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Abstract 

Background: Loss of genetic variability due to environmental changes, limitation of gene flow between pools of 
individuals or putative selective pressure at specific markers, were previously documented for Antarctic notothenioid 
fish species. However, so far no studies were performed for the Gaudy notothen Lepidonotothen nudifrons. Starting 
from a species‑specific spleen transcriptome library, we aimed at isolating polymorphic microsatellites (Type I; i.e. 
derived from coding sequences) suitable to quantify the genetic variability in this species, and additionally to assess 
the population genetic structure and demography in nototheniids.

Results: We selected 43,269 transcripts resulting from a MiSeq sequencer run, out of which we developed 19 primer 
pairs for sequences containing microsatellite repeats. Sixteen loci were successfully amplified in L. nudifrons. Eleven 
microsatellites were polymorphic and allele numbers per locus ranged from 2 to 17. In addition, we amplified loci 
identified from L. nudifrons in two other congeneric species (L. squamifrons and L. larseni). Thirteen loci were highly 
transferable to the two congeneric species. Differences in polymorphism among species were detected.

Conclusions: Starting from a transcriptome of a non‑model organism, we were able to identify promising polymor‑
phic nuclear markers that are easily transferable to other closely related species. These markers can be a key instru‑
ment to monitor the genetic structure of the three Lepidonotothen species if genotyped in larger population samples. 
When compared with anonymous loci isolated in other notothenioids, i.e. Type II (isolated from genomic libraries), 
they offer the possibility to test how the effects of occurring environmental change influence the population genetic 
structure in each species and subsequently the composition of the entire ecosystem.
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Population differentiation, Southern ocean
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Findings
Research background
Lepidonotothen nudifrons (Lönnberg 1905), the Gaudy 
notothen [1] is a benthic and moderately active fish spe-
cies belonging to the family Nototheniidae (red-blood 
species, [2]). L. nudifrons is especially abundant along the 
Islands of the Scotia Arc until the Bransfield Strait (Ant-
arctic Peninsula) [1, 3]. This species plays an ecologically 

important role as prey to piscivorous fish species in this 
region [3], however, little is known about its genetic varia-
bility and the demography. Since the strongest local effects 
of climate change in polar regions were recorded for the 
Antarctic Peninsula [4], it is essential to investigate if L. 
nudifrons is experiencing any loss of genetic variability or 
if gene flow is limited among pools of individuals. Genetic 
differentiation among populations has already been dem-
onstrated for another ecologically important notothenioid 
(Pleuragramma antarctica) in the same area [5].

These investigations require microsatellites, which have 
proven useful and reliable genetic markers in similar 
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studies [5, 6]. In the past, the most common procedure 
to isolate microsatellites required the identification of 
repeat-containing sequences from libraries of genomic 
DNA enriched for microsatellite motives (Type II loci, 
[6–9]). In comparison to the traditional but labour-inten-
sive and costly approach, currently these markers are also 
isolated from transcriptomic libraries obtained by next 
generation sequencing (NGS) that has proven to be more 
cost effective [7, 10]. However, markers obtained with 
this latter approach are gene-associated simple sequence 
repeats (SSR, Type I, functional loci, either called 
expressed sequence tags EST-linked markers [6, 9, 11]).

Due to their position inside or their flanking coding 
gene sequence and due to functional constraints, EST-
linked SSRs are expected to have higher probability to be 
under selective pressure [6]. Gene-associated microsatel-
lites have been isolated across many taxa in recent years 
[10 and references therein], however, only one study has 
reported isolation of microsatellites from a transcrip-
tomic database in notothenioids [12].

The primary goal of this study is to expand the panel 
of available EST-linked loci in notothenioids for future 
studies on the evolution and demographic history of Ant-
arctic fish. Moreover, we aim to isolate specific markers 
for Lepidonotothen spp. in order to compare their vari-
ability with anonymous Type II markers isolated in other 
notothenioid species.

We therefore mined microsatellite sequences from the 
publicly available spleen transcriptome of L. nudifrons 
[13] and screened several promising candidate loci for 
amplification and polymorphism. We were able to iso-
late sixteen species-specific SSR markers from assembled 
transcript sequences of L. nudifrons. Loci identified from 
L. nudifrons were also tested in two congeneric species: 
L. squamifrons and L. larseni.

Methods
Gene-associated SSR markers were identified among 
112,477 spleen transcripts of L. nudifrons [13]. The 
raw sequences were obtained from an Illumina MiSeq 
sequencer. Adapter clipping and quality trimming was 
performed using Trimmomatic v.0.32 [14] with follow-
ing parameters: seed mismatch of 2, palindrome clip 
threshold of 30, simple clip threshold of 10, a minimum 
adapter length of 2, keep both reads parameter set to 
true, headcrop of 7, leading and trailing quality of 3, slid-
ing window size of 4 with an average quality of 15 and 
a minimum sequence length of 50 bases. The subse-
quent de novo assembly was performed using the trinity 
genome-independent transcriptome assembler [release 
17 July 2014, 15] with a minimum transcript length 
of 300 bases (for further details see [13]). Transcripts 
were screened using SciRoKo v. 3.4 [16]. Di-, tri-, tetra-, 

penta-, hexa-, hepta-, octa-, nona-, and deca-nucleotide 
repeat motifs were searched, setting the minimum repeat 
units to five, for all motif categories. Among transcripts 
containing microsatellites, we selected non-redundant 
SSRs with sufficiently large flanking sequences (>50  bp) 
on each side of the repeated units as ‘‘Potentially Amplifi-
able Loci’’ i.e. PAL [10, 17]. For subsequent analyses, we 
randomly selected 19 loci among all PAL. Primer pairs 
were designed with FastPCR v. 6.0 [18] to avoid primer 
dimers, self-annealing and hairpin formation when mul-
tiplexing loci during PCR. In addition, primers were 
designed to have very similar melting temperatures to 
avoid increased complexity of optimization protocol and 
to facilitate multiplexing.

Primer validation was carried out on genomic DNA 
extracted from 7 specimens of L.  nudifrons collected in 
March/April 2012 near Elephant Island at 70–322  m 
depth during the RV Polarstern expedition ANT-
XXVIII/4. The fish are not considered endangered at 
the sampling site. Sampling of the animals has been per-
formed in accordance with the Antarctic treaty, and per-
mission was given by the respective national authority 
(Umweltbundesamt: permit number I 3.5-94003-3/274). 
All treatments with live animals were in accordance with 
German law and approved by the competent national 
authority (Freie Hansestadt Bremen, Germany, permit 
number AZ: 522-27-11/02-00 (93)).

Total DNA was purified from 10 to 20 mg of muscle tis-
sue following the standard protocol of the DNeasy Blood 
and Tissue Kit (Qiagen, Germany). Quality and quantity 
of DNA extractions were assessed using a NanoDrop™ 
2000c spectrophotometer (Thermo Fisher Scientific, 
USA) before samples were stored at −20 °C.

Initially, PCR primer pairs were tested as single-locus 
PCR in 20  μl volume, containing 1X reaction buffer (5 
Prime, Hamburg, Germany), 70 μM dNTPs, 0.25 μM of 
each primer, 1 unit Taq polymerase (5 units/μl, 5 Prime, 
Hamburg, Germany) and ~30 ng of genomic DNA. PCR 
conditions were: initial denaturation at 94 °C for 1 min, 
followed by 30 cycles of 94  °C for 30  s (denaturation), 
54 °C for 40 s (annealing), 72 °C for 40 s (extension) and 
a final single extension step at 72 °C for 5 min. Electro-
phoresis was carried out at 100 V on 1.5 % agarose gels 
containing GelRed Nucleic Acid Gel Stain (Biotium, 
Hayward, USA) for a preliminary qualitative polymor-
phism detection. Only loci that provided a clear PCR 
product were retained (for details, see Results section) 
and their polymorphism was verified on an Applied 
Biosystems 3130 XL automated sequencer (Life Tech-
nologies, USA, ROX500 as size standard) using a larger 
sample of 21 L.  nudifrons individuals (collected in 
March/April 2012 near Elephant Island, Research Ves-
sel RV Polarstern, expedition ANT-XXVIII/4, DNA 
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extraction as described above). To this purpose, for-
ward primers were labelled with fluorescent dyes FAM, 
HEX, and TAMRA (Applied Biosystems, USA) and loci 
were combined in multiplex PCRs designed with Mul-
tiplex Manager v. 1.2 [19]. Amplification reactions were 
optimised in terms of volumes and concentrations of 
reagents to reduce the total genotyping cost. Amplifica-
tions were carried out in 10  μl reaction volume, using 
the Multiplex PCR kit (Qiagen, Germany) in accordance 
with manufacturer’s instructions. PCR conditions were: 
initial denaturation at 95  °C for 15 min, followed by 30 
cycles of 94  °C for 30  s (denaturation), 57  °C for 90  s 
(annealing), 72 °C for 60 s (extension) and a final single 
extension step at 60 °C for 30 min.

Specimens of L.  squamifrons (n =  20) and L. larseni 
(n  =  18) were tested to assess loci variability in con-
generic species (DNA extraction and amplification 
conditions as described above). Individuals of these 
two species were collected around Elephant Island 
in March/April 2012 (RV Polarstern expedition 
ANT-XXVIII/4).

Allele sizes were assigned using GeneMarker v. 2.6.3 
(Soft-Genetics, Pennsylvania). Binning was automated 
with Flexibin v. 2 [20]. All input files for statistical analy-
sis were produced with Create v. 1.37 [21]. All standard 
and basic statistics were produced with DiveRsity v. 1.9 
[22]. The estimation of departure from Hardy–Weinberg 
equilibrium (HWE) was obtained with Genepop (online 
version, exact test) [23]. The presence of null alleles was 
assessed using the program ML-NullFreq [24]. Genotypic 
disequilibrium for pairs of loci (Fishers’ exact test) was 
tested with Genepop (online version) [23]. Correction 
for multiple testing (HWE and genotypic disequilibrium) 
was accomplished using the standard Bonferroni tech-
nique [25, 26].

To annotate the transcripts corresponding to the final 
panel of markers, homology searches were performed 
using Blastx [27] against the UniProtKB/Swiss-Prot data-
base with an e-value cut-off of 10−9.

Results
We identified 43,269 transcripts containing SSRs with 
2–10 repeat units out of 128 Mb transcripts of a spleen 
transcriptome (Table  1). This result indicated an aver-
age amount of one SSR per 2.9  Kb. The number of 
transcripts containing SSR represented approximately 
38.46 % of the total sequenced transcriptome. The largest 
proportion of SSRs (82.50  %) consisted of di-nucleotide 
repeats. SSRs with nucleotide repeat of higher complex-
ity (e.g. tri- to deca-nucleotide repeat motifs) were pre-
sent in progressively smaller numbers (Table 1). A list of 
all the transcripts containing SSR motifs can be provided 
upon request. 484 transcripts resulted to be suitable for 

primer design (PAL), and 19 of these sequences (contain-
ing a di-nucleotide repeat motif ) were randomly chosen 
for primer design. Of these 19 loci, two did not provide 
any amplified fragment, even after attempting to opti-
mize annealing temperatures. One locus showed a longer 
fragment than expected based on the original sequence 
(length determined by agarose gel-sizing), possibly sug-
gesting the presence of an intron and therefore making 
allele sizes unpredictable [11]. These three markers were 
discarded from subsequent analyses. The remaining 16 
markers showed a clearly defined amplified band on aga-
rose gel and could be easily genotyped with an automatic 
sequencer in three multiplex PCRs containing eight, six, 
and two loci. The final panel of markers (Tables 2 and 3) 
consists of five monomorphic and eleven polymorphic 
loci for L. nudifrons with no missing genotypes. The allele 
number per locus ranged from 2 to 17 (Table 3), with an 
average value of 5.1 (±4.4 SD). Mean observed (Ho) and 
expected heterozygosities (He) were 0.43 (±0.34 SD) and 
0.43 (±0.31 SD). Ten loci out of eleven were in HWE after 
correction for multiple testing (nominal significance level 
α = 0.05, Table 3). Hardy–Weinberg disequilibrium was 
detected for locus Ln_42016, due to excess of homozy-
gosity. This result could be due to several reasons, such 
as single locus stochasticity due to small sample size 
(n  =  21) or occurrence of a non-amplified allele. The 
presence of a null allele was suggested by ML-NullFreq 
[24] at this locus with a frequency of 4.9 %. Loci with null 
alleles might have impacts on estimates of population dif-
ferentiation [28] and are generally not recommended for 

Table 1 Summary of  Simple Sequence Repeats (SSR) 
found in  the transcriptome of  Lepidonotothen nudifrons 
[13]

SSR were searched among 112,477 transcripts. PAL, Potentially Amplifiable Loci 
[10, 17]

Type of repeat (length of  
motif in number of nucleotides)

No. of transcripts

SSR (all motifs) 43,269

SSR (2) 35,697

SSR (3) 6905

SSR (4) 549

SSR (5) 32

SSR (6) 23

SSR (7) 5

SSR (8) 15

SSR (9) 26

SSR (10) 17

PAL SSR with ≥ 8 repeats (all motifs) 484

PAL SSR (2) 478

PAL SSR (3) 5

PAL SSR (4) 1
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use in population genetic inference. However, it has been 
shown that the influence of null alleles in studies of pop-
ulation genetics might be marginal compared to other 
factors such as the number of loci and strength of popu-
lation differentiation [29]. Departure from HWE due to 
excess of homozygosity could also be caused by other 
factors either to scoring errors or amplification artefacts. 
Departure from HWE could be generated by the pres-
sure of actually occurring evolutionary forces (e.g. selec-
tion, local adaptation) or admixture of genetically distinct 
populations (i.e. Wahlund effect [30]). This can affect 
loci at different magnitude with some triggers being 
locus-specific and others being sample-specific [31]. In 
some circumstances, the usual approach of consistently 
removing loci in Hardy–Weinberg disequilibrium may be 
too conservative leading to the exclusion of ecologically 
informative markers [31, 32].  

Although our loci are located in transcribed sequences, 
only three loci could be putatively annotated through 
similarity search (Blastx, Table  2) [27]. A fourth marker 
resulted in a similarity to an “uncharacterized protein 
C1orf21 homolog” (Table  2). These transcripts are likely 
portions of protein-coding genes and future studies 
should aim at combining information about allelic fre-
quencies, gene expression and function. All polymorphic 
loci were in linkage equilibrium after correction for mul-
tiple testing (nominal significance level α = 0.01, data not 
shown).

In the congeneric species, L. squamifrons and L. larseni, 
two loci failed to amplify consistently despite attempts to 
optimize the PCR conditions. Locus Ln_22517 was suc-
cessfully amplified in L. squamifrons (monomorphic), but 
it did not provide a consistent amplification and genotyp-
ing result for L. larseni. The remaining 13 markers were 
successfully genotyped (Table  3). Eight loci were poly-
morphic in L. squamifrons, while in L. larseni we scored 
multiple alleles in ten loci (Tables 2 and 3). In particular, 
Ln_23194, monomorphic in L. nudifrons, turned out to 
be polymorphic in L. squamifrons and L. larseni (Tables 2 
and 3). We obtained a panel of loci that worked for all 
three species at the same PCR conditions, which facili-
tates the rapid implementation and application at large 
sample size scale.

Our results confirm that polymorphic SSR markers can 
be effectively isolated from transcriptomes of non-model 
organisms [12, 33]. For Lepidonotothen spp. these mark-
ers are also easily transferable among different, but phy-
logenetically closely related species.

Additional tests should be implemented to verify 
whether these loci could be considered candidates for 
being influenced by selection. An effective method to ver-
ify this, is to compare FST values to search for loci show-
ing a significantly high level of genetic differentiation 

between pairs of species as applied for the Chionodraco 
genus [6]. Agostini et  al. [6] indicated that out of 21 
microsatellites two Type I markers and one Type II locus 
were putatively under selection.

Moreover, we aim to use our microsatellites in con-
junction with other markers such as mitochondrial and 
nuclear sequences and on a larger sample size. This 
would effectively help monitoring the genetic structure of 
the three Lepidonotothen species, profiling demographic 
events occurred in the past, and identifying signatures of 
local adaptation in genetically different populations. To 
understand the significance of these events and the cli-
mate challenges that marine organisms in polar regions 
are facing, is essential to model and project future popu-
lation viability for species management and conservation 
[34].
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