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a b s t r a c t 

Computer-aided-diagnosis and stratification of COVID-19 based on chest X-ray suffers from weak bias 

assessment and limited quality-control. Undetected bias induced by inappropriate use of datasets, and 

improper consideration of confounders prevents the translation of prediction models into clinical practice. 

By adopting established tools for model evaluation to the task of evaluating datasets, this study provides 

a systematic appraisal of publicly available COVID-19 chest X-ray datasets, determining their potential 

use and evaluating potential sources of bias. Only 9 out of more than a hundred identified datasets met 

at least the criteria for proper assessment of risk of bias and could be analysed in detail. Remarkably 

most of the datasets utilised in 201 papers published in peer-reviewed journals, are not among these 9 

datasets, thus leading to models with high risk of bias. This raises concerns about the suitability of such 

models for clinical use. This systematic review highlights the limited description of datasets employed for 

modelling and aids researchers to select the most suitable datasets for their task. 

© 2021 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Since the end of 2019, the novel coronavirus SARS-CoV-2 

ained worldwide attention and eventually developed to the global 

OVID-19 pandemic in early 2020 ( Sohrabi et al., 2020 ). Reliable 

iagnosis and stratification play a vital role in the management of 

ases and the allocation of potentially limited resources, like in- 

ensive care unit (ICU) beds. Hence, there is an urgent necessity 

o create trustworthy tools for diagnosis and prognosis of the dis- 

ase. While most of the people with COVID-19 infection do not de- 

elop pneumonia ( Cleverley et al., 2020 ), the early identification of 

OVID-19 induced pneumonia cases is essential. 

To this end, imaging modalities such as planar X-ray, computed 

omography (CT) and sometimes ultrasound are employed. When 
∗ Corresponding author at: Centre Hospitalier de Luxembourg, 4, Rue Ernest Bar- 

le, Luxembourg L-1210, Luxembourg. 
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ssessing the different pros and cons of the imaging modalities, the 

lobal scale of the COVID-19 pandemic and the need for imaging 

lso in countries with less developed healthcare systems impose 

dditional constraints to consider (cf. Greenspan et al., 2020 ). 

Ultrasound is a very interesting non-invasive complementary 

odality described to assess lung damage. Some COVID-19 ultra- 

ound datasets have been released recently ( Born et al., 2021b, 

021a; Almeida et al., 2020 ). However, ultrasound needs medical 

pecialist expertise to be carried out and the amount of publicly 

vailable data is still limited. Therefore, CT and Chest X-ray (CXR) 

ight be considered the primary modalities in COVID-19 imaging. 

CT yields the highest diagnostic sensitivity, however, it is very 

omplex to apply in an intensive care unit setting, and expected 

o be frequently inaccessible for patients in less developed health 

are systems. In contrast, CXR yields lower diagnostic sensitiv- 

ty but is a widely available, fast, minimal-invasive, and relatively 

heap tool to diagnose and monitor COVID-19 induced pneumo- 

ia ( Aljondi and Alghamdi, 2020 ). CXR is easy to apply, being 

pplicable even in anaesthetised patients receiving intensive care 
under the CC BY-NC-ND license 
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Fig. 1. Importance of identified meta-information during model development. (a) Given a dataset with unidentified composition of the dataset population, there is a high 

risk of bias, i.e. a model is systematically prejudiced to faulty assumptions. (b) For example in an extreme case almost all of the control cases form a special sub-population 

of young age. With knowledge on the dataset age composition one is at least aware that any model developed with this dataset has a high risk of being biased by age 

(Model 1) or can even choose a model mitigating the age influence (Model 2). (c) Biased models are very likely to lead to impaired performance in the target population 

hampering generalizability. 
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reatment using portable scanners and expected to be much more 

idely available in less developed healthcare systems than any 

ther imaging method. Additionally, the nature of the data - in- 

ividual 2D images - is resulting in much easier data management 

ompared to the image stacks of CT or the (arbitrary angle) se- 

uences of ultrasound. As a result, very large public datasets are 

vailable for CXR and the present work prioritised their analysis. 

.1. Motivation 

Machine learning, and in particular deep learning methods, 

romise to assist medical staff in coherent diagnosis and inter- 

retation of images ( Choy et al., 2018; McBee et al., 2018 ). A re-

arkable amount of machine learning models has been proposed 

n a very short amount of time to tackle the problems of COVID- 

9 diagnosis, quantification and stratification from X-Ray imaging 

 Shoeibi et al., 2020; Islam et al., 2020; Ilyas et al., 2020 ). 

However, there is a growing awareness in the community that 

he presence of different sources of bias significantly decreases 

he overall generalisation ability of the models, leading to over- 

stimated model performance reported in internal validation com- 

ared to evaluation on independent test data ( Soneson et al., 2014; 

ohen et al., 2020a; Zech et al., 2018; Maguolo and Nanni, 2020 ). 

n addition, numerous journal editorials are calling for better de- 

elopment, evaluation and reporting practices of machine learning 

odels aimed for clinical application ( Mateen et al., 2020; Nagen- 

ran et al., 2020; Campbell et al., 2020; Health, 2020; O’Reilly-Shah 

t al., 2020; Health, 2019; Stevens et al., 2020 ). Underneath, there 

re growing concerns about ethics and the risk of harmful out- 

omes of using AI in medical applications ( Campolo et al., 2018; 

eis et al., 2019; Brady and Neri, 2020 ). 

To avoid or at least be able to detect potential bias, it is impor-

ant that datasets and models are well documented. Some aspects 

f dataset building, such as criteria for subject inclusion and ex- 

lusion, recruitment method, patterns in missing data, and many 

ore, may influence model accuracy and introduce bias in pre- 

iction models. Among the most common sources of bias are un- 

nown confounders and selection bias ( Steyerberg, 2009; Griffith 

t al., 2020; Greenland et al., 1999; Heckman, 1979 ). In both cases, 

he presence of a spurious association between predictors and out- 

omes might be learned by the model, leading to undetected over- 

tting resulting in models not capable of generalizing and even- 
2 
ually failing transportation to clinical application (see Fig. 1 and 

olff et al. (2019) ). 

.2. Tools for model evaluation and information extraction 

In the last years, several guidelines and checklists to evaluate 

rediction model quality, risk of bias and transparency, depending 

n model characteristics, have been proposed. An essential require- 

ent to apply such tools is access to detailed dataset documenta- 

ion. 

odel evaluation. PROBAST (Prediction model Risk Of Bias Assess- 

ent Tool, Wolff et al. (2019) was developed to evaluate the risk of 

ias and the applicability to the intended population and setting of 

iagnostic and prognostic prediction model studies. TRIPOD (Trans- 

arent Reporting of a Multivariable Prediction Model for Individual 

rognosis or Diagnosis, Moons et al. (2015) aims to improve report- 

ng and understanding of prediction model studies. A third exam- 

le of a quality assessment tool, in this case specifically designed 

or machine learning and artificial intelligence research, is given 

y a set of 20 critical questions proposed in Vollmer et al. (2020) ,

o account for transparency, reproducibility, ethics, and effective- 

ess (TREE). These tools require answering specific questions about 

articipant selection criteria and setting, its numbers, information 

bout predictors and outcomes, and whether all of these choices 

ere appropriate for the model intended use. 

nformation extraction. The CHARMS checklist (Critical Appraisal 

nd Data Extraction for Systematic Reviews of Prediction Modelling 

tudies, Moons et al. (2014) was designed as a data extraction tool 

or systematic review of prediction modelling studies, including 

achine learning models. It is not specifically designed to evalu- 

te datasets, however a large part of its items are devoted to ex- 

ract information from data used in the studies. The BIAS check- 

ist (Biomedical Image Analysis Challenges, Maier-Hein et al., 2020 ) 

s intended to improve the transparency of reporting biomedi- 

al image analysis challenges regardless of application field, im- 

ge modality or task category. The main aim of the initiative is 

o standardise and facilitate the review process to raise the in- 

erpretability and the reproducibility of the results of biomedical 

hallenges by better reporting, as a potential solution to fully ex- 

loit their potential and maximise their capacity to move forward 
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1 https://datasetsearch.research.google.com . 
n the field ( Maier-Hein et al., 2018 ). Up to our knowledge, there

re no other tools, protocols or statements, exclusively designed for 

ataset evaluation. 

.3. State-of-the-Art 

In a recent review and critical appraisal of prediction models 

or diagnosis and prognosis of COVID-19 ( Wynants et al., 2020 ), all 

valuated models were rated at high risk of bias. The authors con- 

luded that they “do not recommend any of these reported pre- 

iction models for use in current practice”. For the subset of diag- 

ostic models based on medical imaging two main causes for high 

isk of bias were identified: 1) a lack of information to assess se- 

ection bias (such as how controls were selected or which subset 

f patients underwent imaging); and 2) a lack of clear reporting of 

mage annotation procedures and quality control measures. Similar 

onclusions were obtained in another publication specifically ad- 

ressing machine learning models using chest X-ray and CT images 

 Roberts et al., 2021 ). They found a high or unclear risk of bias in

ll studies and that the reported results were extremely optimistic, 

ainly due to limitation in the datasets or combination of datasets 

sed. 

.4. Aim & contribution 

Given the previously described disappointing state-of-the-art, 

e hypothesise that the current main obstacle towards building 

linically applicable machine learning models for COVID-19 is not 

he machine learning techniques per se , but instead access to re- 

iable training data that, on the one hand captures the problem 

omplexity, but on the other does not induce undetected bias to 

he models. 

Therefore, there is a need to raise awareness of such prob- 

ems and to aid modellers to efficiently find the right dataset for 

heir particular problem, supporting the creation of robust models. 

onsequently, this paper focuses on data instead of models, giv- 

ng an overview of current publicly available COVID-19 chest X-ray 

atasets and identifying strengths and limitations, including the 

ost evident potential sources of bias. 

We systematically evaluated the quality of COVID-19 chest X- 

ay datasets and their utility for training prediction models using 

n adapted version of the CHARMS tool and an adapted version of 

IAS. Dataset quality is measured by the amount and the detail in 

he description of the dataset variables and of the dataset build- 

ng process. Model designers need this information to evaluate the 

isk of bias and the generalizability, for example, using tools such 

s PROBAST, TRIPOD or TREE. The utility is determined by the data 

tructure (e.g. cross-sectional vs longitudinal), the available poten- 

ial outcomes (e.g. image annotations or survival information), and 

he amount of dataset information provided (e.g. sample size and 

nformation on missing data). 

Thus, this paper provides a more in-depth description of 

atasets than previous works ( Shuja et al., 2020; Sohan, 2020; 

hoeibi et al., 2020; Islam et al., 2020; Ilyas et al., 2020 ), that have

ocused on surveying papers describing methods, and on identify- 

ng the datasets used to train these methods, without assessing the 

uality or utility of the datasets. 

.5. Paper structure 

In Section 2 the methodology used to systematic search for 

atasets and evaluate their potential for clinical prediction mod- 

ls is given. Next, in Section 3 , the datasets selected for review are

nalysed in detail on their provided information content to assess 

he risk of bias. Moreover, in order to put this review in the con- 

ext of the current model development scenario, an analysis on 
3 
ataset usage in published papers was conducted and a general 

verview and discussion of the most commonly used datasets is 

iven. In Section 4 the insights from this analysis are discussed. 

inally, some recommendations for researchers aiming at clinical 

rediction model building are given in Section 5 . 

. Methods 

In this section, the search strategy for datasets is explained, the 

ligibility criteria are discussed, and subsequently the application 

f information extraction tools is described. 

.1. Dataset search, eligibility & selection 

To identify publicly available COVID-19 X-ray datasets which 

re sufficiently documented to asses their risk of bias, two search 

trategies were combined: a direct search for datasets using a spe- 

ialised dataset search engine, and an indirect search for datasets 

y screening in published papers for dataset references. To this 

nd the PRISMA (Preferred Reporting Items for Systematic Reviews 

nd Meta-Analyses, ( Moher et al., 2015 ) statement was adapted 

o the given special situation, where the final objects of interest 

re datasets instead of studies (see Fig. 2 ). Therefore, two separate 

RISMA flows from identification to eligibility, for the direct and 

ndirect case, were introduced. 

The identification step of the direct approach consisted of 

uerying the google research dataset search 1 with “covid” & “x- 

ay”. For the indirect approach PubMed, medRxiv and arXiv were 

ueried for any combination of {“covid”, “covid-19”}, {“x-ray”} and 

“dataset”, “data set”, “machine learning”, “deep learning”}. The 

earch was restricted to the time interval between 1st of January 

020 to 31st of March 2021. 

Next, in the PRISMA screening step, all papers obtained in the 

ndirect approach were excluded if they were not concerned with 

OVID-19, the main text was not written in English or they did not 

ontain any reference to a chest X-ray dataset. From the remaining 

apers all references to X-ray datasets were extracted and assigned 

s an annotation to the paper record. Datasets with no clear origin 

ere tagged as not identified and those that were not openly avail- 

ble (at least by simple registration) were marked as private . All 

ther datasets were labelled with an identifier and, if not yet pre- 

iously encountered, added to a running list of identified publicly 

vailable datasets. In the end this procedure yielded the set of all 

nique dataset references encountered. 

Datasets from the direct search approach were excluded if they 

ere not (publicly) available or did not contain any chest X-ray 

ata. The remaining datasets were de-duplicated to yield a second 

et of unique chest X-ray datasets. 

In the eligibility step of both the direct and indirect approach 

he extracted datasets were investigated in further detail and ex- 

luded if they did not qualify for an in-depth risk of bias analysis 

f COVID-19 X-ray datasets. First of all, this excludes all datasets 

hich do not contain any real COVID-19 related cases, excluding 

on-COVID and synthetic datasets. 

Furthermore, to be able to address questions on the risk of bias, 

 sufficient documentation of the dataset origin and population 

omposition has to be available (see Section 1.2 ). Any dataset, from 

hich one cannot reconstruct the collection procedure of the sam- 

les must be deemed of high risk of bias per se. Thus, all datasets 

ontaining no further information except the images themselves 

 no info ), or solely the origin of their collection ( no meta ) were

xcluded. Additionally, to be able to coherently address questions 

n patient selection/enrolment criteria and outcome definition, all 

https://datasetsearch.research.google.com
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Fig. 2. Adapted PRISMA workflow for the analysis of COVID-19 X-ray datasets. Boxes in blue indicate papers from the additional indirect search for papers using datasets, 

from which datasets (yellow/green) were extracted. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.) 
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atasets that were not collected under the same protocol but are 

erely a collection of case reports ( case collection ) were also ex- 

luded. 

Finally all datasets which are copies, modifications or aggrega- 

ions ( remix ) of other datasets were excluded. They carry at least 

he same risk of bias as their underlying primary source datasets, 

nd thus their minimal risk can be derived from the analysis of 

rimary datasets included in the analysis. Additionally, merged 

ataset carry a special risk of being confounded by dataset iden- 

ity ( DeGrave et al., 2020; Garcia Santa Cruz et al., 2020 ) and thus

ave to be deemed at high risk of bias if not treated accordingly 

see also Section 3.3.3 ). 

The full code and annotation data (including a list with the dis- 

arded datasets) to reproduce the extraction process is made pub- 

icly available 2 . 

.2. Dataset information extraction 

Due to the lack of specific tools to evaluate datasets for 

heir suitably to train reliable models, two different information 

xtraction tools, the CHARMS checklist and the BIAS tool (see 

ection 1.2 ), were adapted and employed to conduct an in-deep 

nalysis of the selected sets. 
2 github.com/luxneuroimage/public- covid- xr- data . 

p

c

4 
.2.1. CHARMS 

The following domains from the CHAMRS checklist were used 

or dataset evaluation: data source, participant description, out- 

omes, predictors, sample size and missing data. The domains 

bout model (development, performance and evaluation), results 

nd interpretation were omitted. The detailed definition of each 

tem can be found in the Supplementary material 1, Table S1. 

The information on Participant description, including recruit- 

ent method, inclusion and exclusion criteria, is needed to deter- 

ine the applicability and generalizability of the model, whether 

he study population is representative of the target population, and 

o discard the presence of selection mechanisms that can intro- 

uce bias. Information about received treatments could be relevant 

f they affect the outcome of prognostic models. 

The Outcomes to be predicted will depend on the purpose of 

he intended model, i.e. whether it is a prognostic or a diagnostic 

odel. Radiological findings, lesion segmentations and differential 

iagnosis could be suitable outcomes for diagnostic models, when 

hey are measured close in time to the image acquisition. When 

here are multiple images from the same subject acquired at dif- 

erent time-points (longitudinal data), a prognostic model could be 

rained, where features from the later image are predicted from 

he earlier one. Time to death or discharge, or whether ICU, sup- 

lementary oxygen or other life support treatments were needed, 

ould also be used in prognostic models. 

http://www.github.com/luxneuroimage/public-covid-xr-data
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Outcomes based on image findings could sometimes be deter- 

ined a posteriori (e.g. with a post-hoc annotation by a radiol- 

gist), however a precise definition of them is essential to de- 

cribe model applicability. It is also important to specify whether 

utcomes were obtained blinded to predictors and/or the other 

ay round, because this affects the causal model assumption and 

he strategies to mitigate bias (see Castro et al., 2020 ). Further- 

ore, model performance could be overestimated in the absence 

f blinding, in particular when the outcome require subjective in- 

erpretation, as is the case for radiological diagnosis ( Moons et al., 

014 ). 

The main predictor considered here is the X-ray lung image, 

owever other measurements could be incorporated (additionally) 

nto prediction models. Details of the image acquisition protocol 

nd acquisition device description are important as they could be 

 significant source of confounding when merging images from dif- 

erent sources. In addition, the model performance could be re- 

uced if applied to images acquired using a different setting than 

n the training set. 

Finally, a large enough sample size and the amount and treat- 

ent of missing data are highly relevant to avoid overfitting and 

onfounding, respectively ( Moons et al., 2019 ). 

Appropriate sample size will depend on several aspects of the 

odel development process, such as the number of predictors, its 

reprocessing and the magnitude of the effect to be predicted. For 

xample, a model using as predictors the volume of a lung lesion 

nd a few other prespecified scalar biomarkers may need much 

ess training data than a neural network system using the whole 

mage, because the latter model includes several orders of magni- 

ude more of learnable parameters. 

.2.2. BIAS 

Despite not been a dataset review tool, the BIAS checklist pro- 

ides specific questions about dataset origin, purpose, distribution 

nd intended use which are considered highly valuable for our in- 

epth dataset analysis. 

The adapted version of BIAS checklist employed in this work 

s given in (Supplementary material 1, Table S2). For further read- 

ng refer to the Appendix A: BIAS Reporting Guideline of Maier- 

ein et al. (2020) . Similarly to CHARMS, only items related to 

atasets were kept. 

.3. Analysis of the dataset use frequency 

To analyse the dataset usage pattern in peer-reviewed publi- 

ations, the result of the dataset screening was further evaluated 

or the subset of PubMed papers. In the screening procedure 

he records of these papers got annotated with their dataset 

eference (see Section 2.1 ). Additionally, the date of the article was 

xtracted from the < MedlineCitation >< Article >< ArticleDate > 

eta data tag. 3 When this date was not speficied the 

 MedlineCitation >< Article >< Journal >< JournalIssue >< PubDate > 

as used instead. 

. Results 

This section is structured as follows: First, the results of the 

dapted PRISMA search are presented and then the extracted 

ligible datasets are analysed in detail. Afterwards, an analysis 

f dataset usage frequency is presented and the most popular 

atasets not eligible for the detailed analysis are briefly described, 

ith special emphasis on their risk of bias. 
3 https://www.nlm.nih.gov/bsd/licensee/elements _ descriptions.html . 

u

i

i

5 
.1. Dataset search & selection 

The dataset extraction process consisted of two complemen- 

ary approaches: A direct search for datasets using the google re- 

earch dataset search and an indirect search of dataset references in 

ublished peer-reviewed papers on PubMed and in pre-prints on 

edRxiv and arXiv. The direct search revealed 112 unique COVID- 

9 related X-ray datasets, from which only three were eligible for 

 risk of bias analysis ( Fig. 3 a). Most of them were deemed non-

ligible for being either remixes of other datasets or providing 

o meta-information. A further breakdown of dataset origin by 

op-level domain ( Fig. 3 b) reveals that the overwhelming major- 

ty of these poorly documented or remixed datasets is hosted on 

aggle.com . 

Conversely, the indirect search identified only about half of the 

otentially relevant datasets (64), but in turn, nine of them (in- 

luding all three from the direct search) met the criteria for further 

nalysis ( Fig. 3 a). 

Additional to the original primary release of the data, the indi- 

ect search revealed two re-annotations, i.e. expert post-hoc anno- 

ations of previously released datasets. Notably, almost none of the 

atasets in the papers were among the worst with no documen- 

ation at all (see “noinfo” label in Fig. 3 ). Nevertheless, many pa- 

er utilise remix datasets sourced from kaggle.com and github.com 

 Fig. 3 c). 

.2. Availability of metadata for risk of bias assessment 

The selected datasets contain different degree of additional in- 

ormation. On the lower end of the spectrum are ACTUALMED, HM 

OSPITALES and ML HANNOVER which include only a short descrip- 

ion and mainly provide additional data in tabular form. All other 

atasets are described in more detail in an accompanying paper. 

otably, three of them deal exclusively with the dataset itself ( RI- 

ORD, COVID-19-AR, BIMCV-COVID19 ), whereas all other papers are 

 combination of dataset and modeling description. Based on the 

rovided information, in the following sections the datasets are 

nalysed in detail using the dataset-adapted CHARMS and BIAS 

ools. 

.2.1. CHARMS analysis 

In the CHARMS analysis all primary datasets are evaluated for 

heir information content with respect to sample size, participant 

ata, outcome and predictor information. Additionally, the two re- 

nnotation datasets ( CARING and AR-OPC ) are analysed with re- 

pect to outcome information only, as they share the participant 

ata and predictor information with their primary datasets. Anal- 

sis of the adapted CHARMS items is depicted in Tables 2 and 3 .

dditionally, an extended version of the answers can be found in 

upplementary Material 2. 

Participants . In general, there was limited information about 

articipants (see Tables 2 and 3 , Domain: Participant data). Some 

atasets (6/9) provided a clear, albeit very brief, description of the 

ligibility and recruitment method (See Description column of “El- 

gibility/recruitment” rows in Supplementary Material 2). Most of 

he datasets included participant data such as sex (7/9) and age 

6/9), but only one of them provided other relevant information, 

uch as height, weight and race, and another one included clin- 

cal symptoms. Only two included information about comorbidi- 

ies, which might be particular relevant for prognostic models for 

OVID-19, given the strong evidence of interactions between co- 

orbidities and worse outcome ( Yang et al., 2020 ). In general, the 

articipant description is too scarce to asses if the training pop- 

lation is representative of a potential target population, hamper- 

ng the applicability of the models. It is also difficult to determine 

f there are hidden selection mechanisms, including inclusion and 

https://www.nlm.nih.gov/bsd/licensee/elements_descriptions.html
http://www.kaggle.com
http://www.kaggle.com
http://www.github.com
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Fig. 3. Identified datasets and their eligibility classification (a) While the direct search identified more datasets overall, the indirect search for referenced datasets in papers 

yielded more eligible datasets. (b) Most of the papers found in the direct search were sourced from www.kaggle.com and either contained no accompanying information at 

all or were remixes of other datasets. (c) Likewise, the most common origin of dataset references in papers is kaggle.com , but many eligible datasets have been found on 

dedicated medical imaging websites. 

Table 1 

Key definitions. 

Target population : Set of people with certain common characteristics 

(disease, age, localisation) for whom the model is aimed to be applied. 

Predictors : Independent variables or inputs of the prediction system. It 

is assumed that they are always available at the time of prediction. 

Outcome : The dependent variable or output of the prediction system. 

Bias : Systematic error that leads to distorted estimates of the models 

predictive performance. 

Selection bias : A.k.a. collider bias, happens when some samples are 

more likely to be selected than others, making the sample not 

representative of the population. 

Generalizability : Capacity of a model to correctly predict unseen data 

from the same population as the training sample. Can be determined 

with internal validation. 

Transportability : Measure of the extent to which a predictive model 

performs well across different populations. Can be determined with 

external validation. 

Confounder : Variable that has an influence in both, the predictor and 

the outcome. The presence of uncontrolled confounders leads to spurious 

associations hampering generalizability and transportability. 
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xclusion criteria, that could be a source of strong confounding 

nd limit generalizability and transportability of developed mod- 

ls. Only two datasets provide information about treatment, which 

ould be another serious limitation for prognostic models, in par- 

icular taking into account that this is a new disease and different 

xperimental treatments might have been applied in each country 

r hospital unit. 

Candidate Outcomes . Across and within datasets a variety of po- 

ential outcome variables are available (see Tables 2 and 3 , Do- 

ain: Outcome information). They can be useful for diagnostic or 

rognostic models, depending on whether the variable can be as- 

essed at the time of image acquisition or whether one has to wait 

ome time for the variable to change. Diagnostic outcomes might 

e either obtained by means of a diagnostic test independent of the 

mage (e.g. a Polymerase chain reaction test, PCR) or derived from 

he image through direct image interpretation by a trained doctor. 

uch radiological annotations by doctors range from simple labels 

n the presence of COVID-19 ( ACTUALMED, RICORD ), over quanti- 

atively rated severity of COVID-19 ( RICORD, BRIXIA, COVIDGR ) to 

etailed labelling of particular radiolgical findings, like consolida- 

ions or ground glass patterns ( BIMCV ). All radiological labels can 

ither be globally attributed to the image or localised at certain 

arts of the image. Such localisation range from roughly defined 

reas according to anatomical landmarks ( BRIXIA ), over annotated 

ounding boxes (BBoxes) in the image ( CARING ) to pixelwise seg- 

entation ( AR-OPC ). 
6 
Typical prognostic variables are clinical outcomes like ICU ad- 

ission and survival ( ML HANNOVER, COVID-19-AR and HM HOS- 

ITALES ). But also quantitative diagnostic outcomes, like severity, 

ight be used for prognostic models if they are available longitu- 

inally. 

In general, a lack of image derived annotations is not a criti- 

al issue because these could be obtained post-hoc by independent 

adiologists. This is, for example, the case for the COVID-AR and 

IMCV-COVID19 datasets, for which independent post-hoc annota- 

ions are provided in AR-OPC and CARING , respectively. However, if 

esearchers are going to use image annotations provided with the 

ataset, a precise definition and method description is needed. In 

articular, definitions and methods for image annotations are com- 

letely missing for the ACUTALMED dataset. 

Candidate predictors . The number of predictors, in addition to 

-ray scans and demographic variables, vary widely between the 

atasets (see Table 2 & 3 , Domain: Predictor information). Two 

atasets have no additional potential predictors apart from image, 

iew and demographics. 

The DICOM (Digital Imaging and Communications in Medicine 

tandard) header is included as candidate predictor because it may 

ontain potentially useful information ( Mustra et al., 2008 ). Most 

atasets (6/9) include images in DICOM format. The other 3 are 

L HANNOVER , which used NIfTI (Neuroimaging Informatics Tech- 

ology Initiative) format for privacy reasons, and COVIDGR and AC- 

UALMED , that provide only post-processed.jpg and.png, respec- 

ively. 

Except for the evident cases, it was difficult to assess whether 

he predictors are blinded to the outcomes, and whether the out- 

omes are blinded to the predictors. For example, when the out- 

omes are some kind of radiological annotation, the former are 

learly not blinded to the latter. On the other hand, when the 

utcome is the patient survival, the predictor (i.e. the image) is 

linded to the outcome. Other combinations are more subtle and 

 careful protocol description is needed to determine blinding. For 

xample, we can not guaranty that the date of ICU admission is not 

ffected by the X-ray image which, after all, is a diagnosis tool that 

elp to make such decisions. Therefore, blinding is not reported for 

eing either trivial or difficult to assess in the studied datasets. 

Sample size . The sample size is critical for clinical prediction 

odels based on medical images, because of the high risk of over- 

tting due to the high dimensionality of the input. 

Lack of large enough sample sizes is a common issue in all 

edical applications, but COVID-19 data is especially scarce. The 

ample size of the reviewed datasets ranges from nearly 8k sub- 

ects and more 23k images ( BIMCV-COVID19 ) to only 71 partici- 

http://www.kaggle.com
http://www.kaggle.com
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Table 2 

CHARMS analysis - Part I (Datasets 1–5). 

Domain Items \ Datasets: BRIXIA a ML HANNOVER b COVID-19-AR c HM HOSPITALES d ACTUALMED e 

Participant data Eligibility recruitment Yes Unclear Yes Yes No 

Participant description Age, sex, location, 

study setting 

Sex Age, sex, race, location, weight, height, comorbidities Age, sex No 

Treatment info No No No Yes No 

Study dates Yes No No Yes No 

Country Italy Germany USA Spain Unknown 

Outcome information Candidate outcomes radiological severity clinical outcome clinical outcome radiological 

diagnosis 

AR-OPC f 

radiological 

diagnosis 

clinical outcome radiological 

diagnosis 

Train Test 

Labels 4 severity level at 6 

locations 

ICU, survival ICU, survival flowing text segmented opacity ICU, survival, 

discharge 

normal, covid 

uncertain 

# of labelled images 4553 150 - - 256 221 - 238 

Method definition Yes Yes - - No Yes - No 

Outcome timing Yes Yes Yes No Yes Yes Yes - 

Diagnosis / Prognosis Both Both Prog. Prog. Both Both Prog. Diag. 

Predictor information Candidate predictors DICOM header view, modality, 

laboratory data, 

vital signs 

DICOM header, comorbidities DICOM header, 

medications, 

laboratory data, 

vital signs 

view 

Method definition Yes No Yes Yes No 

Measurement timing Yes Yes Yes Yes - 

Sample size # subjects / images 2351/4703 71/243 105/256 2307/2310 215/238 

a Brixia score COVID-19 dataset ( Signoroni et al., 2020 ) ( https://brixia.github.io/ ). 
b COVID-19 Image Repository ( https://github.com/ml- workgroup/covid- 19- image- repository ). 
c COVID-19-AR ,( Desai et al., 2020 ), ( https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=70226443 ). 
d Covid Data Save Lives ( https://www.hmhospitales.com/coronavirus/covid-data-save-lives/english-version ). 
e ACTUALMED ( https://github.com/agchung/Actualmed- COVID- chestxray-dataset ). 
f AR-OPC , external annotation ( Tang et al., 2020 ) ( https://github.com/haimingt/opacity _ segmentation _ covid _ chest _ X _ ray ). 

7
 

https://brixia.github.io/
https://github.com/ml-workgroup/covid-19-image-repository
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https://www.hmhospitales.com/coronavirus/covid-data-save-lives/english-version
https://github.com/agchung/Actualmed-COVID-chestxray-dataset
https://github.com/haimingt/opacity_segmentation_covid_chest_X_ray
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Table 3 

CHARMS analysis - Part II (Datasets 6–9). 

Domain Items \ Datasets: BIMCV-COVID19 a COVIDGR b RICORD c AIforCOVID d 

Participant data Eligibility recruitment Yes Unclear Yes Yes 

Participant description Age and sex No Age, sex, testing method Sex, age, 

symptoms, 

comorbidities 

Treatment info No No No Yes 

Study dates Yes No No No 

Country Spain Spain Turkey, USA, Canada, Brazil Italy 

Outcome information Candidate outcomes radiological 

diagnosis 

diagnostic test CARING e 

radiological 

diagnosis 

diagostic test radiological 

severity 

radiological 

diagnosis 

radiological 

severity 

clinical outcome 

Labels radiological 

findings (336) 

PCR, IgG, IgM 

f radiogical findings 

(22) + BBoxes 

PCR normal, mild, 

moderate, severe 

typical, uncertain 

atypical, negative 

mild, moderate, 

severe 

mild, severe, death 

Labelled images 23k – 1749 – 426 998 998 –

Method definition Yes Yes Yes Yes Yes Yes Yes 

Outcome timing – – – No - Yes No 

Diagnosis/Prognosis Both Diag. Both Diag. Both Both Prog. 

Predictor information Candidate predictors DICOM header DICOM header DICOM header, 

comorbidities, 

medications, 

laboratory data, 

vital signs. 

Method definition – - - Yes 

Measurement timing Yes - Yes No 

Sample size # subjects / images 4706/16840(COVID + ) 3238/6540 (COVID-) 426/426 (COVID + ) 426/426 (Control -) 361/998 983/983 

a BIMCV-COVID19 , Valencian Region Medical ImageBank ( Vayá et al., 2020 )) ( https://bimcv.cipf.es/bimcv-projects/bimcv-covid19/ ). 
b COVIDGR ( Tabik et al., 2020 )( https://dasci.es/transferencia/open- data/covidgr- 2/ ). 
c RICORD ( Tsai et al., 2021 )( https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=80969742 ). 
d AIforCOVID ( Soda et al., 2020 ),( https://aiforcovid.radiomica.it ). 
e CARING , external annotation ( Mittal et al., 2021 ) ( https://osf.io/b35xu/ ). 
f Immunoglobulin G (IgG) and Immunoglobulin M(IgM). 

8
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Table 4 

BIAS analysis of the nine selected datasets: Using an adapted version of BIAS tools the quality of dataset description was evaluated. 

BRIXIA 

ML 

HANNOVER 

COVID-19- 

AR 

HM HOSPI- 

TALES ACTUALMED 

BIMCV- 

COVID 

19 COVIDGR RICORD AIforCOVID Coverage (%) 

Principal objective Yes Yes Yes Yes No Yes Yes Yes Yes 88 

Team description Yes No Yes No No Yes Yes Yes Yes 66 

Oficial website or platform Yes Yes Yes Yes Yes Yes Yes Yes Yes 100 

Open or on request On request Open Open On request Open On request Open Open On request 100 (55) 

Include potential limitations Yes No No No No No No Yes Yes 33 

Ethical approval Yes No No No No Yes Yes Yes Yes 55 

Usage agreement 

specification 

Yes Yes Yes Yes No Yes No Yes Yes 77 

General image information Yes Yes Yes Yes Yes Yes Yes Yes Yes 100 

General patient information Yes Yes Yes Yes No Yes No Yes Yes 77 

Acquisition device Yes No Yes Yes No Yes No Yes Yes 66 

Acquisition protocol Yes No Yes Yes No Yes No Yes Yes 66 

Post-procesing tecniques Yes No Yes Yes No Yes Yes Yes Yes 77 

Regional origin of data Yes Yes Yes Yes No Yes Yes Yes Yes 88 

Whole or training/test 

division 

Whole ∗ Whole Whole Whole Whole Whole Whole Whole Whole 100 (Whole) 

Different population 

distribution explanation 

No No Yes No No No No No Yes 22 

Description of annotation 

methods 

Yes No Yes No No Yes Some Yes Yes 66(55) 

If human annotations, 

description 

Yes – – – – Yes No Yes – 75% When 

apply 

If multiple annotations 

merge, description 

Yes – – – – – – Yes – 100% When 

apply 

Indication of potential error 

sources 

Yes No No No No Yes No No Yes 33 

Quantification of potential 

error sources 

Some No No No No Some No No Some 33(0) 

∗The dataset was realised as a whole, but the annotation method for training and test differ, hence in other parts of the paper training and test subsets are analysed 

separately. 
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ants and 243 images ( ML HANNOVER ). Two datasets include 2.3k 

ubjects, another two less than 1.0 0 0 and the other two 361 and

05 subjects. 

.2.2. BIAS analysis 

Comprehensive and standardised reporting of datasets is key to 

ddress questions of generalizability and transportability in mod- 

ls. The coverage of essential reporting elements is evaluated us- 

ng the adapted BIAS tool (see Table 4 ). Additionally, an extended 

ersion of the answers can be found in Supplementary Material 

. While some questions have a full or very high coverage, such 

s the description of a principal objective (8/9), general image in- 

ormation (9/9) official website or associated platform (9/9) or re- 

ional origin of the data (8/9), others have poor coverage. Infor- 

ation on potential limitations is available for only 3 of the 9 

atasets. Information on whether the population distribution of the 

ataset matches with the general or expected population is even 

ore scarce, available in only 2 datasets. In general, the coverage 

or potential error sources is very low, only 3 datasets acknowledge 

otential error sources and none of them has a proper quantifica- 

ion of such errors. 

Since the scope of the present work focused on publicly avail- 

ble datasets, we categorise their openness as ‘On request’, when 

ome registration is needed, and ‘Open’, when the access to the 

ataset is straightforward. The access to specific information about 

he image, such as acquisition device (6/9), acquisition protocol 

6/9) and post-processing techniques (7/9), has a medium-high 

overage. Importantly, datasets sharing images in DICOM format 

ere more likely to provide these information, as it could partially 

e derived from the DICOM headers. 

All datasets were released “as a whole” in contrast to situations 

here datasets are distributed split into train and test subsets, and 

he access to the test set labels may be limited (as it is typical for

hallenges). However, the BRIXIA dataset constitutes a special case, 
9 
sing two different methods to generate “train” and “test” labels, 

.e. all data have label annotations (whole), but a “test” subset has 

abels generated with another method. The property description of 

he annotation methods is partially covered, with the datasets ML 

ANNOVER, HM HOSPITALES and ACTUALMED lacking such descrip- 

ion. Importantly, these datasets also lack a corresponding paper 

escribing the dataset. 

.3. Usage of COVID-19 datasets in peer-reviewed papers 

Within the dataset extraction procedure 201 peer-reviewed pa- 

ers that reference COVID-19 X-ray datasets have been identified 

n PubMed. A temporal breakdown on publication date shows an 

teady increase in publication numbers per month since the first 

aper appeared in March 2020 ( Fig. 4 ). 

Since all these paper passed the quality control mechanism of 

eer revision, it is interesting to see how the dataset usage in 

hese papers relates to our analysis on the datasets’ risk of bias. 

ntriguingly, all the datasets meeting inclusion criteria for analysis 

n the previous section are rarely employed, with only the least 

ell documented dataset, ACTUALMED , having more than 2 refer- 

nces ( Fig. 4 ). This might be partly explained by the fact that all

hese dataset got mentioned for their first time not before Novem- 

er 2020 and thus it is taking time for the community to recognise 

nd incorporate them. 

Thus, most papers published so far relied on one or more 

atasets excluded from the analysis. To better understand the im- 

lication of this usage pattern, a short overview on the most fre- 

uently used datasets (more than 4 references) and their risk of 

ias is presented in the following, categorised according to their 

xclusion criterion. 

.3.1. Non-COVID-19 datasets 

60% of all papers employ datasets built before the COVID-19 

andemic. Either for pre-training or, more commonly, to enrich 
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Fig. 4. Usage pattern of datasets employed in peer-reviewed papers (PubMed). Top-Panel: Number of COVID-19 X-Ray imaging papers per month and total number of 

referenced datasets therein. Left-Panel: Percentage of all screened papers (201) that reference at least one dataset of an exclusion category (hollow bars) and the percentage 

of those that reference a specific dataset (full bars). All datasets with less than 5 mentions are sub-summed in the “other” category except all eligible ones (in bold). 

Central-Panel: Temporal evolution of the dataset reference count by month. 
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control cases. 
raining data with non-COVID-19 controls. A short summary of 

hese datasets is given in the supplementary material (Supplemen- 

ary Material 1, Table S3) and more comprehensive overviews are 

rovided in the recent reviews of Sogancioglu et al. (2021) and 

arcia Santa Cruz et al. (2020) . In general, these datasets are much 

arger and better curated than those for COVID-19. For example, 

here exists a quite exemplary datasheet for the CheXpert dataset 

 Garbin et al., 2021 ). 

But even if the datasets themselves are at lower risk of bias, 

ach of them reflects a certain sub-population. Thus, combining 

hem with COVID-19 datasets always introduces the risk of con- 

ounding by dataset peculiarities. For example, the most frequently 

sed non-COVID dataset, Guangzhou pediatric ( Kermany et al., 

018 ), is composed of paediatric patients (aged 1–5 years) in 

uangzhou, China. It is commonly used in combination with 

OVID-19 datasets representing an adult population outside of 

hina. Models trained on such combinations are at high risk of be- 

ng confounded by age, for example. 

.3.2. Case collections 

70% of all papers utilise a case collection dataset. These datasets 

onsists of cases published on various websites to facilitate knowl- 

dge transfer between radiologists. Usually, these are websites 

f radiological associations like sirm.org and radiopedia.org , but 

ometimes also more peculiar sites like a radiologist feed on 

witter.com 

4 . 

It is worth emphasising that case collections are originally 

ade public with educational reasons in mind, and not for train- 

ng prediction models. Thus, they provide no clear protocol of sub- 

ect enrolment and are not representative of any defined popu- 

ation, but are a selection of cases deemed interesting. Thus, for 

ny model trained and/or validated on them it is unclear how 
4 https://twitter.com/chestimaging/status/1243928581983670272 . 

10 
his model performs on a population in an actual clinical setting. 

everal initiatives like Cohen/IEEE8023 ( Cohen et al., 2020b ), kag- 

le/andrewmd 5 and agchung/Figure 1 6 collect case collections and 

rovide them in a structured dataset format ( Fig. 5 ). Among those, 

he Cohen/IEEE8023 dataset is by far the most popular COVID-19 

ataset and is referenced in 68% of all papers. It was one of the 

rst available datasets (already in April 2020), it is easily accessible 

hrough cloning a Github repository, and it provides a well main- 

ained meta-data table. However, none of the meta-data variables 

an account for the aforementioned potential inherent selection bias 

f case collections , due to their selection for educational purposes 

f fellow radiologists. 

.3.3. Remix datasets 

Remix datasets are referenced in about one third of the papers. 

e use the term Remix to refer to aggregations of datasets be- 

ng redistributed as a new dataset. The aggregated and then redis- 

ributed source datasets are often primary datasets, but can also be 

ther remixes or even case collections, forming a potentially very 

omplex aggregation hierarchy (see Fig. 5 ). 

The most frequent examples of theses kind are the kag- 

le/tawsifurrahman ( Chowdhury et al., 2020 ) and the COVIDx 

ataset ( Linda Wang and Wong, 2020 ) which combine different 

ources of COVID-19 and non-COVID cases ( Fig. 5 ). 

Whereas at first glance it seems convenient to obtain such 

atasets as compilations instead of separate parts, the aggregation 

bfuscates the individual story of each dataset and the associated 

isk of bias as well. In the case of the kaggle/tawsifurrahman dataset 

he most obvious risk is induced again (cf. Section 3.3.1 ) by mixing 

n a pediatric population from the Guangzhou pediatric dataset as 
5 https://www.kaggle.com/andrewmvd/convid19- X- rays . 
6 https://github.com/agchung/Figure1- COVID- chestxray-dataset . 

http://www.sirm.org
http://www.radiopedia.org
http://www.twitter.com
https://twitter.com/chestimaging/status/1243928581983670272
https://www.kaggle.com/andrewmvd/convid19-X-rays
https://github.com/agchung/Figure1-COVID-chestxray-dataset
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Fig. 5. Overview on the relationships of popular COVID-19 case collections, remixes and non-COVID datasets. Grey boxes represent datasets which can be downloaded 

as one entity. Green boxes indicate primary COVID-19 datasets meeting the inclusion criteria for review. Transparent boxes indicate data sources not directly available as 

downloadable datasets. Diamond shaped symbols indicate that the attached source dataset is (partially) included in an aggregated dataset. Dotted lines describe the case 

when images of a source dataset are included in an aggregated dataset but labels have been re-annotated. The colouring of the circle in the upper right corner of each 

datasets indicates the approximate proportion of COVID-19 patients (yellow) and control subjects (gray). (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 
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But the most general risk to all such compilations is confound- 

ng by dataset identity. This effect was for example clearly demon- 

trated for the COVIDx dataset by means of an external test set in 

obinson et al. (2021) and more general for different COVID-19 re- 

ated dataset merges in Ahmed et al. (2021a,b) . 

Another evident risk are case duplications caused by the in- 

ertwined aggregation process illustrated in Fig. 5 . This can lead 

o duplicate cases in train and test data as demonstrated in 

arcia Santa Cruz et al. (2020) and thus severely biased evalu- 

tion scores (data leakage). This risk is even increased by fur- 

her dataset merging of modellers when no attention is paid to 

he dataset aggregation hierarchy. For example the kaggle/bachrr 7 

ataset is occasionally mixed with the Cohen/IEEE8023 dataset 

 Albahli and Albattah, 2020; Ismael and Ş engür, 2020 ) despite pro- 

iding the same collection of cases ( Fig. 5 ). In another example, 

omes et al. (2020) use the Cohen/IEEE8023 dataset for training 

nd ML HANNOVER for validation, despite ML HANNOVER being a 

ubset of the former (see Fig. 5 ). 
7 https://www.kaggle.com/bachrr/covid-chest-xray . 

e

i

i

b

l

11 
.3.4. Private datasets 

Private datasets are employed in 17% of the investigated pa- 

ers. These datasets are typically sourced from a single hospital 

r a regional hospital association and thus they represent a very 

pecific population. Some models are purely based on such a pri- 

ate dataset (e.g. Shamout et al., 2021; Castiglioni et al., 2021; Xia 

t al., 2021 ). But many authors utilise small private dataset to- 

ether with larger public datasets. An exemplary case is the use 

f private datasets as external test data, therewith assessing the 

ransportability of models trained on (merged) public datasets to 

he private test data population and thus to the underlying hospi- 

al setting ( Park et al., 2021; Kim et al., 2021; Elgendi et al., 2021;

obinson et al., 2021 ). 

. Discussion 

This work highlights a widespread problem in prediction mod- 

ls for medical image analysis. While the problem of overfitting 

s commonly acknowledged when dealing with a small number of 

mages, other sources of bias such as confounders and selection 

ias are not as frequently considered. This is evident by the care- 

ess use of datasets, where critical questions about the population, 

https://www.kaggle.com/bachrr/covid-chest-xray
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uch as recruitment procedures, inclusion and exclusion criteria, 

r outcome measurement procedures, are not addressed. Some au- 

hors ( Cohen et al., 2020b ) have already acknowledged that many 

atasets do not represent the real-world distribution of cases, that 

he presence of selection bias is highly probable (particularly on 

ase study collections), and therefore that clinical claims must take 

nto account these limitations. 

However, the first step to tackle these issues is to have a good 

escription of datasets. Only then strategies to reduce the bias can 

e implemented and model limitations, including the range of ap- 

licability, can be acknowledged. 

Unknown confounders and collider bias are not as problem- 

tic in prediction models as they are in causal inference ( Griffith 

t al., 2020; Wynants et al., 2020 ). However, model generalizability 

s compromised and its prediction power can only be maintained 

hen training and target population remain similar and are sub- 

ect to the same sampling mechanism. Even in this particular case, 

pecifying the optimal target population cannot be done without 

nowing the training population characteristics. 

Recently, there have been some efforts to address the gen- 

ral problem of bias in AI, in particular regarding the use of hu- 

an data. In Mitchell et al. (2019) , for example, authors encour- 

ge transparent model reporting and propose a framework to de- 

cribe many aspects of model building, including dataset descrip- 

ion. Other tools in progress, such as datasheets for datasets, pro- 

ose systematic documentation of datasets ( Gebru et al., 2018 ). 

General considerations about clinical prediction models 

 Steyerberg, 2009 ) are as relevant in complex AI models as in 

imple linear regression, however they are much more difficult 

o address in the former case. To this end, several protocols for 

I model development are being developed ( Collins and Moons, 

019; Liu et al., 2019; Faes et al., 2020; Stevens et al., 2020 ). 

.1. Bias in medical imaging models 

Medical imaging based machine learning models, in particu- 

ar Convolutional Neural Networks (CNNs), are known not only 

o learn underlying diagnostic features, but also to exploit con- 

ounding image information. For example, it was shown that the 

cquisition site, regarding both the hospital and the specific de- 

artment within a hospital, can be predicted with very high ac- 

uracy ( > 99% ) ( Zech et al., 2018 ). Furthermore, CNN model were

ble to identify the source dataset with a high accuracy ( > 90% )

olely from the image border region i.e. image parts containing 

o pathology information at all ( Maguolo and Nanni, 2020 ). If dis- 

ase prevalence is associated with the acquisition site, as it is of- 

en the case, this can induce a strong confounder. Thus, in any ag- 

regated dataset composed from originally separated sub-datasets 

or COVID-19 and control cases, the dataset identity is fully con- 

ounded with the group label. Therefore, it is difficult to isolate 

he disease effect from dataset effect, making the desired learning 

lmost impossible and posing a high risk of overestimating pre- 

iction performance. Indeed it has been observed that, by train- 

ng on different COVID-19 and non-COVID-19 dataset combinations, 

he “deep model specialises not in recognising COVID features, 

ut in learning the common features [of the specific datasets]”

 Tartaglione et al., 2020 ), i.e. “these models likely made diagnoses 

ased on confounding factors such as [...] image processing arti- 

acts, rather than medically relevant information” ( Ahmed et al., 

021b ). 

Besides features of the acquisition site, the demographic charac- 

eristics of the populations can also yield a strong confounder. An 

xample are remix datasets that merged adult COVID-19 subjects 

ith non-COVID-19 controls from the Guang-zhou pediatric dataset 

from age 1–5 years old), posing the very high risk that models 

ill associate anatomical features of age with the diagnosis. 
12 
However, difficulties are not limited to aggregated datasets, but 

lso single-source datasets are not free of potential confounders 

nd other sources of bias. The classical example is a different imag- 

ng protocol depending on the patient’s health status. For exam- 

le, the PA prone protocol (posterior-anterior, standing in front 

f the detector) is the preferred imaging setup for lung X-ray in 

eneral. However, if the patient is bed-bound, as its common in 

everely ill COVID-19 cases, the clinical staff is forced to carry out 

P supine imaging (anterior-posterior, while laying on the back), 

sing a portable scanner. As a result, a naive machine learning sys- 

em may associate PA imaging with better outcome by fitting to 

eatures induced by the confounders. 

Another confounding factor might be the presence of medical 

evices like ventilation equipment or Electrocardiogram (ECG) ca- 

les, which allow a model to associate images with patient treat- 

ent instead of disease status. For example, for the NIH ChestXray 

ataset, a critical evaluation has shown that “in the pneumotho- 

ax class, [...] 80% of the positive cases have chest drains. In these 

xamples, there were often no other features of pneumothorax”

 Oakden-Rayner, 2020 ). Datasets that provide additional annota- 

ions on the presence of medical devices (e.g. BIMCV-COVID19 fa- 

ilitate a risk analysis on this confounding effect and also enable 

itigation strategies in training. 

In general, one has to distinguish between labels that have been 

nnotated by taking only the image itself into account and la- 

els that have been generated by a different source, i.e. from an- 

ther diagnostic method like CT or PCR. Unfortunately, radiolog- 

cal reports done in clinical routine are a mixture of both. Radi- 

logists are often aware of the patients clinical context (and thus 

not blinded to the predictors”). This extra information is reflected 

n the reports, especially because they are done to communicate 

nformation between different doctors. For example, it has been 

hown for the NIH ChestXray dataset that, in a substantial fraction 

f images, the associated finding extracted from the reports can 

ot be confirmed by a post-hoc assessment of the images alone 

 Oakden-Rayner, 2020 ). 

Bias arises more easily when the intended application of the 

rediction model is not clearly defined. For example, if the model 

bjective is to find radiological manifestation of the disease in the 

mages, that are not necessarily apparent to the radiologist naked 

ye, the labels should be generated by the best possible diagnos- 

ic test that does not rely on imaging information from the same 

odality. For instance, a perfectly valid goal could be to determine 

hether a feature observed in CT, but not visible in XR, could still 

e detected by an ML model. In contrast, if the goal is to repro- 

uce radiological findings (for example, to save radiologist time) 

he label should be radiological annotations assessed by an inde- 

endent clinician that has no information except for the image (i.e. 

s “blinded to the predictors”). Otherwise, the risk of bias increases 

ignificantly and the generalisation ability is compromised because 

e can not understand where the key information is coming from, 

hat the model is learning, and what the possible sources of bias 

re. In this sense, it is worth noting that RICORD, BRIXIA test and 

he COVIDGR datasets do provide such annotations solely derived 

rom the images. Furthermore, as such image-based annotation 

s independent of the collection process itself, such annotations 

ould be independently created post-hoc like in the case of BIMCV- 

OVID19 and COVIDGR with AR-OPC and CARING , respectively. 

All in all, datasets with an inherently high risk of inducing bias 

ight still be useful for training models if applied appropriately. 

irst, in contrast to classical statistical or standard machine learn- 

ng methods, deep learning models are highly complex systems 

hat may include several building steps and include auxiliary train- 

ng tasks. 

Quality standards for datasets used to (pre-)train these building 

locks may not necessarily be as high as the ones for evaluating 
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he final model. Some of these datasets that are deemed “close to 

seless” for training a serious medical diagnostic tool may be per- 

ectly appropriate for pre-training and auxiliary tasks. 

In this case, it is important that model performance metrics are 

eported also for an appropriate external test dataset, which can 

eveal any model bias especially concerning the transportability 

o the intended application domain. Ideally, such an external test 

ataset should be in the public domain to enable reliable bench- 

arking. 

Report of external validation results is also important if mit- 

gation strategies for known sources of bias are applied. Such 

trategies are for example re-balancing or re-weighting of out- 

ome prevalence for each of the key demographic variables ( Jiang 

nd Nachum, 2019; Amini et al., 2019 ). Another mitigation strat- 

gy, special to deep learning, is the adversarial training of mod- 

ls to explicitly ignore confounding variables ( Zhao et al., 2020 ). 

his approach is a conceptual extension of adversarial domain 

daption ( Ganin et al., 2016 ) which has been shown to mitigate 

ome of the dataset identity confounding in models trained on the 

OVIDx dataset ( Robinson et al., 2021 ). Nevertheless, for all mit- 

gation strategies to work, at least the confounders have to be 

ocumented. Furthermore, there is, to the best knowledge of the 

uthors, no mitigation strategy in the extreme case of complete 

onfounding, e.g. in the previously mentioned examples of dataset 

ixtures of only adult COVID-19 samples combined with only pae- 

iatric control cases. 

.2. Advice for modellers 

To avoid the risk of inducing bias by inappropriate use of 

atasets it is important that researchers follow transparent prac- 

ices and adequate reporting guidelines. To assess whether the 

hosen datasets are appropriate for the intended use, it is advis- 

ble that researchers address the following: 

• Be very careful when relying on remix datasets. Merging sub- 

jects from different datasets should be done directly from pri- 

mary data sources, ensuring that potential sources of bias can 

be transparently evaluated and are not hidden in the data ag- 

gregation hierarchy. Furthermore, accidental double inclusions 

are ruled out by this procedure. The selected images from each 

dataset should be listed (e.g. as supplementary material), in- 

cluding the respective subjects available information. The rea- 

soning behind the inclusion of subjects from particular datasets 

and their specific characteristics should be explained in the 

context of the intended use of the model. 
• Ask oneself which population is represented by the datasets, i.e. 

which were the recruitment procedures, location and setting, 

the inclusion and exclusion criteria, and subjects demograph- 

ics. They should also address how exactly the outcome was ob- 

tained and how is related to the disease and the application. 
• Explain how the model can be applied to a clinical setting, 

which is the benefit for the patient or how it would help med- 

ical personal to make the decision. 
• The strategies followed to evaluate and mitigate the potential 

biases should be explained. 

.3. Limitations of this review 

We acknowledge several limitations of this study. While this 

ork is focused on the extensive field of X-ray imaging for the 

forementioned reasons, related modalities useful for the diagno- 

is of respiratory diseases using machine learning models, such as 

T and ultrasound, are not covered. Additionally, the missing val- 

es of both, the predictors and the outcomes, are not analysed in 

etail, although they are reported in Supplementary Material 2. Fi- 
13 
ally, we have insisted that availability of detailed dataset docu- 

entation is important to reduce the risk of bias in models trained 

ith such datasets. However, we haven’t addressed the conflicting 

oals of extensive dataset documentation for risk of bias assess- 

ent on one side, and patient privacy rights, including compliance 

ith data protection regulations such as General Data Protection 

egulation (GDPR), on the other. 

Taking into account that medical data includes highly sensitive 

nformation, this opens an additional important field of problems 

o study. 

. Conclusion 

This work presents a first attempt to systematically evaluate X- 

ay imaging datasets in terms of their utility to train COVID-19 

redictions models. We followed the PRISMA guidelines to system- 

tically search for X-ray chest images databases of COVID-19 sub- 

ects, either screening papers reporting models where these im- 

ges are used (indirect search) or directly searching for datasets us- 

ng a dataset search engine. Inspired by the PROBAST, TRIPOD and 

REE statements, this work aimed to answer whether the available 

OVID-19 X-ray datasets could be used to train or validate clini- 

al prediction models with a low risk of bias. With this objective 

n mind, the CHARMS and BIAS checklists were adapted to extract 

he relevant information about participants, outcomes, predictors 

nd sample size. 

The information provided in almost all extracted datasets is too 

carce to guarantee that a model can be built with a low risk of 

ias. For example, key questions regarding participant information 

nd their appropriateness for a given application can not be an- 

wered. This finding is consistent with results presented in a sys- 

ematic methodological review of Machine learning for COVID-19 

rediction models using chest X-rays and CT scans ( Roberts et al., 

021 ), where PROBAST assessment rated all X-ray-based models as 

aving a high or unclear risk of bias in the Participant domain. 

ence, claims about efficacy could be highly biased, and general- 

zability and transportability are uncertain. Applicability to clinical 

ettings is therefore extremely risky and not recommended. 

With time passing by, more and better documented datasets 

otentially less prone to induce model bias are becoming publicly 

vailable. New models should be developed and older models eval- 

ated using these datasets. So far, very few prediction models used 

hese promising datasets (see Fig. 4 ). 

In general, datasets owners should make an effort to improve 

he documentation about the whole dataset building process to 

ncrease the dataset value and the quality of models trained on 

hem. For example, there should be a clear statement of dataset 

ntended use and explicit warning of common misuse cases. La- 

el definition and generating procedure should be reported in de- 

ail, so that other researchers can verify the accuracy of label as- 

ignments and evaluate the utility and adequacy to the problem 

t hand. Finally, datasets should contain cohort characteristics and 

ubject selection criteria information. This is important to evaluate 

he risk of selection bias and to check if the training and target 

opulation features similar characteristics. 

This review should help modellers to efficiently choose the ap- 

ropriate datasets for their modelling needs and to raise aware- 

ess of biases to look out for while training models. It is also en- 

ouraged that everyone validates models by reporting benchmark 

esults on a very well curated publicly available external dataset, 

hich is carefully selected to represent the real clinical use case as 

lose as possible. 

Although dataset quality is arguably the most important re- 

uirement for building a medical diagnostic system, other aspects 

f the model building process are also prone to biases. Follow- 

ng the TRIPOD reporting guideline, answering the critical ques- 
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ions of TREE, and assessing the risk of bias with the PROBAST tool 

 Parikh et al., 2019; Sounderajah et al., 2020 ) could be a promis-

ng starting point. However, extensions of these established guide- 

ines are required to be fully applicable to deep learning systems 

 Wynants et al., 2020 ). Efforts are already being done in this di-

ection: extension of TRIPOD (TRIPOD-AI, Collins and Moons, 2019 ) 

nd CONSORT-AI/SPIRIT-AI ( Liu et al., 2019 ) are currently being de- 

eloped, focused on model validation and clinical trials, respec- 

ively. Recent considerations for critically appraising ML studies are 

iven in Faes et al. (2020) , and reporting recommendations can be 

ound in Stevens et al. (2020) . 
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