one physical neuron
is implemented per core. This neuron is utilized in a time
multiplexed manner to emulate all neurons within the core. If,
however, there is more than one physical neuron per core, one
can speed up computation by pipelining the time multiplexed
neurons. Further speed-up can be achieved if the number of
fan-in neurons per convolution operation is considered while
increasing the physical neurons.

In our current study, we only studied CNNs without skip
connections. Residual networks (He et al., 2016) have skip
connections that increase the fan-in/fan-out degree of neurons.
Not only that, to map them, we would either have to save
intermediate results of skip-connections at routers or in buffers at
the axons. This would be interesting to consider in future work.

DATA AVAILABILITY STATEMENT

All datasets generated for this study are included in the
article/Supplementary Material.

AUTHOR CONTRIBUTIONS

RG and YC designed the manuscript outline and experimental
framework. RG wrote the manuscript, designed and
implemented the MaD python wrapper, and conducted the
experiments. YC edited the manuscript and conducted the
experiments. PS also conducted the experiments. AS contributed
to the implementation of the MaD python wrapper and
contributed to the figures in the manuscript. AB was involved
in the discussion, experiment design, and editing of the
manuscript. All authors contributed to the article and approved
the submitted version.

FUNDING

This research was supported by Programmatic grant no.
A1687b0033 from the Singapore Governments Research,
Innovation and Enterprise 2020 plan (Advanced Manufacturing
and Engineering domain).

ACKNOWLEDGMENTS

Short versions of this manuscript has been released as a Pre-print
at Gopalakrishnan et al. (2019a,b).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2020.00907/full#supplementary-material

Frontiers in Neuroscience | www.frontiersin.org 16 October 2020 | Volume 14 | Article 907

https://www.frontiersin.org/articles/10.3389/fnins.2020.00907/full#supplementary-material
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Gopalakrishnan et al. HFNet: A Hardware-Friendly CNN

REFERENCES

Acharya, J., and Basu, A. (2020). Deep neural network for respiratory sound

classification in wearable devices enabled by transfer learning. IEEE Trans.

Biomed. Circuits Syst. 14, 535–544. doi: 10.1109/TBCAS.2020.2981172

Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R., Arthur, J., Merolla, P.,

et al. (2015). Truenorth: design and tool flow of a 65 MW 1 million neuron

programmable neurosynaptic chip. IEEE Trans. Comput. Aided Des. Integr.

Circuits Syst. 34, 1537–1557. doi: 10.1109/TCAD.2015.2474396

Alyamkin, S., Ardi, M., Brighton, A., Berg, A. C., Chen, B., Chen, Y., et al. (2019).

Low-power computer vision: status, challenges, opportunities. IEEE J. Emerg.

Select. Top. Circuits Syst. 9, 411–421. doi: 10.1109/JETCAS.2019.2911899

Ambrogio, S., Balatti, S., Cubeta, A., Calderoni, A., Ramaswamy, N., and Ielmini,

D. (2014a). Statistical fluctuations in HfOx resistive-switching memory:

part I–set/reset variability. IEEE Trans. Electron Devices 61, 2912–2919.

doi: 10.1109/TED.2014.2330200

Ambrogio, S., Balatti, S., Cubeta, A., Calderoni, A., Ramaswamy, N., and Ielmini,

D. (2014b). Statistical fluctuations in HfOx resistive-switching memory: part

II–random telegraph noise. IEEE Trans. Electron Devices 61, 2920–2927.

doi: 10.1109/TED.2014.2330202

Amir, A., Datta, P., Risk, W. P., Cassidy, A. S., Kusnitz, J. A., Esser, S.

K., et al. (2013). “Cognitive computing programming paradigm: a corelet

language for composing networks of neurosynaptic cores,” in The 2013

International Joint Conference on Neural Networks (IJCNN) (Dallas, TX), 1–10.

doi: 10.1109/IJCNN.2013.6707078

Andrew, P. D., Daniel, B., Jochen, E., Jens, K., Eilif, M., Dejan, P., et al.

(2009). PyNN: a common interface for neuronal network simulators. Front.

Neuroinformatics 2:11. doi: 10.3389/conf.neuro.11.2008.01.046

Appuswamy, R., Nayak, T. K., Arthur, J. V., Esser, S. K., Merolla, P., McKinstry,

J. L., et al. (2016). Structured convolution matrices for energy-efficient deep

learning. arXiv 1606.02407.

Barry, B., Brick, C., Connor, F., Donohoe, D., Moloney, D., Richmond, R., et al.

(2015). Always-on vision processing unit for mobile applications. IEEE Micro.

35, 56–66. doi: 10.1109/MM.2015.10

Basu, A., Acharya, J., Karnik, T., Liu, H., Li, H., Seo, J. S., et al. (2018). Low-power,

adaptive neuromorphic systems: recent progress and future directions. IEEE J.

Emerg. Select. Top. Circuits Syst. 8, 6–27. doi: 10.1109/JETCAS.2018.2816339

Bose, S., Acharya, J., and Basu, A. (2019). “Is my neural network neuromorphic?

Taxonomy, recent trends and future directions in neuromorphic engineering,”

in ASILOMAR Conference on Signals and Systems (Pacific Grove, CA).

doi: 10.1109/IEEECONF44664.2019.9048891

Davies, M., Srinivasa, N., Lin, T., Chinya, G., Cao, Y., Choday, S. H., et al. (2018).

Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro

38, 82–99. doi: 10.1109/MM.2018.112130359

Deng, B. L., Li, G., Han, S., Shi, L., and Xie, Y. (2020). Model compression and

hardware acceleration for neural networks: a comprehensive survey. Proc. IEEE

108, 485–532. doi: 10.1109/JPROC.2020.2976475

Deng, J., Dong, W., Socher, R., Li, L., Li, K., and Fei-Fei, L. (2009).

“ImageNet: a large-scale hierarchical image database,” in 2009 IEEE Conference

on Computer Vision and Pattern Recognition (Miami, FL), 248–255.

doi: 10.1109/CVPR.2009.5206848

Deng, L., Zou, Z., Ma, X., Liang, L., Wang, G., Hu, X., et al. (2018). Fast

object tracking on a many-core neural network chip. Front. Neurosci. 12:841.

doi: 10.3389/fnins.2018.00841

Diehl, P., and Cook, M. (2015). Unsupervised learning of digit recognition

using spike-timing-dependent plasticity. Front. Comput. Neurosci. 9:99.

doi: 10.3389/fncom.2015.00099

Esser, S. K., Merolla, P. A., Arthur, J. V., Cassidy, A. S., Appuswamy, R.,

Andreopoulos, A., et al. (2016). Convolutional networks for fast, energy-

efficient neuromorphic computing. Proc. Natl. Acad. Sci. U.S.A. 113,

11441–11446. doi: 10.1073/pnas.1604850113

Feinberg, B., Wang, S., and Ipek, E. (2018). “Making memristive neural

network accelerators reliable,” in 2018 IEEE International Symposium

on High Performance Computer Architecture (HPCA) (Vienna), 52–65.

doi: 10.1109/HPCA.2018.00015

Gopalakrishnan, R., Chua, Y., and Kumar, A. J. S. (2019a). Hardware-

friendly neural network architecture for neuromorphic computing. arXiv

arXiv:1906.08853.

Gopalakrishnan, R., Kumar, A. J. S., and Chua, Y. (2019b). MaD: mapping

and debugging framework for implementing deep neural network onto a

neuromorphic chip with crossbar array of synapses. arXiv arXiv:1901.00128.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image

recognition,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (Las Vegas, NV), 770–778. doi: 10.1109/CVPR.2016.90

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., et al.

(2017). Mobilenets: efficient convolutional neural networks for mobile vision

applications. arXiv 1704.04861.

Hu, M., Strachan, J. P., Li, Z., Grafals, E. M., Davila, N., Graves, C., et al.

(2016). “Dot-product engine for neuromorphic computing: programming

1t1m crossbar to accelerate matrix-vector multiplication,” in 2016 53nd

ACM/EDAC/IEEE Design Automation Conference (DAC) (Austin, TX), 1–6.

doi: 10.1145/2897937.2898010

Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J., and Keutzer,

K. (2016). Squeezenet: Alexnet-level accuracy with 50× fewer parameters and

<0.5 MB model size. arXiv 1602.07360.

Ji, Y., Zhang, Y., Chen, W., and Xie, Y. (2018). “Bridge the gap between neural

networks and neuromorphic hardware with a neural network compiler,” in

Proceedings of the Twenty-Third International Conference on Architectural

Support for Programming Languages and Operating Systems (Williamsburg, VA:

ACM), 448–460. doi: 10.1145/3173162.3173205

Ji, Y., Zhang, Y., Li, S., Chi, P., Jiang, C., Qu, P., et al. (2016). “Neutrams:

neural network transformation and co-design under neuromorphic hardware

constraints,” in 2016 49th Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO) (Taipei), 1–13. doi: 10.1109/MICRO.2016.7783724

Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., et al.

(2017). “In-datacenter performance analysis of a tensor processing unit,”

in Proceedings of the 44th Annual International Symposium on Computer

Architecture, ISCA 17 (New York, NY: Association for Computing Machinery),

1–12. doi: 10.1145/3079856.3080246

Krizhevsky, A. (2009). Learning Multiple Layers of Features from Tiny Images.

Lee, M., Hwang, K., and Sung, W. (2014). “Fault tolerance analysis of digital

feed-forward deep neural networks,” in 2014 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP) (Florence), 5031–5035.

doi: 10.1109/ICASSP.2014.6854560

Lin, M., Chen, Q., and Yan, S. (2013). Network in network. CoRR abs/1312.4400.

Pei, J., Deng, L., Song, S., Zhao, M., Zhang, Y., Wu, S., et al. (2019). Towards

artificial general intelligence with hybrid tianjic chip architecture. Nature 572,

106–111. doi: 10.1038/s41586-019-1424-8

Prezioso, M., Merrikh-Bayat, F., Hoskins, B. D., Adam, G. C., Likharev, K.

K., and Strukov, D. B. (2015). Training and operation of an integrated

neuromorphic network based on metal-oxide memristors. Nature 521, 61–64.

doi: 10.1038/nature14441

Roy, K., Jaiswal, A., and Panda, P. (2019). Towards spike-based machine

intelligence with neuromorphic computing. Nature 575, 607–617.

doi: 10.1038/s41586-019-1677-2

Rueckauer, B., Lungu, I.-A., Hu, Y., and Pfeiffer, M. (2016). “Theory and tools

for the conversion of analog to spiking convolutional neural networks,” in

Workshop “Computing with Spikes”, 29th Conference on Neural Information

Processing Systems (NIPS 2016) (Barcelona).

Shukla, R., Lipasti, M., Van Essen, B., Moody, A., and Maruyama, N. (2019).

Remodel: rethinking deep cnn models to detect and count on a neurosynaptic

system. Front. Neurosci. 13:4. doi: 10.3389/fnins.2019.00004

Simonyan, K., and Zisserman, A. (2014). Very deep convolutional networks for

large-scale image recognition. arXiv 1409.1556.

Springenberg, J. T., Dosovitskiy, A., Brox, T., and Riedmiller, M. A. (2014). Striving

for simplicity: the all convolutional net. CoRR abs/1412.6806.

Voelker, A. R., Benjamin, B. V., Stewart, T. C., Boahen, K., and Eliasmith, C.

(2017). “Extending the neural engineering framework for nonideal silicon

synapses,” in 2017 IEEE International Symposium on Circuits and Systems

(ISCAS) (Baltimore, MD), 1–4. doi: 10.1109/ISCAS.2017.8050810

Wu, J., Chua, Y., Zhang, M., Li, G., Li, H., and Tan, K. C. (2019). A tandem learning

rule for efficient and rapid inference on deep spiking neural networks. arXiv

1907.01167.

Wu, Y. (2016). Tensorpack. Available online at: https://github.com/tensorpack/

Yakopcic, C., Alom, M. Z., and Taha, T. M. (2016). “Memristor

crossbar deep network implementation based on a convolutional

Frontiers in Neuroscience | www.frontiersin.org 17 October 2020 | Volume 14 | Article 907

https://doi.org/10.1109/TBCAS.2020.2981172
https://doi.org/10.1109/TCAD.2015.2474396
https://doi.org/10.1109/JETCAS.2019.2911899
https://doi.org/10.1109/TED.2014.2330200
https://doi.org/10.1109/TED.2014.2330202
https://doi.org/10.1109/IJCNN.2013.6707078
https://doi.org/10.3389/conf.neuro.11.2008.01.046
https://doi.org/10.1109/MM.2015.10
https://doi.org/10.1109/JETCAS.2018.2816339
https://doi.org/10.1109/IEEECONF44664.2019.9048891
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/JPROC.2020.2976475
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.3389/fnins.2018.00841
https://doi.org/10.3389/fncom.2015.00099
https://doi.org/10.1073/pnas.1604850113
https://doi.org/10.1109/HPCA.2018.00015
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1145/2897937.2898010
https://doi.org/10.1145/3173162.3173205
https://doi.org/10.1109/MICRO.2016.7783724
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1109/ICASSP.2014.6854560
https://doi.org/10.1038/s41586-019-1424-8
https://doi.org/10.1038/nature14441
https://doi.org/10.1038/s41586-019-1677-2
https://doi.org/10.3389/fnins.2019.00004
https://doi.org/10.1109/ISCAS.2017.8050810
https://github.com/tensorpack/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Gopalakrishnan et al. HFNet: A Hardware-Friendly CNN

neural network,” in 2016 International Joint Conference on Neural

Networks (IJCNN) (Vancouver, BC), 963–970. doi: 10.1109/IJCNN.2016.

7727302

Yakopcic, C., Alom, M. Z., and Taha, T. M. (2017). “Extremely parallel memristor

crossbar architecture for convolutional neural network implementation,”

in 2017 International Joint Conference on Neural Networks (IJCNN)

(Anchorage, AK), 1696–1703. doi: 10.1109/IJCNN.2017.7966055

Zhang, X., Zhou, M. L., and Sun, J. (2018). “Shufflenet: an extremely efficient

convolutional neural network for mobile devices,” in 2018 IEEE/CVF

Conference on Computer Vision and Pattern Recognition (Salt Lake City, UT),

6848–6856. doi: 10.1109/CVPR.2018.00716

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Gopalakrishnan, Chua, Sun, Sreejith Kumar and Basu. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Neuroscience | www.frontiersin.org 18 October 2020 | Volume 14 | Article 907

https://doi.org/10.1109/IJCNN.2016.7727302
https://doi.org/10.1109/IJCNN.2017.7966055
https://doi.org/10.1109/CVPR.2018.00716
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	HFNet: A CNN Architecture Co-designed for Neuromorphic Hardware With a Crossbar Array of Synapses
	1. Introduction
	2. Materials and Methods
	2.1. Mapping
	2.1.1. Computation in a Crossbar Architecture
	2.1.2. Mapping on a Crossbar Architecture

	2.2. Co-design
	2.2.1. Core Matrix Splitting
	2.2.2. Overview of Convolution Layers in a CNN
	2.2.2.1. Depthwise convolution
	2.2.2.2. Pointwise convolution
	2.2.2.3. Grouped convolution

	2.2.3. Insights From Different CNNs
	2.2.3.1. MobileNet
	2.2.3.2. VGGNet and NIN
	2.2.3.3. Other insights

	2.2.4. Co-design Methodology
	2.2.4.1. Hardware-friendly CNN

	2.3. CNN Training and Mapping
	2.3.1. CNN Training
	2.3.2. CNN Mapping

	3. Experimental Framework and Results
	3.1. Mapping Results
	3.2. Hardware-Friendly CNN: The HFNet
	3.2.1. Maxpooling and Fully Connected Layers
	3.2.2. Number of Cores and Classification Accuracy
	3.2.3. Augmenting the HFNet
	3.2.4. Comparison With Modified MobileNets
	3.2.5. Grouped Convolution

	4. Discussion and Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

