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Abstract
Computational approaches are an integral part of interdisciplinary drug
discovery research. Understanding the science behind computational tools,
their opportunities, and limitations is essential to make a true impact on drug
discovery at different levels. If applied in a scientifically meaningful way,
computational methods improve the ability to identify and evaluate potential
drug molecules, but there remain weaknesses in the methods that preclude
naïve applications. Herein, current trends in computer-aided drug discovery are
reviewed, and selected computational areas are discussed. Approaches are
highlighted that aid in the identification and optimization of new drug
candidates. Emphasis is put on the presentation and discussion of
computational concepts and methods, rather than case studies or application
examples. As such, this contribution aims to provide an overview of the current
methodological spectrum of computational drug discovery for a broad
audience.
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In silico drug discovery research
Various computational approaches are widely employed in the 
highly complex, time consuming, and resource-intense process 
of drug discovery1,2. Developing a new drug typically requires  
10+ years and billion-dollar budgets. In the pharmaceutical industry, 
early- to mid-phase drug discovery efforts concentrate on advancing 
therapeutically relevant small molecules (or biologicals) and bring-
ing candidate compounds into clinical trials. Computational meth-
ods are mostly, but not exclusively, applied during the early phase 
of drug discovery when basic research efforts aim at deciphering 
disease-related biology, prioritizing drug targets, and identifying 
and optimizing new chemical entities for therapeutic intervention. 
In general, primary goals of in silico approaches in drug discov-
ery include the generation of better compounds with desirable  
in vitro and in vivo properties. Furthermore, computational analysis 
provides essential help in decision making and guidance for experi-
mental programs, thereby reducing the number of candidate com-
pounds to be evaluated experimentally. Since compound attrition 
rates in the clinic continue to be very high, on average ~90% for dif-
ferent therapeutic areas3, a major challenge is trying to advance the 
best possible candidates to clinical trials. However, their ultimate 
success or failure continues to be unpredictable. Over the past three 
to four decades, the use of computational methods in drug discov-
ery settings has steadily increased and computations have become 
an integral part of discovery research. Although drugs are not dis-
covered and developed in silico—and predictions cannot alleviate 
the need for experimental work—computational approaches make 
valuable contributions to the highly complex discovery process at 
different levels. Hence, understanding opportunities and limitations 
of popular in silico approaches should be of considerable interest to 
a wide drug discovery and development audience.

In this contribution, recent advances in computer-aided drug discov-
ery will be reviewed and put into perspective, highlighting unsolved 
problems and future growth areas. Rather than attempting to provide 
a comprehensive account of relevant in silico approaches, which 
would go much beyond the scope of this article, specific computa-
tional areas and current trends will be discussed.

Classification scheme
In general, in silico approaches with utility for drug discovery can 
roughly be divided into three major categories. These include the 
following: first, the design, implementation, and maintenance of 
computational infrastructures to process, organize, analyze, and 
store rapidly growing amounts of drug discovery data (e.g. com-
pound library, biological screening, pharmacological, clinical, and 
literature data); second, methods to help identify, characterize, 
and prioritize biological targets and establish links between target 
engagement, biology, and disease (these approaches essentially fall 
into the domain of bioinformatics); and third, methods to help make 
better compounds and generate drug candidates. While all three cat-
egories are equally relevant for drug discovery and development, 
the following discussion will predominantly focus on the latter one, 
that is, the core of computer-aided drug discovery and design. Figure 1 
summarizes computational areas that will be highlighted. The defi-
nition of subject areas is intentionally broad to provide a general 
overview. It should be noted that each area covers a variety of com-
putational approaches. For example, “structure-activity relationship 
(SAR) analysis” includes numerical and graphical approaches as 
well as ligand- and target structure-based methodologies including, 
among others, the derivation of mathematical models of SARs or 
prediction and evaluation of compound binding modes. Similarly, 
“virtual screening” and “compound design” cover ligand- and 

Figure 1. Areas of computer-aided drug discovery. Selected computational areas are shown providing focal points of the discussion. Each 
subject area covers a variety of computational approaches, as discussed in the text.
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structure-based approaches. “Energy calculations” include molecu-
lar mechanics, quantum mechanics, and combined approaches, for 
example, for conformational analysis, molecular geometry calculations, 
or affinity predictions. Furthermore, both “ADME (absorption, 
distribution, metabolism, excretion) modeling” and the systematic 
study of “drug-target interactions” involve the application of a vari-
ety of machine learning approaches and the derivation of predic-
tive statistical models. A key point is that the current spectrum of 
computational concepts with relevance for drug discovery is exten-
sive and complex. Providing a general overview inevitably calls for 
simplification.

There are other emerging computational areas that can only partly 
be covered herein due to size limitations including, for example, 
the derivation of knowledge from the rapidly growing amounts of 
increasingly complex and heterogeneous discovery data (which are 
also becoming available in the public domain)4,5. This challenges 
computational scientists in the pharmaceutical industry to integrate 
(proprietary) internal and available external data, but provides a sig-
nificant opportunity to further increase the knowledge base for drug 
discovery research.

Finding new active compounds
For the identification of new hits, high-throughput screening is 
the primary approach in pharmaceutical research. For many years, 
biological screening has been augmented by computational com-
pound database searching, so-called virtual screening6, starting 
from known active compounds as templates (ligand-based virtual 
screening) and/or three-dimensional structures of target proteins 
(structure-based virtual screening). For ligand-based virtual screen-
ing, the molecular similarity relationship between known active  
and database compounds must be computationally explored7; for 
structure-based virtual screening, test compounds are computation-
ally screened on known ligand binding (active) sites of targets using 
docking calculations6,8. State-of-the-art ligand docking involves a 
conformational search of ligands within the structural constraints 
of active sites to model putative binding modes, followed by rank-
ing of docked compounds according to their likelihood of activity. 
Ranking is based on computational scoring functions that approxi-
mate interaction energies. Figure 2 shows the X-ray structure of an 
exemplary enzyme-inhibitor complex and the putative binding mode 
of another inhibitor predicted by docking. Although virtual screen-
ing methods have a long history in computer-aided drug discovery, 
their accuracy is limited, mostly due to energy- or similarity-based 
scoring problems that have been known for many years, but are still  
not solved scientifically. In ligand-based virtual screening, calcu-
lated molecular similarity relationships (using different molecular 
representations and similarity functions) cannot be confidently 
correlated with observed activity relationships, representing a  
challenge for the identification of specifically active compounds. 
Furthermore, while the conformational search problem in docking 
is essentially solved, it is difficult to accurately rank compounds on 
the basis of force fields and energy functions and distinguish true 
positives (active compounds) from false positives. Despite these 
limitations, virtual screening studies have successfully identified 
many new hits for therapeutically relevant targets (including dif-
ficult screening targets)9–11. This is a situation often encountered in 
computational drug discovery. Computational methods typically 

have intrinsic limitations. Because it is hardly possible to fully 
and rigorously account for all physical and biological processes 
or phenomena on the computer, approximations need to be made 
at least to some extent. However, expert users typically know how 
to judge these approximations and evaluate the results of calcula-
tions taking their intrinsic limitations into account, which often 
leads to the successful identification of new active compounds. By 
contrast, naïve attempts fail more often than not, reflecting the fact 
that the application of in silico methods is far from being a routine 
process and requires a high level of expertise.

Given the uncertainties in identifying specifically active com-
pounds in large databases (comparable to a “needle in a haystack” 
scenario) through molecular similarity analysis and/or docking, 
virtual screening cannot fully replace biological screening. Rather, 
virtual screening is expected to play out its full potential by closely 
interfacing with experimental screening and developing integrated 
(iterative) screening strategies12. Iterative screening attempts to 
computationally prioritize small subsets of compound libraries for 
subsequent cycles of biological screening, taking information from 
newly identified hits into account. This iterative process reduces 
the number of library compounds for experimental evaluation and 
usually enriches active compounds in screening subsets. For these 
tasks, current virtual screening methods are sufficiently accurate. 
For example, state-of-the-art virtual screening makes it possible to 
prioritize 1–5% of the compounds from a large library having the 
highest probability of displaying a desired activity. Such calcula-
tions are also applied to generate target-focused compound libraries 
from large screening decks.

Although opportunities of combined computational and experimental 
screening were pointed out more than a decade ago12, the imple-
mentation of iterative screening schemes has been slow in the phar-
maceutical industry, in part owing to “philosophical” differences 

Figure 2. Binding mode prediction. In many instances, computer 
algorithms can predict correct or nearly correct interactions of small 
molecules and their target proteins. Shown are the X-ray structure of 
factor Xa (a serine protease) in complex with an inhibitor (cyan) and 
the putative binding mode of another inhibitor (magenta) generated 
by flexible ligand docking. The protein surface is rendered transpar-
ent (gray) and selected active site residues are depicted. The factor 
Xa inhibitors and X-ray structure were reported in 53.
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between experimental and computational screeners (i.e. whereas 
high-throughput screeners attempt to more efficiently process an 
increasing number of compounds, virtual screening proponents try 
to reduce the number of screening candidates as much as possible), 
and in part to technical difficulties (e.g. limited ability to cherry-pick 
compounds from screening plates). However, such technical limi-
tations have largely been overcome, and recently there is increas-
ing interest in integrated screening approaches13. Hence, it will be 
interesting to observe future developments in this area.

In addition to virtual screening, new chemical entities are also gen-
erated by computational de novo design14,15, for which a variety of 
methods have been developed. Here, investigators often attempt 
to assemble compounds from fragments taking information from 
known actives into account or incrementally “grow” molecules 
within ligand binding sites. Similar to virtual screening, de novo 
design has its success stories, but also its pitfalls. A critically impor-
tant criterion for the success of de novo design methods is the syn-
thetic accessibility of proposed molecules. Therefore, a number of 
studies have attempted to incorporate reaction information (or ret-
rosynthetic rules) into de novo design approaches.

Lead optimization: evolving active compounds into 
drug candidates
Once new active compounds are identified, they enter the hit-to-
lead and, subsequently, lead optimization phase, during which 
medicinal chemistry takes center stage. In the practice of medicinal 
chemistry, the cardinal question is “which compound(s) to make 
next” to further improve the potency and other drug-relevant prop-
erties (e.g. solubility, oral availability, or metabolic stability) of 
lead candidates. The generation of series of structurally analogous 
compounds with well-defined substitutions in the course of chemi-
cal optimization is often an essentially subjective process during 
which medicinal chemistry knowledge, experience, and intuition 
play a major role. Computational approaches in chemical optimiza-
tion help to explore SARs and design analogs. Among these are, 
first and foremost, quantitative SAR (QSAR) methods that derive, 
at different levels of sophistication, linear SAR models from a 
series of active compounds to predict the activity of new analogs16. 
QSAR analysis is an important component of computer-aided drug 
discovery, with scientific origins dating back to the 1960s, and a 
computational approach most medicinal chemists are familiar with. 
However, generating linear models of SARs on the basis of numeri-
cal property (descriptor) values is an approximation (as many SARs 
are non-linear in nature). Moreover, without a proper understand-
ing of the statistical foundations of QSAR approaches, generated 
models are likely to be flawed. Taken together, both aspects help 
rationalize frequent pitfalls in prospective QSARs (i.e. incorrect 
activity predictions).

A major requirement for computational methods to efficiently sup-
port medicinal chemistry is that they are intuitive in nature and 
accessible to practicing chemists whose daily efforts are largely 
determined by the “which compound to make next” challenge. 
In recent years, several computational tools have been developed 
to specifically address this task. Among these are SAR visualiza-
tion techniques17,18 that attempt to complement subjective analog 
design and numerical QSAR analysis with intuitive graphical 

representations to elucidate SAR patterns and identify key com-
pounds for further exploration. This can be accomplished, for exam-
ple, using molecular network representations in which compounds 
are represented as nodes and edges indicate similarity relation-
ships18. Such graphical representations make it possible to obtain 
global SAR views of compound data sets and also study local SARs 
formed by individual compound series.

Since lead optimization is a multi-objective process during which 
a variety of compound properties need to be balanced in addition 
to compound potency graphical SAR analysis becomes difficult in 
multi-property spaces. First attempts to visualize compound series 
in such multi-dimensional property spaces in a chemically intuitive 
manner are being made. In addition, multi-dimensional activity 
spaces are obtained when lead optimization sets are tested in differ-
ent assays (against the same or alternative targets), which represents 
an equivalent analysis task. At the molecular level, visualization 
techniques can also be used to identify structural features in com-
pound series that determine activity or other compound properties.

Another intuitive approach that is gaining increasing popularity in 
medicinal chemistry is provided by the concept of matched molecu-
lar pairs (MMPs)19–21. An MMP is defined as a pair of structurally 
similar or analogous compounds that are only distinguished by a 
chemical modification at a single site (i.e. the exchange of a sub-
structure). MMPs are straightforward to understand from a medicinal 
chemistry perspective, can be systematically generated using effi-
cient algorithms (even for large data sets), and make it possible to 
explore SARs and other compound-property relationships in a vari-
ety of ways19–21, always with a focus on chemical interpretability.

One of the major essentially unsolved problems in computer-aided 
drug discovery is the consistently accurate prediction of compound 
affinities. There is consensus in the field that the ability to reliably 
predict the free energy of binding for compounds in modeled or 
experimentally determined structures of ligand-target complexes 
would be a milestone event and put drug design up on a new level. 
This is an area where lead optimization, computational chemistry, 
interactive molecular modeling, and structure-based drug design 
meet, and the prediction of binding energies has been high on the 
scientific agenda for at least 20 years. To guide lead optimization 
and the design of new compounds, accurate prediction of absolute 
free energies and binding or dissociation constants would not be 
essential, as long as relative energies (differences in the free energy 
of binding) could be consistently obtained. Such predictions are 
mostly attempted by free energy perturbation calculations that 
mimic thermodynamic ligand inter-conversion cycles22,23. As is the 
case with docking, such perturbation calculations are also based 
on force fields that can only approximate ligand binding processes. 
Molecular mechanics force fields are often combined with explicit 
or implicit solvation models to further increase the physical basis of 
molecular dynamics simulations and their accuracy. Force field-based 
and quantum mechanical calculations are also combined to model 
protein-ligand interactions in greater detail.

Despite methodological limitations, success stories in predicting 
the relative free energies of binding have been reported for indi-
vidual targets and analog series over the years22, but the generality 
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of such predictions has been questioned. For each apparent success, 
there have been failures (which are, however, rarely published). 
Although these calculations have been reported for decades, they 
have not been widely (or routinely) applied in the pharmaceuti-
cal industry due to their high computational expense and limited 
success. However, this is changing. In recent years, much empha-
sis has been put on further improving force fields and prediction 
methods23. In addition, free energy calculations have also been sup-
ported by advances in molecular dynamics simulations of target 
proteins24. Recently, increasingly consistent relative free energy 
predictions have been reported for different molecular systems25. 
It will be interesting to monitor further progress in this area and 
see whether advanced methods are truly generalizable across thera-
peutic targets and compound classes and whether reliable predic-
tions can be consistently achieved prospectively for compounds 
whose affinity is not yet known (different from typical validation 
calculations that are mostly retrospective in nature).

Drug-likeness concept
Over the past two decades, another major topic of computational 
research and data analysis in drug discovery has been the concept 
of “drug-likeness”26,27, aiming to identify molecular features that 
are characteristic of drugs and set them apart from other bioac-
tive compounds. This has indeed been one of the most intensely 
investigated concepts in computer-aided drug discovery, resulting 
in a plethora of publications reporting property distributions of 
drugs compared to other small molecules. Going beyond property-
based rules, multi-objective optimization using machine learning 
techniques, desirability functions, and other quantitative meas-
ures of drug-likeness have also been introduced28–31. While prop-
erty combinations have been identified that characterize classes of 
drugs or favor drug development we currently do not understand 
“what makes a drug a drug” or what distinguishes drugs from 
non-drugs. In fact, such questions might be difficult to address  
scientifically, taking into consideration that the selection of drug 
candidates is a multi-factorial process strongly influenced by cri-
teria other than biological activity and efficacy including, among 
others, intellectual property, production, economic, or regulatory 
aspects. Nonetheless, exploring the concept of drug-likeness has 
yielded many guidelines concerning molecular properties that favor 
oral availability and in vivo efficacy of compounds without drawing 
a clear line between drugs and non-drugs.

Balancing efficacy and safety
Closely related to the issue of drug-likeness is the prediction of 
ADME characteristics of compounds as well as toxic effects32,33. 
Given the high attrition rates during clinical trials, it is not surprising 
that the prediction of ADME properties is an intensely investigated 
topic in computer-aided drug discovery—and a truly challenging 
one. First and foremost, the molecular basis of the in vivo behav-
ior of bioactive compounds and many toxic effects is currently 
only partly elucidated. In this context, the general rule applies that 
it is difficult, if not impossible, to derive reliable computational 
models for phenomena that we do not fully understand, such as 
the complex in vivo fate of drugs. Moreover, high-quality ADME 
data have typically been sparse, which has further complicated 
computational modeling34. Better assay technologies with further  
improved reproducibility, more extensive compound profiling, and 

broader chemical space coverage are currently further improving 
the basis for ADME modeling in the pharmaceutical industry. Over 
the years, a variety of computational ADME investigations targeting  
specific molecular systems, such as, for example, drug-metabolizing  
enzymes, have been reported35–37, and modeling has produced 
some promising predictions of drug metabolism. Given its high  
relevance, there is little doubt that ADME analysis and the predic-
tion of in vivo effects will continue to be a hot topic in computer-
aided drug discovery, even if the scientific foundations are rather 
shaky at times. ADME modeling is an exemplary area where a close 
integration of experimental and predictive approaches is expected 
to yield further progress34, similar to the situation with biologi-
cal and computational screening, as discussed above. Large-scale 
prediction of molecular toxicity (beyond the detection of known 
toxic substructures) is likely to become an additional focal point of 
research in this field.

Systematic assessment of ligand-target interactions
Another major growth area for computer-aided drug discovery is 
the systematic assessment of drug- and ligand-target interactions 
given the growing amounts of available data. Such analyses are 
often captured in drug-target networks38,39. In addition, predictive 
models of target activity can be derived on the basis of compound 
activity classes using machine learning methods40,41. These data 
mining and prediction exercises are highly relevant for the study 
of polypharmacology41–44 and the identification of secondary drug 
targets. Polypharmacology refers to increasing evidence that the 
efficacy of many drugs depends on interactions with multiple tar-
gets and simultaneous engagement of multiple signaling pathways,  
with protein kinase inhibitors applied in oncology being a prime 
example45. Systematic accounts of ligand-target interactions have 
made it possible to predict unwanted side effects of drugs or  
candidates46,47 and identify previously unknown “positive” targets 
of existing drugs48–50. The latter aspect is of high relevance to find-
ing new therapeutic applications for approved drugs, so-called drug 
repurposing or repositioning48, which is currently another hot topic 
in the pharmaceutical industry. Ligand-based methods for target 
identification continue to be developed. For example, a computa-
tional approach has recently been introduced to predict the target 
of natural products on the basis of structural decomposition and 
fragment mapping to known drugs51. Finally, pursuing an “inverse” 
polypharmacological route, it has also been possible to computa-
tionally design ligands with desired multi-target profiles on a large 
scale52.

Approaches to systematically account for or predict ligand-target 
interactions are often of fairly low computational complexity, 
which provides a good example for the fact that the impact of com-
putational approaches on drug discovery does not necessarily scale 
with methodological complexity or the magnitude of computations. 
Rather, asking questions that are particularly suitable for computa-
tional analysis or design is often the key.

Looking ahead
As discussed herein, computational approaches in drug discovery 
are mostly used to tackle rather challenging tasks. Thus, it should 
not come as a surprise that success is limited at times. In addition, 
a number of fundamental computational problems that have been 
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on the agenda for decades still remain to be solved. In the practice 
of drug discovery, it is of critical importance not to overestimate 
the potential of computational methods. This is harmful because 
it affects the credibility of serious computational work, which is 
without any doubt carried out in both academia and the pharma-
ceutical industry. In many instances, computational approaches can 
significantly advance discovery projects if they are carefully chosen 
and applied to problems that can actually be solved, such as the 
selection of database compounds with above-average probability 
to display a specific activity, identification of key compounds for 
chemical optimization, or design of ligands that favorably interact 
with a given binding site, to name just a few. The further devel-
opment and impact of certain computational approaches will also 
likely differ in academic and industrial environments. For example, 
virtual compound screening approaches will be more important in 
academic settings where biological screening capacity is often limited.  
By contrast, the development of new computational methods for 
the analysis of data from phenotypic screening assays will be of 
prime relevance in the pharmaceutical industry. Regardless, it is 
hoped—and not unlikely—that further progress will be made in the 
coming years in key areas of computer-aided drug discovery includ-
ing, for example the ranking of database compounds according to 
probabilities of activity or the prediction of compound potencies 
affinities. Moreover, there are other important issues to address. For 
example, the variability of biological assays and activity measure-
ments (data heterogeneity and reliability) must be carefully consid-
ered in compound optimization for which systematic computational 
analysis of experimental data and data reliance assessments are pre-
requisites. For complex biological screening systems, the identifi-
cation of targets of active compounds (target de-convolution) will 
strongly depend on computational approaches. While first efforts in 
these directions have already been made, these types of applications 
are growth areas for computational drug discovery. Furthermore, 
reducing human bias in the generation and evaluation of molecu-
lar property spaces for ADME analysis and lead optimization will 
require further computational research. Last but not least, as the big 
data era enters drug discovery research, the development of novel 
computational concepts for analysis, organization, integration, 

and utilization of biological and chemical data will be essential. 
Going forward, cloud computing is expected to play a major role 
in handling big data. These are challenging and exciting times for  
computer-aided drug discovery. It is the view of the author that 
progress in computational drug discovery will continue to be  
evolutionary, rather than revolutionary (given the history of the 
field over the past two to three decades), but this does in no way 
reflect a pessimistic view. Incremental advances might have a sub-
stantial impact on the practice of drug discovery (e.g. considering 
the development of energy functions or conformational sampling 
techniques). For the future of computer-aided drug discovery, it 
will also be important to put further emphasis on the development 
of computational methods that are chemically intuitive and acces-
sible to a wide discovery audience, beyond computational experts. 
In general, such methods have the greatest potential to be widely 
applied in the practice of drug discovery, a pre-requisite for success. 
If we consider that computer-aided drug discovery continues to be 
driven by experts, as discussed above, a major step forward for this 
field would indeed be, the generation of chemically intuitive and 
robust computational methods that become an integral part of day-
to-day discovery efforts.
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