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Abstract CAG/CTG trinuncleotide repeats are fragile sequences that when expanded form DNA

secondary structures and cause human disease. We evaluated CAG/CTG repeat stability and repair

outcomes in histone H2 mutants in S. cerevisiae. Although the two copies of H2A are nearly

identical in amino acid sequence, CAG repeat stability depends on H2A copy 1 (H2A.1) but not

copy 2 (H2A.2). H2A.1 promotes high-fidelity homologous recombination, sister chromatid

recombination (SCR), and break-induced replication whereas H2A.2 does not share these functions.

Both decreased SCR and the increase in CAG expansions were due to the unique Thr126 residue in

H2A.1 and hta1D or hta1-T126A mutants were epistatic to deletion of the Pold subunit Pol32,

suggesting a role for H2A.1 in D-loop extension. We conclude that H2A.1 plays a greater repair-

specific role compared to H2A.2 and may be a first step towards evolution of a repair-specific

function for H2AX compared to H2A in mammalian cells.

Introduction
Integral to the eukaryotic DNA damage response is chromatin structure modifications surrounding

the break site (reviewed in House et al., 2014a; Seeber et al., 2013; Price and D’Andrea, 2013). In

response to DNA double strand breaks (DSBs) and stalled or collapsed replication forks, the SQEL

motif in the H2A C-terminal tail is phosphorylated at Ser129 (H2AX-Ser139 in mammals) by the Phos-

phoinositide 3-Kinase-Related Kinases (PIKKs), Mec1 and Tel1 (ATR and ATM in mammals)

(Downs et al., 2000; Lisby et al., 2004). This modification, termed gH2A (gH2AX in mammals),

marks the site of damage and is propagated along the chromatin, detectable up to 50 kb from the

break site in yeast (Shroff et al., 2004) and megabases in mammalian cells (Rogakou et al., 1999).

gH2A/gH2AX occurs rapidly upon induction of a DSB, detectable within minutes after damage

(Shroff et al., 2004; Rogakou et al., 1999; Paull et al., 2000), and is required to initiate the cascade

of histone modifications, chromatin remodeling, and repair factor recruitment and retention neces-

sary for repair. However, other modifiable residues in the H2A tails can also modulate repair factor

binding: H2A/H2AX K5ac, K15ub/ac, K36ac, K119ub, and Y142ph all contribute to DNA repair

(reviewed in Hunt et al., 2013; Jacquet et al., 2016).

Whereas in humans over a dozen H2A variants have been identified (Albig et al., 1999;

Bönisch and Hake, 2012), S. cerevisiae contains just three variants of H2A, encoded by HTA1,

HTA2, and HTZ1. HTA1 and HTA2 encode canonical H2A and the two copies are nearly identical in

amino acid sequence except for a direct alanine-threonine switch at positions 125/126 in the C-ter-

minal tail (Figure 1B); the underlying DNA sequence is 94% similar. H2A-T126 is phosphorylatable in
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vivo, even in the absence of DNA damage (Wyatt et al., 2003; Moore et al., 2007). The third H2A

variant, H2A.Z, has only 56% amino acid sequence homology to canonical H2A.

H2A modification is a major contributor to DNA repair and may be particularly important in pro-

moting efficient repair at unstable genomic elements. CAG/CTG trinucleotide repeats are in this cat-

egory, as they can form abnormal secondary structures, such as hairpins and slip-stranded DNA

(reviewed in McMurray, 1999; Usdin et al., 2015; Schmidt and Pearson, 2016), and break at a

higher frequency than non-repetitive DNA (Freudenreich et al., 1998; Callahan et al., 2003;

Nasar et al., 2000). Repair or replication errors within the CAG/CTG repeat can lead to instability,

or a change in repeat units. Once expanded (addition of repeat units), the repeat tract is increasingly

unstable and prone to further expansion in a length-dependent manner (reviewed in Usdin et al.,

2015; Kim and Mirkin, 2013). CAG/CTG repeats are found throughout the human genome but

repeat expansion beyond a threshold length of approximately 35 repeats can lead to human dis-

ease, including Huntington’s disease, myotonic muscular dystrophy, and several spinocerebellar

ataxias (Usdin et al., 2015; Mirkin, 2007). The CAG/CTG repeat is a strong nucleosome-positioning

element, shown in vitro by nucleosome assembly assays and visualized by electron microscopy

(Godde and Wolffe, 1996; Wang et al., 1994). The intrinsic nucleosome-positioning characteristic

of the CAG repeat makes this an interesting and sensitive sequence at which to study the chromatin

environment during DNA repair. Further, the unstable nature of the repeat allows us to experimen-

tally test the importance of chromatin and repair factors in promoting high-fidelity repair, since

repair errors (errors in synthesis, alignment, processing, etc) can lead to repeat tract length changes.

Secondary structures that occur at CAG/CTG repeats can interfere with DNA transactions, caus-

ing stalled or collapsed replication forks, gaps, nicks, and DSBs (Usdin et al., 2015). Repair can pro-

ceed via homologous recombination (HR), but this repair itself can be a source of mutagenesis if it

does not proceed with high fidelity (reviewed in Polleys et al., 2017). Several steps during HR pre-

sumably require nucleosome repositioning or eviction, including resection, strand invasion, copying

the template and D-loop extension, and resetting the chromatin structure after repair. Efficient com-

pletion of each stage of HR is expected to be important to prevent errors that lead to CAG repeat

expansions (Polleys et al., 2017).

We previously described a role for histone H4 acetylation in promoting high-fidelity HR during

post-replication repair at CAG repeats (House et al., 2014b). Here, we explore the role of histone

H2A in CAG repeat maintenance. In a primary genetic screen for CAG repeat fragility and a second-

ary screen of CAG repeat instability, deletion of histone H2A.1 increased CAG repeat fragility and

expansion frequency. However, deletion of the second copy of this protein, H2A.2, had no effect on

repeat fragility or instability. Since histone H2A could be participating in one or more pathways that

contribute to repeat stability, several hypotheses have been explored to explain this discrepancy.

We found that H2A.1 threonine 126 (T126) is required to prevent CAG expansions and that expan-

sions that arise in the absence of phosphorylatable T126 are dependent on Rad51, Rad52, Rad57,

and the Pold subunit, Pol32. In addition, we show that H2A.1 and H2A.1-T126 are required for effi-

cient SCR at non-repetitive DNA sequences, and are working in the same pathway as the Pold sub-

unit Pol32. Finally, we show that H2A.1 is specifically important in mediating repair via BIR.

Together, these results demonstrate that H2A.1 plays an important role in promoting efficiency and

fidelity of recombination during repair. This role is distinct from H2A.2, and our results implicate the

T126 residue as important for this distinction.

Results

H2A histone variants contribute differentially to (CAG)85 repeat
stability
To identify important factors for maintaining expanded CAG/CTG trinucleotide repeats, a screen

was performed for genes that protect against repeat fragility using a yeast artificial chromosome

(YAC) end loss assay in the Mata haploid deletion set (screen originally described in Gellon et al.,

2011; assay illustrated in Figure 1—figure supplement 1A and reviewed in Polleys and Freuden-

reich, 2018; Polleys and Freudenreich, 2020). Initial semi-quantitative and quantitative assays

showed a 2-fold increase in the rate of 5-FOA-resistance (FOAR) in the hta1D mutant compared to

the wild-type for a strain containing a YAC with a (CAG)85 repeat tract, whereas the hta2D mutant
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did not deviate from wild-type. Upon further analysis using multiple independent hta1D transform-

ants, we observed a wide range of repeat fragility rates and thus were unable to statistically verify

the increase over wild-type (Figure 1C; Supplementary file 1). The hta1D mutant is mildly sensitive

to phleomycin and not sensitive to the other DNA damaging agents tested (MMS, CPT, HU)

Figure 1. H2A.1 is required to prevent (CAG)85 repeat expansions. (A) HTA is present in two copies in S. cerevisiae, paired with HTB. The gene pairs

are divergently transcribed. The HTA1-HTB1 locus is on chromosome IV, the HTA2-HTB2 locus is on chromosome II. (B) H2A/H2AX protein sequences

were aligned by Clustal Omega, only the C-terminal tail residues (past the histone fold) are shown. The threonine residue at position 125/126 is present

in human H2AX, conserved in S. cerevisiae and S. pombe H2A.1. (C) Fragility of YAC CF1 (either contained (CAG)0 (no tract) or a (CAG)85 repeat tract)

was assessed as previously described (reviewed in Polleys and Freudenreich, 2018) (Figure 1—figure supplement 1A). Rates were evaluated for

significant differences by the Student’s t-test; no differences were statistically significant; error bars represent SEM (Supplementary file 1). (D, E) CAG

repeat expansion (D) and contraction (E) frequencies were measured by a PCR-based stability assay, using primers P1 and P2, described in Figure 1—

figure supplement 1A. Products were run in high-resolution Metaphor agarose or a fragment analyzer (as shown in F) and repeat length changes were

evaluated. Raw instability data can be found in Supplementary file 2. Statistical deviation from wild-type was calculated by Fisher’s Exact Test:

***p<0.001 F) Visualization of CAG repeat lengths using an Advanced Analytical fragment analyzer. Arrow indicates length of (CAG)85 PCR product.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. YAC system to evaluate CAG repeat fragility and instability.

Figure supplement 2. Drug sensitivity panels in H2A mutant strains.
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(Figure 1—figure supplement 2). We conclude that there is likely a mild defect in repair at the CAG

repeat in the absence of H2A copy 1.

We next evaluated the contribution of all the histone H2 variants to CAG/CTG repeat stability.

Histone genes were deleted and (CAG)85 repeat tract length changes were monitored by PCR analy-

sis (Callahan et al., 2003; House et al., 2014b) (Figure 1D,E,F, Supplementary file 2). Deletion of

the genes encoding the two copies of H2A differentially affect CAG repeat stability: expansion fre-

quency is significantly increased in the hta1D mutant (7-fold increase over wild-type, p=2.7�10�5)

while expansion frequency in the hta2D mutant is not significantly changed from wild-type (1.3-fold

increase over wild-type, p=0.71) (Figure 1D). Contractions were increased 2.6-fold in the hta1D but

not the hta2D mutant (Figure 1E). Thus, H2A.1 is required to suppress CAG instability while H2A.2

is not.

The H2A.Z variant is encoded by the gene HTZ1 in yeast. Since H2A.Z is deposited at a DSB dur-

ing repair (Kalocsay et al., 2009), we tested whether it is required to maintain CAG repeat stability.

Although the htz1D mutant is sensitive to DNA damaging agents (Morillo-Huesca et al., 2010;

Papamichos-Chronakis et al., 2011), deleting the HTZ1 gene did not affect repeat expansion fre-

quency, though contractions were significantly increased in the htz1D mutant (2.1-fold over WT,

p=3.1�10�6) (Figure 1E) (House et al., 2014b). Deleting either HTB gene had no significant effect

on repeat expansion frequency (Figure 1D), but contractions were somewhat elevated in the htb1D

mutant (2-fold over WT, p=0.01)(Figure 1E). Therefore, H2A.1, H2A.Z, and H2B.1 are required to

prevent CAG contractions. However, of the histone H2 proteins, only H2A.1 plays a significant role

in preventing CAG repeat expansions, suggesting some specialized role for H2A.1 that we have

explored further.

H2A.1 sequence, not histone levels, confers specificity to its role in
preventing CAG repeat expansions
Histone H2A is encoded by two nearly identical gene copies in S. cerevisiae, each paired with a copy

of H2B and differentially regulated (Norris and Osley, 1987) (Figure 1A). The H2A.1 and H2A.2 pro-

tein sequences are identical except for a direct threonine/alanine (T/A) switch in the C-terminal tail

(Figure 1B). While transcription from the HTA1-HTB1 gene pair can be upregulated in the absence

of HTA2, HTA2-HTB2 is transcribed at a constant rate (Moran et al., 1990). As a result, the H2A

pools will be normal in an hta2D mutant, whereas an hta1D mutant may have a global decrease in

H2A. A second pathway of gene dosage compensation exists in which the HTA2-HTB2 gene pair

amplifies to form a minichromosome (that also contains the HHT1-HHF1 (H3-H4) gene pair) in the

absence of HTA1-HTB1 (35). To distinguish if repeat stability is mediated by the H2A protein

sequence or histone levels, the HTA2 sequence was placed under the control of the HTA1 promoter,

replacing the HTA1 gene (hta1D::HTA2). In this strain, the H2A.2 protein will be expressed at the

same level and timing as H2A.1 in a wild-type cell but the H2A.1 protein will not be present. Equal

expression of H2A proteins was confirmed by Western blot (Figure 1—figure supplement 1B). We

tested strains for gene amplification of HTA1 or HTA2 by qPCR and no instances of gene amplifica-

tion were detected at the genomic level (Supplementary file 8). If H2A expression level or timing is

the major contributor to repair of the CAG repeat, repeat maintenance will be at wild-type levels

when HTA2 is expressed from the HTA1 promoter. However, we observed that CAG repeat expan-

sions remained significantly increased from the wild-type in the hta1D::HTA2 strain (p=4.2�10�4 to

WT, Figure 1D), though a partial suppression of contractions was observed (Figure 1E)

(Supplementary file 2). Therefore, while CAG contractions appear to be sensitive to overall histone

levels, H2A.2 cannot compensate for H2A.1 in preventing repeat expansions, even when expressed

at H2A.1 levels under control of the HTA1 promoter. We conclude that the sequence of H2A.1, not

histone levels or subtleties in expression timing, is required to prevent CAG repeat expansions.

Nucleosome positioning at the CAG repeat is maintained in H2A
mutants
Since H2A.2 is not upregulated in the absence of H2A.1, we hypothesized that an hta1D mutant may

cause local histone depletion or disruption of the chromatin structure at the CAG repeat tract, lead-

ing to instability. Although overall bulk chromatin structure was not altered in an hta1Dhtb1D strain,

some areas of the genome were more sensitive to micrococcal nuclease (MNase) digestion
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(Norris et al., 1988). The CAG repeat is a strong nucleosome positioning element and thus could

be more sensitive to H2A.1 depletion than other regions of the genome. To visualize nucleosome

positioning at the CAG repeat, we used indirect end-labeling with a probe upstream of the CAG

repeat (Figure 1—figure supplement 1A, red line) and measured sensitivity of the chromatin to

MNase digestion. A series of discrete, protected fragments (~5 nucleosomes), is observed, indicat-

ing several positioned nucleosomes within and flanking the CAG repeat (Figure 2A). The pattern is

consistent with canonical ~165 bp spacing between nucleosomes, and suggests there is no visible,

major disruption to the chromatin structure in the hta1D cells compared to the wild-type

(Figure 2A).

To generate a high-resolution nucleosome map of the regions flanking the CAG repeat, we used

a custom Illumina BeadArray containing probes spanning 425 bp upstream to 438 bp downstream

of the CAG repeat tract on the YAC, including two CAG repeat containing probes and one pure

CAG repeat probe, in non-overlapping 30-mers (Supplementary file 3). We hybridized MNase

digested mononucleosomes of hta1D, hta2D, and wild-type (CAG)85 cells to the array to measure

nucleosome protection at the CAG repeat. The CAG repeat-containing probes produced a peak in

intensity compared to the flanking, non-CAG repeat-containing probes, indicating strong nucleoso-

mal protection at the CAG repeat (Figure 2B). This result confirms previous in vitro data that the

CAG repeat is a strong nucleosome binding sequence (Wang et al., 1994; Wang and Griffith,

1995; Volle and Delaney, 2012) and that it positions a nucleosome in vivo on a yeast chromosome.

The protection was not reduced in the hta1D and hta2D mutants (Figure 2B). Thus, both methods

used show that there is a positioned nucleosome at the CAG tract that is not altered in the hta1D

background. We conclude that nucleosome positioning is not the major contributing factor to CAG

instability in the hta1D mutant; however, subtle differences in chromatin structure in the absence of

H2A.1 that are not visible by these assays may still impact repair pathway selection.

Figure 2. Nucleosome positioning at a (CAG)85 repeat is not altered in the absence of H2A.1 or H2A.2. A) Indirect end-labeling of nucleosomal DNA

upstream of the CAG repeat. MNase (0, 0.25, 2.5, and 7.5 units) digested DNA was run in 1.5% agarose with ethidium bromide (left) and Southern

blotted (right) using a probe ~100 bp proximal to the CAG repeat (red line Figure 1—figure supplement 1A). Ovals represent nucleosome positions.

The experiment was repeated six times; a representative blot is shown. (B) Illumina array mapping of nucleosome protection at the CAG repeat.

Mononucleosomal DNA from strains containing the (CAG)85 repeats was hybridized to a custom array of 30-mer probes spanning 425 bp upstream of

the repeat to 436 bp downstream of the repeat in YAC CF1. Probes 14–16 contain CAG repeats; probe 15 is composed purely of CAG repeats (probe

sequences in Supplementary file 3). Error bars represent standard deviation of 2–3 independent experiments.
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The Thr126 residue in the H2A.1 C-terminal tail is required for (CAG)85
repeat maintenance
H2A.1 and H2A.2 vary in amino acid sequence only by the position of threonine in the C-terminal

tail, which occurs at either position 126 in H2A.1 or 125 in H2A.2 (Figure 1B). Previous work measur-

ing steady state levels of 32P-labeled histones showed H2A phosphorylation was decreased ~2 fold

in an hta1-T126A mutant, identifying T126 as a phosphorylatable residue (Wyatt et al., 2003). To

address the role of specific residues in the H2A C-terminal tail in CAG stability, we introduced point

mutations in the endogenous copy of HTA1. When T126 was rendered non-modifiable by mutation

to alanine, expansions were significantly increased over wild-type (3.7-fold over WT, p=0.04 to WT)

(Figure 3A; Supplementary file 2). Deletion of HTA2 (hta1-T126A hta2D) had no further impact on

CAG expansion frequency (Supplementary file 2). Expression of hta1-T126A from a plasmid in an

hta1Dhta2D background resulted in a similar increase in expansions (3.1-fold over WT; p=0.04 to

WT)(Figure 3A, right). Therefore, the H2A.1-T126 residue is required for efficient repair of the CAG

repeat to prevent expansions. Since phosphorylation of T126 would be lost in the T126A mutant,

this suggests the possibility that phosphorylation of this residue is important for its role in repair.

We next asked if constitutive phosphorylation of the T126 residue could promote high-fidelity

repair to prevent CAG expansions by introducing the phospho-mimic T126E mutation into the

endogenous HTA1 gene. CAG expansion frequency remained elevated in the T126E mutant (4.9%,

3.7-fold over WT, p=0.01) (Figure 3A; Supplementary file 2). This result suggests that either

dynamic phosphorylation of H2A.1-T126 or another characteristic of having a threonine at position

126 is important for promoting CAG stability. Given the specific role for H2A.1, this result suggests

that the position of the threonine within the tail affects the efficiency with which the H2A copies con-

tribute to DNA replication or repair. CAG contractions were relatively unaffected in both the hta1-

T126A and hta1-T126E mutants (Supplementary file 2), therefore this residue primarily protects

against expansions.

We also tested the importance of the H2A-S129 residue in repeat maintenance. Despite H2A-

S129ph being preferentially detected at a (CAG)155 tract in this same location by ChIP (House et al.,

2014b), the ability to phosphorylate H2A-S129 did not significantly affect CAG repeat tract stability;

neither expansion nor contraction frequencies were significantly altered from wild-type in the hta1-

S129A mutant, expressed either from the genomic copy of HTA1 or from a plasmid (Figure 3A,

Supplementary file 2). The double hta1-S129A/T126A mutant expressed from the endogenous

HTA1 gene locus did not result in any further increase in expansion frequency from the hta1-T126A

single mutant (Figure 3A; Supplementary file 2).

H2A.1 is enriched at the CAG repeat during S-phase
We wanted to evaluate in vivo phosphorylation of the H2A-T126 residue and used a custom anti-

body raised against a phosphopeptide corresponding to the H2A C-terminal tail phosphorylated at

T126. Although this antibody was specific to H2A-T126ph by peptide dot blot (Figure 3—figure

supplement 1A) phosphatase treatment of cell extracts only resulted in a 30% reduction in antibody

recognition (Figure 3—figure supplement 1B, Supplementary file 9). To test if this antibody could

distinguish between H2A isoforms, recognition by the antibody was compared in wild-type (HTA1

and HTA2 both present), hta1D (only HTA2 present), hta2D (only HTA1 present) and hta1-T126A

(genomic copy of hta1 mutated, HTA2 still present). The signal is significantly diminished in the

hta1D and hta1-T126A strains to 20–30% of WT levels, but not in the hta2D mutant (Figure 3B.

Supplementary file 9). We conclude that the antibody is specifically recognizing the H2A.1 protein

isoform containing threonine at position 126 in the tail, with a low level of background reactivity to

the H2A.2 isoform. Importantly, total H2A protein and HTA gene levels remain constant in each

mutant (Figure 1—figure supplement 1B; Supplementary file 8) (Libuda and Winston, 2006).

Since this antibody mainly detects H2A.1, but not H2A.2, we have designated it ‘H2A.1T126.’.

Since H2A.1 is specifically required to promote repair of the CAG repeats, we wanted to know if

the H2A.1 histone variant can be detected at an expanded CAG repeat. We tested recruitment of

H2A.1 to the CAG repeat by ChIP during S-phase at time points when we have previously seen mea-

surable increases in repair factors (House et al., 2014b; Sundararajan et al., 2010). Cells containing

a (CAG)155 tract were a-factor arrested in G1 and time points were taken after release into fresh

media. Whereas H2A.1 levels remain relatively constant at an ACT1 control locus, H2A.1 is

House et al. eLife 2019;8:e53362. DOI: https://doi.org/10.7554/eLife.53362 6 of 26

Research article Chromosomes and Gene Expression Genetics and Genomics

https://doi.org/10.7554/eLife.53362


Figure 3. H2A.1-T126 is required to prevent (CAG)85 repeat expansions and is phosphorylated in vivo. A) CAG

repeat length changes were evaluated in strains with H2A.1 C-terminal tail point mutations. The source of H2A.1 is

noted above the bars: either the point mutation was in the genomic copy of hta1 (HTA2 still present) or expressed

from a plasmid (both endogenous copies of HTA-HTB are deleted). Statistical deviation from the wild-type was

calculated by Fisher’s Exact Test, *p<0.05. (B) A Western blot with protein prepared from the indicated strains was

probed with antibody raised against the H2A.1T126ph C-terminal tail peptide (H2A.1T126) or anti-H2A. H2A

mutations were in the genomic copy of indicated H2A variant; the other variant was still present. Quantification of

this blot and other experiments using the same strains (each indicated by a point) is shown at right. The average

Figure 3 continued on next page
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specifically enriched at the CAG repeat 40 min into S-phase, when we previously saw peak gH2A at

this location (House et al., 2014b), and returns to baseline by 60 min (Figure 3C). We also tested

H2B and H3 recruitment to monitor the H2A-H2B dimer and overall nucleosome levels at the CAG

repeat. We found no significant differences in H2B or H3 occupancy relative to an endogenous

ACT1 locus (Figure 3D), indicating that the recruitment of H2A.1 is specific and not an artifact of

increased nucleosome occupancy at this site during S-phase. Western blot analysis of a-factor

arrested and released cells showed no increase in H2A.1 across the cell cycle (Figure 3—figure sup-

plement 1C). Interestingly, enrichment of H2A.1 at the CAG tract by ChIP is occurring 20 min after

gH2A begins to accumulate and peak Mre11 enrichment at the CAG repeat is detected

(House et al., 2014b; Sundararajan and Freudenreich, 2011). Therefore, incorporated H2A.1 peaks

after initial damage signaling at the repeat and coincides with maximal levels of gH2A. This transient

occupancy supports that H2A.1 is specifically incorporated during DNA repair.

To determine if H2A.1 expression is damage inducible, H2A.1 levels were monitored after expo-

sure to MMS, a DNA base alkylating agent that causes abasic sites that can be converted into single

and double strand breaks. In the presence of 0.01% MMS, H2A-S129ph is increased as expected,

but H2A.1T126 signal is in fact decreased and is therefore not induced by the DNA damage caused

by low levels of MMS (Figure 3E). We also see no change in H2A.1T126 signal when cells are treated

with 0.2M HU + 0.03% MMS, a treatment that induces collapsed replication forks (Nagai et al.,

2008) (Figure 3—figure supplement 2A). We conclude that H2A.1 expression is not induced by

DNA damage, and tentatively conclude that H2A.1T126 phosphorylation is also not likely not induced

by DNA damage, since a 30% increase in antibody signal was not observed (as would be expected

based on additional antibody recognition of phosphorylated form). A caveat to the conclusion of no

damage inducibility is that S129ph could reduce the antibody recognition, precluding detection of

an increased signal after MMS treatment. Nonetheless, the conclusion is supported by the lack of

sensitivity of the H2A.1-T126A mutant to DNA damaging agents (Figure 1—figure supplement 2)

and the fact that we were unable to detect a decrease in antibody signal when kinases known to

phosphorylate targets in response to DNA damage and up-regulate the DNA damage response

were mutated (Figure 3—figure supplement 2C).

We also tested if H2A-S129ph is altered in the hta1-T126A mutant. Importantly, recognition of

H2A-S129ph is not impaired by the hta1-T126A mutation (Figure 3E). Therefore, H2A-S129ph may

occur unimpeded when T126 is changed to an alanaine and deficient gH2A formation cannot explain

the phenotype in the hta1-T126A mutant. In contrast, there was a reduction in H2A.1T126 antibody

recognition in the hta1-S129A mutant (Figure 3E), but given the genetic data that hta1-S129A does

Figure 3 continued

and SEM are plotted. (C) Incorporation of H2A.1 at a (CAG)155 repeat was measured by ChIP using the H2A.1T126
antibody; IgY was used as a negative control. Cultures were a-factor synchronized and released into fresh

medium; time point taken as indicated after release, in S-phase. Enrichment was measured using a primers set

that amplified a region spanning 0.4 and 0.6 kb upstream of the CAG repeat or at an ACT1 internal control locus.

The average IP/IN and standard error for two independent experiments is plotted. (D) ChIP for histones H2B and

H3 at the CAG repeat was performed as in (C). IP/IN values were normalized to the ACT1 control signal. Individual

IP/IN and ACT1 normalized values can be found in Supplementary file 4. (E) Western blots using antibodies

against H2A.1T126 (top panel), H2AS129ph (middle panel), and total H2A (bottom panel). Total protein was prepared

from H2A wild-type and point mutant strains (mutations in the plasmid copy of indicated H2A variant, hta2D

background) after 2 hr exposure to either no drug (-) or 0.01% MMS (+). Quantification of the H2A.1T126 and

H2AS129ph antibody signals normalized to total H2A levels in WT strains are graphed to the right; dots indicate

independent experimental replicates and the average and SEM is shown. Quantification of all bands is shown in

and listed in Supplementary file 9.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Analyses of H2A.1T126 antibody specificity and H2A.1 levels over the cell cycle.

Figure supplement 2. Analyses of H2A.1T126 levels after exposure to DNA damaging agents and deletion of

kinases involved in the DNA damage response.
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not phenocopy the CAG instability profile of the hta1-T126A mutant (Figure 3A) we conclude that

the hta1-S129A mutation likely disrupts the antibody epitope rather than affecting H2A.1 T126

modification.

H2A.1 promotes fidelity of homologous recombination repair
To determine how H2A.1 and T126 contribute to fidelity of CAG repeat repair and prevent expan-

sions, we assessed repeat stability in the absence of DNA repair pathways. If repeat expansions in

the hta1D mutant are arising through a low-fidelity repair event, expansion frequency will be reduced

in the absence of the relevant repair pathway.

We first tested if expansions in the absence of H2A.1 arise through NHEJ by deleting the gene

encoding Lif1, a DNA ligase IV subunit, in the hta1D and plasmid hta1-T126A mutants. Expansion

frequency remained elevated in the hta1Dlif1D and hta1-T126A lif1D double mutants (Figure 4A and

B); therefore, instability in the absence of H2A.1 is not arising through low-fidelity NHEJ. Consis-

tently, Moore et al found no NHEJ defects in a plasmid end-joining assay in an hta1-T126A mutant

(Moore et al., 2007). We next surveyed homology-dependent repair pathways. Rad5-dependent

post-replication repair can be a source of expansions during low-fidelity repair at CAG repeats

(House et al., 2014b). Although expansions in the hta1Drad5D double mutant are somewhat sup-

pressed compared to the hta1D single mutant, the difference is not statistically significant

(Figure 4A). Likewise, expansions remain elevated in the hta1-T126A rad5D double mutant

(Figure 4B). Thus, H2A.1 does not appear to be contributing to the fidelity of post-replication repair,

however a caveat to this conclusion is that rad5D elevates expansions on its own, possibly precluding

observation of a suppression. Since expansions in the double mutant are less than additive and are

similar to the rad5D levels, Rad5 may work upstream of H2A.1. To determine if CAG expansions in

the absence of H2A.1 arise through general HR, we measured stability of the CAG repeat in the

absence of two key HR proteins: Rad52 and Rad51. Expansions in the hta1Drad52D and hta1Drad51D

double mutants are significantly reduced 2.9-fold and 5.2-fold from the hta1D single mutant, respec-

tively (p=2.8�10�3 and p=7.7�10�3 to hta1D) (Figure 4A). Similarly, expansion frequencies in the

hta1Drad57D double mutant are suppressed 4.5-fold (p=1.4�10�3 to hta1D) (Figure 4A). Corrobo-

rating these results, expansions were also suppressed ~2 fold in the hta1-T126A mutant lacking

either Rad52, Rad51 or Rad57, but not to the level of statistical significance due to the somewhat

lower starting level of expansions in the hta1-T126A mutant compared to the full HTA1 gene dele-

tion (Figure 4B). Together, these results indicate that expansions in the absence of H2A.1 are arising

through Rad51- and Rad52-dependent HR events and suggest that T126 plays a role in regulating

HR. Since Rad57 is especially required for SCR (Mozlin et al., 2008), this is consistent with expan-

sions arising during SCR, a pathway previously implicated in causing CAG instability (Kerrest et al.,

2009; Nguyen et al., 2017).

H2A.1 and H2A-Thr126 promote efficient SCR
To further evaluate the role of H2A.1 in homology-mediated repair events, we assayed the H2A

mutants for their ability to undergo SCR using a genetic assay that measures rates of spontaneous

unequal SCR as an estimate of overall SCR levels (Mozlin et al., 2008) (Figure 4C). In this assay, mis-

aligned recombination between two ade2 null alleles can result in gene conversion to a functional

ADE2 allele and the strain is converted from Trp+Ade- to Trp+Ade+ (Mozlin et al., 2008). SCR is not

suppressed from wild-type in the hta2D mutant, but is significantly suppressed in the hta1D mutant

(2.4-fold suppression from wild-type, p=7.9�10�3; Figure 4D). Thus, H2A.1 is required for efficient

SCR while H2A.2 is not, mirroring the differential role of the two H2A copies in CAG repeat mainte-

nance. Similarly, SCR levels are decreased 2.7-fold from wild-type in the hta1-T126A mutant inte-

grated at the endogenous HTA1 locus (p=4.9�10�3) (Figure 4D). SCR is also suppressed, though

more mildly, in the hta1-S129A mutant integrated at the endogenous HTA1 locus (1.9-fold from

wild-type; p=0.03; Figure 4D), in agreement with a previous report that found a mild defect in SCR

during repair of a DSB in an hta1-S129A mutant (Conde et al., 2009). Rates of SCR in the hta1-

T126A and hta1-S129A mutants are also reduced in the hta2D background (Supplementary file 4),

indicating that this reduction does not depend on the presence or absence of H2A.2. Since we

observe a decrease in SCR in the hta1D and hta1-T126A mutants but an increase in CAG expansions

that is HR-dependent, we conclude that the defect in efficiency of SCR must occur after the initiation
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Figure 4. H2A.1 promotes HR fidelity to prevent (CAG)85 expansions and is required for efficient SCR. (A) Repair proteins were deleted in hta1D

mutant. Changes in CAG repeat length were assessed as in Figure 1C. Statistical deviations were calculated by Fisher’s Exact Test: *p<0.05 to WT,

**p<0.01 to WT, ***p<0.001 to WT; p̂<0.05 suppression from hta1D. (B) Repair proteins were deleted in the strain expressing hta1-T126A from the

plasmid; no copy of H2A.2 is present in these cells. Changes in CAG repeat length were assessed as in (A). Statistical deviation from the plasmid HTA1

wild-type were calculated by Fisher’s Exact Test: *p<0.05; statistical deviation from the plasmid hta1-T126A was also tested, but none were significantly

suppressed. (C) Misaligned recombination during SCR can be measured by gene conversion from Trp+ Ade– to Trp+ Ade+ (House et al., 2014b;

Mozlin et al., 2008). If recombination occurs on either side of the ade2-n and ade2-I mutations (indicated by X’s) between aligned mutant alleles, then

gene conversion will create a WT ADE2 gene on one of the chromatids. The ade2-I gene conversion resulting from the indicated cross is shown directly

below the arrow; an alternate alignment and gene conversion of the ade2-n allele is also possible (bottom chromosome). (D) Rates of spontaneous

unequal SCR. For these experiments, the hta1-T126A and hta1-S129A mutations were integrated at the genomic locus, replacing the wild-type copy of

HTA1; HTA2 remains intact in these strains. SCR rates for individual experiments are in Supplementary file 5, including for the HTA1 point mutants

with HTA2 deleted (presence or absence of HTA2 did not change the results). Average rate and SEM is shown. Statistical differences were calculated

using a Student’s t-test: *p<0.05 to WT, **p<0.01 to WT. (E) SSA at a DSB can be measured by viability in the presence of a galactose-induced HO

DSB. Upon galactose treatment a DSB at the inserted HO cut site in the LEU2 gene results in resection to the U2 region of homology 25 kB away.

Repair occurs via single strand annealing between the U2 segments followed by cleavage of the non-homologous tail (arrowhead) and gap filling

Figure 4 continued on next page

House et al. eLife 2019;8:e53362. DOI: https://doi.org/10.7554/eLife.53362 10 of 26

Research article Chromosomes and Gene Expression Genetics and Genomics

https://doi.org/10.7554/eLife.53362


step, such as during the D-loop synthesis. In summary, these results demonstrate that H2A.1 and

H2A.1-T126 are required for efficient spontaneous SCR. This supports our conclusion that H2A.1

and H2A.1-T126 are required for proper recombination at the CAG repeat tract to prevent repeat

expansions, and extends this finding to non-repetitive DNA sequences.

Histone H2A.1 could affect several steps of homology-mediate repair, including resection, homol-

ogy search and invasion, D-loop synthesis, gap fill-in, or checkpoint signaling. To test which stages

of repair are impacted by H2A.1, we used a single-strand annealing (SSA) system to simultaneously

monitor SSA efficiency, repair kinetics, and the checkpoint response after induction of a DSB. In this

system, an HO recognition site has been introduced into the LEU2 locus and galactose-induction

results in a single HO DSB at this location. At the DSB, resection occurs on both sides of the break

and repair via SSA occurs between the two U2 regions of homology (Figure 4E) (Vaze et al., 2002).

Repair kinetics are monitored by Southern blotting and DNA damage checkpoint activation is moni-

tored by Western blotting for phosphorylated Rad53. Using this system, we found no difference in

viability or repair kinetics between hta1D, hta2D, and wild-type strains (Figure 4F; Figure 4—figure

supplement 1A; Supplementary file 5). This indicates that H2A.1 is not important for resection,

alignment, or gap fill-in, which are required steps of repair via SSA. Similarly, we saw no significant

defect in the Rad53ph checkpoint response in hta1D (Figure 4—figure supplement 1B), suggesting

that H2A.1 is not specifically required to mediate or recover from the DNA damage checkpoint

response, though some other aspect of cell cycle regulation could be affected. Since repair via SSA

does not require invasion into a homologous template or D-loop extension, this result strongly sug-

gests that H2A.1 is specifically important for homology-mediated repair requiring a D-loop.

H2A.1 functions with Pol32 during SCR and promotes efficient break-
induced replication (BIR)
Since our results indicated that H2A.1 is required during D-loop mediated repair and CAG expan-

sions could occur during DNA synthesis, we tested the role of the Pold subunit Pol32, which is

required for Pold processivity. Interestingly, SCR is significantly suppressed from the wild-type in the

pol32D mutant. This establishes that the Pol32 subunit of Pold is required for D-loop extension dur-

ing the short tract recombination measured by this assay (less than 1 kb). Notably, SCR suppression

in the pol32D mutant is epistatic to the absence of H2A.1 and a phosphorylatable H2A.1-T126 resi-

due, as the SCR rate is not further diminished in the hta1Dpol32D or hta1-T126A pol32D double

mutants (Figure 5A). Therefore, these results support that H2A.1 and Thr126 are important in facili-

tating D-loop extension by Pold during recombination.

We next tested the role of Pol32 in CAG expansions. In the pol32D single mutant, CAG repeat

expansions are significantly increased over wild-type (5.8-fold over wild-type, p=2.0�10�3), indicat-

ing that processive DNA synthesis by Pold is required to prevent repeat expansions (Figure 5B). We

also found that CAG fragility is significantly increased in the pol32D mutant (Figure 5—figure sup-

plement 1A; Supplementary file 1). We tested whether instability in the absence of Pol32 was due

to its role in normal replication or recombination-associated DNA synthesis by deleting Rad51 in a

pol32D mutant (Figure 5B). Expansions in the pol32D mutant were suppressed in the absence of

Rad51 (to 3.4%, 2.3-fold decrease from pol32D, p=0.17), suggesting that expansions are at least in

part due to polymerase slippage during D-loop synthesis. The increase in expansion frequency in the

pol32D mutant is similar to that in the hta1D and hta1-T126A mutants. However, CAG expansion fre-

quency drops below the level of each single mutant in the hta1Dpol32D and hta1-T126A pol32D

Figure 4 continued

(dotted lines), eliminating the HO target site, and cells survive in the presence of galactose (Vaze et al., 2002). (F) Percent viability as measured by the

number of colonies on YP-Gal divided by the number of colonies on YPD. Statistical deviation from wild-type was tested by a Student’s t-test; none

were significantly different from wild-type (Supplementary file 6).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Single strand annealing and checkpoint response.
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Figure 5. H2A.1 and Pol32 work in the same pathway during SCR, and H2A.1 is required for efficient BIR. (A) Rates of spontaneous unequal SCR,

assessed as in Figure 4D. Statistical deviation from wild-type was calculated using a Student’s t-test, **p<0.01. (B) Changes in CAG repeat length were

assessed as in Figure 1C. Statistical deviation from wild-type was calculated by Fisher’s Exact Test: *p<0.05, ***p<0.001. (C) Assay to measure BIR at an

HO-induced DSB. The first 400 bp of the URA3 gene (UR; right arm) is upstream of an HO cut site (stripes). Homology driven repair of the HO induced

Figure 5 continued on next page
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double mutants (Figure 5B; Supplementary file 2), suggesting that Pol32-dependent synthesis is

responsible for some of the expansions occurring in the hta1D and hta1-T126A backgrounds.

Though the suppression is not statistically significant (for example p=0.12 for hta1Dpol32D com-

pared to hta1D), it is markedly reduced from the additive levels expected if there was no interaction

between the pathways (for example 4.6% in hta1Dpol32D vs. 16.6% predicted for additive). Since

the expansions in hta1D and hta1-T126A are suppressed in the absence of Rad51, Rad52, Rad57,

and Pol32 (Figures 4A and 5B), they are likely arising downstream of synapsis and initiation of DNA

synthesis during recombination. Taken together, these results suggest that the CAG expansions

observed in the absence of H2A.1 occur during a Pol32-dependent recombination process. For

example, H2A.1 could promote efficient D-loop extension during replication of the donor strand,

thereby preventing opportunity for DNA secondary structure formation.

Pol32 is known to be especially important for BIR, which involves extended D-loop synthesis that

can proceed for many kilobases (Lydeard et al., 2007; Anand et al., 2013; Malkova and Ira, 2013)

(see also Figure 5D). Considering the importance of Pol32 in preventing CAG expansions and pro-

moting SCR and that it appears to function in the same pathway as H2A.1, we wondered if H2A.1

might also have a role in BIR. To directly test the role of H2A.1 in BIR, we used a system in which a

DSB induced by the HO endonuclease can result in a non-reciprocal translocation when repair pro-

ceeds via BIR (Anand et al., 2014) (Figure 5C). BIR frequency is suppressed 2.3-fold from wild-type

in the hta1D mutant (p=1.0�10�4 to WT), but remains at wild-type levels in the hta2D mutant

(Figure 5D) and the hta1-T126A mutant (Supplementary file 6). Therefore, while H2A.1 is important

for BIR, this function is either not regulated by T126 or the T126A phenotype was too subtle to be

revealed by this assay. Interestingly, histone loss in response to DSBs has been implicated in promot-

ing recombination and DNA repair rates (Hauer et al., 2017). Therefore, given that the BIR system

depends on an induced DSB, altered histone levels in the hta1D mutant may increase gene conver-

sions or other conservative repair pathways at the expense of BIR.

After HO-cutting, the cells were also surveyed for repair type by pinning colonies from the YP-Gal

plates onto YPD, YPD+Nat and YC-URA. Surviving colonies were used to calculate the percent of

colonies that underwent the indicated repair type (Figure 5E). The repair outcome profile in the

hta1D mutant is altered from wild-type as a greater proportion of cells undergo other types of repair

instead of BIR (Figure 5E) (Supplementary file 6). While less severe, the increase in these other

types of repair events in the hta1D mutant is similar to the phenotype in the pol32D mutant, and

therefore is likely a consequence of decreased BIR rates (Figure 5E). We conclude that deletion of

H2A.1 results in decreased BIR and alterations in repair type frequencies, demonstrating that H2A.1

plays a role in facilitating efficient BIR. Together with the SCR data, this suggests that expansions in

the hta1D mutant may be due to defective D-loop extension, since this step occurs during both SCR

and BIR.

Discussion
Stemming from an initial observation in a genetic screen that CAG repeat fragility and instability

were elevated in an hta1D mutant but not in an hta2D mutant, we demonstrated that H2A.1 and

H2A.2 differentially contribute to homology-mediated repair. The histone subtypes have been

Figure 5 continued

DSB can occur with the remaining 404 bp of the URA3 gene (A3; left arm) and if completed via BIR renders the cell URA+ and NATS (Anand et al.,

2014). (D) Frequencies of BIR during repair of an HO-induced DSB; SEM of 4–9 replicates is shown (Supplementary file 7). Statistical deviation from

wildtype was calculated using a Student’s t-test, ***p<0.001. (E) The type of repair induced by the HO DSB was evaluated by individually scoring all

colonies for growth on YC-URA and YEPD+Nat. Colonies that were URA+ NATS are were repaired via BIR. Other types of possible repair events include

gene conversion (URA+ NATR), non-homologous end-joining (URA- NATR), and de novo telomere addition (URA- NATS). Statistical analysis of BIR

frequencies and repair types can be found in Supplementary file 7.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. CAG fragility rates in the absence of Pol32.
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documented before to play different functions during the S. cerevisiae life cycle. The absence of

gene product from HTA1 and HTB1 led to a constitutive heat shock response after exposure to high

temperature, and this phenotype was not rescued with an additional copy of HTA2 and HTB2 (33).

Taken with our results demonstrating differential roles for the H2A copies in preventing HR-medi-

ated CAG repeat expansions, facilitating sister chromatid recombination, and promoting BIR, this

further supports that H2A.1 is specifically important for repair or recovery from DNA damage. Our

data indicate that H2A.1 is more efficient at promoting high-fidelity HR than H2A.2 because of pro-

tein sequence; specifically, the position of the phosphorylatable threonine in the H2A.1 C-terminal

tail is more advantageous to repair than H2A.2. Both copies of yeast H2A contain the SQEL motif in

the C-terminal tail, and therefore both copies are considered homologs of mammalian H2AX. A

compelling implication of our result here is that yeast H2A.1 is in fact the closer homolog of mamma-

lian H2AX, as it plays a greater HR-specific role than H2A.2. Like H2A.1, mammalian H2AX also con-

tains a phophorylatable threonine two residues before serine 139. Also similar to H2AX, H2A.1 is

initially a smaller proportion of the total H2A pool (Moran et al., 1990; Rogakou et al., 1998). Con-

sequently, yeast H2A.1 and H2A.2 may be more akin to histone variants than histone copies.

A role for H2A.1-T126 in promoting high-fidelity recombination-
mediated repair
H2A-Thr126 has previously been shown to be phosphorylated in vivo but its phosphorylation state

after DNA damage and its overall contribution to break repair was unclear (Wyatt et al., 2003;

Moore et al., 2007; Harvey et al., 2005; Chambers and Downs, 2007). Using a naturally unstable

expanded CAG repeat tract, we have shown that H2A.1-T126 is important for maintaining CAG

repeats and plays a role in promoting efficient SCR. Our results indicate that overall levels of HR/

SCR are suppressed in the absence of H2A.1-T126, and that the recombination that does take place

proceeds with low fidelity, leading to repeat expansions. Although our results implicate a require-

ment for phosphorylation of H2A.1-T126 in DNA repair, it is formally possible that some other physi-

cal property of threonine at position 126 may be important for repair, rather than

phosphosphorylation per se. For example, the amino acid sequence in the H2A.1 C-terminal tail with

threonine at position 126 may be more advantageous to DNA repair factor recruitment, indepen-

dent of T126 modification status. Alternatively, H2A.1-T126 could influence neighboring modifica-

tions, such as S122 phosphorylation or acetylation of K124 or K127, though our data indicate that

T126 does not modulate S129 phosphorylation.

The fact that expansions, an addition of bases, occur in hta1D and hta1-T126A mutants is most

supportive of a role for H2A.1 in promoting a synthesis step of DNA repair. The expansions are likely

arising downstream of synapsis and D-loop assembly since they were suppressed in the absence of

Rad51, Rad52, and Rad57 (Figure 4A). Similarly, H2A.1 and T126 play no role in repair via SSA,

which does not require formation of a D-loop (Figure 4F; Figure 4—figure supplement 1A;

Supplementary file 6). Further, our data placing H2A.1 and T126 in the same pathway as Pol32 in

the unequal SCR assay supports a role during D-loop extension. Therefore, we conclude that H2A.1

is most likely promoting efficient D-loop extension during replication of the donor strand. A second

possibility is that H2A.1-T126 is required to promote a later step in the process such as D-loop reso-

lution or re-establishment of the chromatin structure of the repaired gap. This could explain why the

H2A.1-T126A mutant did not have a discernable effect on BIR, which does not include re-engage-

ment of the extended D-loop with the initiating DNA molecule.

Our data indicated that the role of H2A.1-T126 was not directly dependent on S129ph, however,

the two residues could act together to affect an outcome. H2A-S129ph begins to accumulate at the

CAG repeat 20 min into S-phase and peaks at 40 min (House et al., 2014b). H2A.1 is either incorpo-

rated or phosphorylated at the CAG tract 40 min into S-phase, appearing only after initial accumula-

tion of S129ph but coinciding with peak S129ph. Specific incorporation of H2A.1 at the CAG repeat

when DNA damage is occurring is highly suggestive of some role for T126 at that time. Since our

antibody also detects phosphorylated H2A.1, it could be that the additional ChIP signal is due to

existing H2A.1 becoming phosphorylated locally. Alternatively it may reflect damage-specific incor-

poration of H2A.1, which may or may not be phosphorylated on T126 (Figure 6A). Levels of H2A.1-

T126 decreased upon MMS damage (Figure 3E), and whole-genome proteomics did not identify

H2A-T126ph as a DNA damage-inducible modification (Bastos de Oliveira et al., 2015;

Smolka et al., 2007; Zhou et al., 2016), though because T126 is surrounded by two lysines (K124,
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K127), it will end up on a peptide only three amino acids long after trypsin digest, which will not be

easily detected by mass spectrometry. Nonetheless, we favor a model in which T126ph is a pre-exist-

ing modification independent of S129ph, but that these two modifications may work together to

promote efficient repair, for example by binding or excluding certain repair factors in a combinato-

rial fashion. In this scenario, T126ph would become enriched at the site of damage because of dam-

age-specific incorporation of H2A.1 during repair (Figure 6) and disappear after repair is complete,

either by removal of H2A.1 or local dephosphorylation of the T126 residue. Depending on the

Figure 6. A model for high-fidelity HR-mediated repair promoted by H2A.1 and T126 phosphorylation. The initiating lesion at the CAG repeat could be

a nick, gap, or a one-ended break (e.g. created at a replication fork). (A) Incorporation of H2A.1 at sites of damage (with or without T126ph; with

T126ph is shown) promotes repair fidelity. The presence of H2A.1 will promote efficient D-loop extension after invasion into the sister chromatid,

leading to repair with fidelity and maintenance of CAG repeat number. Alternatively, the resolution of recombination intermediates may require H2A.1

to prevent multiple reinvasion events that could lead to repeat expansions. Though T126ph is shown as present during BIR/BFR for continuity with the

previous diagram, our data suggest that the T126 identity has minimal effect on this step in the context of BIR (BFR was not tested). See discussion for

details. (B) Without H2A.1 only H2A.2 with T125 is present and D-loop extension is impeded, allowing hairpins or misalignment during Rad51-

dependent invasion, leading to less efficient repair and CAG repeat instability. Purple nucleosomes contain H2A.1, pink nucleosomes are H2A.2-

containing only. Orange dots represent H2A.1-T126ph, which could either be a pre-existing modification or induced locally at the damage site. Yellow

dots represent H2A-S129ph.
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phosphorylation status of both residues, a repair protein could recognize one or both residues,

which could facilitate removal of S129ph-bound proteins or turnover of S129ph/T126ph-containing

nucleosomes, influencing the overall progression of the repair process. This idea is supported by the

similar increase in expansions in the T126A and T126E mutants, suggesting that dephosphorylation

of T126 could be important for repair fidelity. Alternatively, the presence of a threonine three amino

acids away from S129ph, independently of its modification state, could influence repair, or the T126

effect may be independent of S129ph, even though they occur coincidentally.

Since we found that H2A.1 is specifically important for D-loop mediated HR repair, ATPase chro-

matin remodelers are attractive candidates for direct interaction with H2A.1-T126 or H2A.1-T126ph.

Interestingly, in G2/M when a sister chromatid is available for recombination, gH2A is dispensible for

recruitment of several chromatin modifiers, including Ino80 and subunits of RSC, NuA4, Rpd3, SWI/

SNF, and SWR-C (Bennett et al., 2013). H2A.1-T126-mediated recruitment of chromatin remodelers

could be important for opening the chromatin structure to allow access by repair factors, remodeling

chromatin on the donor strand to facilitate synapsis or D-loop extension, or resetting the chromatin

to promote repair resolution. The hta1-T126A mutant displays a defect in telomere positioning

effect (TPE) (Wyatt et al., 2003), consistent with a role in reestablishing chromatin structure after

repair or replication. We previously found that RSC and NuA4 are required to promote high-fidelity

repair of the CAG repeat, and showed that RSC subunits are recruited to the repeat during S-phase

(RSC2 peaks at 20 min, RSC1 at 40 min). We concluded that these factors are promoting post-repli-

cation repair events (House et al., 2014b), however, it is possible that RSC and NuA4 also have a

more general role in any D-loop mediated repair process. Recruitment of any of these proteins to

the CAG repeat during repair could facilitate chromatin remodeling to promote efficient D-loop pro-

gression or resolution and high-fidelity repair.

A model for H2A.1 in HR-mediated repair of CAG repeats
Hairpins formed by CAG or CTG repeats interfere with replication and induce joint molecules

between sister chromatids, which have been visualized by two-dimensional gel electrophoresis

(Kerrest et al., 2009; Nguyen et al., 2017). We propose a model in which gaps caused by replica-

tion bypass of the CAG repeat are repaired via SCR, and that incorporation of H2A.1 and/or H2A.1-

T126ph ensures efficient remodeling and progression of Pol32-mediated D-loop extension, leading

to high-fidelity repair (Figure 6A). In the absence of H2A.1, suboptimal signaling from the H2A.2-

T125 residue may inefficiently recruit or retain chromatin remodelers or other DNA repair proteins,

impeding D-loop extension due to a chromatin state that is not permissive to extension and copying

(Figure 6B). Inefficient progression of the recombination intermediate could lead to Pold stalling or

transient dissociation of the 3’ end of the invading strand, which would allow opportunity for CAG

repeat secondary structure formation and slippage during synthesis, leading to repeat length

changes in the repaired DNA strand. Alternatively, chromatin remodelers or repair factors influenced

by the presence of H2A.1-T126 may be required to reset the chromatin structure after repair. The

permissive chromatin state could allow multiple, aberrant invasion events that would increase the

opportunity for misalignments during D-loop initiation or elongation, resulting in repeat instability.

Perhaps less commonly, a replication fork stalled by a CAG or CTG hairpin may be converted to a

one-ended DSB that could facilitate HR-dependent fork restart, similar to BIR (e.g. broken fork repair

or BFR; Malkova and Ira, 2013). If fork restart proceeds with low fidelity, such as if recombination

structures are misaligned or hairpins cause strand slippage, mutations can arise. Our data suggest

that H2A.1 is required for efficient BIR, and CAG expansions occurring in the hta1D background

were reduced when Pol32 was deleted, inhibiting BIR. Indeed, recovery from broken forks via BIR/

BFR has recently been proposed to cause large-scale expansions of a (CAG)140 repeat tract in yeast

(Kim et al., 2017), and our data at the (CAG)85 repeat are consistent with these results. However, in

the wild-type background, expansion frequency is significantly increased in a pol32D mutant where

BIR is suppressed (Figure 5B), indicating that BIR is not the only pathway creating expansions. Our

data show that at least some expansions in the pol32D mutant occur during recombination

(Figure 5B), suggesting that efficient D-loop synthesis through a CAG repeat requires Pol32. It

remains possible that some expansions occurring in the pol32D mutant are arising by a different

mechanism, such as impaired Pold synthesis during replication. While efficient BIR was dependent

on H2A.1, the rates were not affected in the hta1-T126A mutant, thus, the requirement of H2A.1

during BIR is not through the modifiable T126. The BIR assay involves a DSB whereas the

House et al. eLife 2019;8:e53362. DOI: https://doi.org/10.7554/eLife.53362 16 of 26

Research article Chromosomes and Gene Expression Genetics and Genomics

https://doi.org/10.7554/eLife.53362


spontaneous SCR assay and CAG repeat expansion assay is measuring the response at endogenous

DNA lesions that will include a mix of nicks, gaps, and a small proportion of DSBs. We note that

CAG fragility, CAG contractions, and BIR, that all involve an initiating DSB, were dependent on

H2A.1 but not the T126 residue. Therefore, our data are consistent with H2A.1 levels affecting DSB

repair while the H2A.1 sequence-specific role is during gap repair/SCR.

Conclusions
At the occurrence of DNA damage, recombination is thought to be more protective to genome

integrity than end joining because the repair is templated. However, recombination can itself be

mutagenic if it does not proceed in a regulated manner (Polleys et al., 2017; Guirouilh-

Barbat et al., 2014). Turnover of chromatin modifications during repair is an attractive model for

facilitating proper repair progression, either by influencing chromatin reorganization (reviewed in

Polo, 2015) or by facilitating sequential recruitment and release of repair factors (reviewed in

House et al., 2014a; Price and D’Andrea, 2013). Our results demonstrate a genetic interaction

between H2A.1 and Pol32 (Pold) in maintaining CAG repeat stability. The timing and reading of

H2A.1-T126 and other chromatin marks may determine how effectively the Pold complex moves

through the donor strand during repair, ensuring that repair is efficient (timely) and that it proceeds

with high-fidelity, limiting mutagenic repair outcomes.

Our results suggest that yeast H2A.1 is a closer homolog of mammalian H2AX, whereas H2A.2 is

more functionally equivalent to mammalian H2A. Although the density of nucleosomes can vary at

different genomic loci, the abundance of histones throughout the genome means they are readily

available at the frontlines of DNA damage. In yeast, histone H2A.1 and H2A.2 are both present in a

healthy cell and are likely interspersed throughout the genome. Transcript from H2A.2 is present in

higher proportion than H2A.1 under normal conditions (cited in Moran et al., 1990), but there must

be an adequate amount of H2A.1 present on the chromatin to act in a fashion that promotes DNA

repair. This may be similar to H2AX distribution in human cells, which is 2.5–25% of the total H2A

pool (Rogakou et al., 1998). Further, in mammalian cells the H2AX histone variant is also required

for efficient SCR (Xie et al., 2004). The analogous H2AX threonine (T136) is also phosphorylated in

mammalian cells (Li et al., 2010; Bennetzen et al., 2010). A T136V mutation did not decrease sur-

vival after IR or DSB-induced HR in mouse cells, but gap repair and repair fidelity were not analyzed

(Xie et al., 2010). Thus, it would be interesting to test whether mammalian H2AX T136 plays a role

in repair fidelity analogous to the role described here for yeast H2A.1-T126.

Materials and methods
In all cases, reference to independent experiments refers to independent biological replicates, which

were done from separate starting colonies or cultures that were treated separately (e.g. plated for

analysis or prepared separately for DNA or protein preparation).

Yeast strain construction
The yeast strains used in this study are described in Supplementary file 11. Mutant strain construc-

tion: Genes were deleted via PCR-based gene replacement with selectable gene markers. Integra-

tion of the selectable marker was verified using PCR at the 3’ and 5’ integration junctions and

primers internal to the target gene to verify ORF absence. All assays were done with at least two

independently created strains.

CAG repeat fragility assays
Assays to measure CAG repeat fragility were performed by fluctuation test as previously described

(House et al., 2014b; Polleys and Freudenreich, 2018). Briefly, 10 single colonies with verified

(CAG)85 tract lengths were grown 6–8 divisions and URA3 marker loss was tested by plating on

FOA-Leu. Mutation frequency was calculated by the Method of Maximum Likelihood (Hall et al.,

2009). Rates were evaluated for significant deviation from WT by the student’s t-test, as we were

interested in comparison to the wild-type rate. At least three biological replicates were performed

for each strain, using at least two independent transformants. See Supplementary file 1 for a list of

individual assays. Outliers according to the Grubb’s test were removed.
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CAG repeat stability assays
PCR-based stability assays were performed as described (House et al., 2014b; Polleys and Freu-

denreich, 2018). Briefly, single colonies with verified (CAG)85 tract lengths were grown 6–8 genera-

tions and the tract length was measured in ~100–300 daughter colonies from two independent

transformants. PCR products were run in 2% MetaPhor agarose or a custom gel mix on a fragment

analyzer (Custom kit DNF945, Advanced Analytical Technologies, Inc). The number of expansions

and contractions were evaluated for significant deviation from wild-type using the Fisher’s Exact

Test (see Supplementary file 2). This test is appropriate as we are comparing categorical data (for

example # expansions in wt vs # expansions in mutant) in small sample sizes (e.g. less than 1000).

Sample size was determined by the number needed to determine statistical significance balanced by

the practicality of the number of PCR reactions that could be done with available resources.

Chromatin analysis by MNase digestion and indirect End-labeling
Chromatin digestion was performed as previously described (Koch et al., 2018, adapted from

Wu and Winston, 1997), with the following modifications: spheroblasts were digested with 0, 0.25,

2.5, or 7.5 units of MNase and the DNA pellet RNase A digested for 30 min. The DNA was extracted

twice using an equal volume of chloroform and precipitated with NH4OAc and isopropanol. South-

ern Detection: MNase digested DNA (20–30 mg) was run in 1.5% agarose at 80V for 6 hr and South-

ern blotted as previously described (Koch et al., 2018). Chromatin structure was probed with a 32P

labeled 358 bp PCR fragment amplified from 102 bp upstream of the CAG repeat on YAC CF1. The

experiment was repeated multiple times and a representative blot is shown.

Mononucleosome positioning detection by Illumina bead array
Chromatin was isolated and MNase digested as described above, except mononucleosomes were

prepared by digesting the chromatin with 10 units of MNase for 15 min. Purified mononucleosomal

DNA was amplified using the GenomePlex Whole Genome Amplification kit (Sigma). Amplification

and ~150 bp fragment sizes were verified by running in 1.5% agarose. Amplified mononuclesomes

were purified with a GenElute PCR clean-up kit (Sigma) and 3’ biotin end-labled (Pierce); DNA was

chloroform extracted, and labeling was verified by dot blot according to the manufacturer’s instruc-

tions. Purified mononucleosomes were applied to a custom Illumina array that contained YAC CF1

sequence spanning a region 425 bp upstream to 438 bp downstream of the repeat tract in 30 bp

non-overlapping probes (Supplementary file 3). For each sample, a 12 ml aliquot of the purified

mononucleosomal DNA was mixed with 3 ml of 15.3X SSC buffer containing 2.4% SDS, heated at 95˚

C for 5 min, and snap cooled. The sample was applied to the sample zone of the microarray and

hybridization was carried out overnight at 62˚C with humidity. Arrays were washed in stringency

wash (0.2% SDS and 2X SSC buffer) with rocking for 5 min, followed by 0.05X SSC buffer with vigor-

ous agitation for 1 min. To reduce non-specific binding of the stain, arrays were incubated with

blocker casein in 1X PBS (Thermo) for 5 min. Arrays were then stained for 10 min in blocker casein

with 1 mg/ml streptavidin-Cy3 in PBS (Invitrogen). Chips were vigorously agitated in 0.05X SSC buffer

for 1 min, dried with compressed air, and scanned with a BeadArray Reader (Illumina) using Direct

Hybridization settings with a factor of 5. Signal intensity was exported to Excel via BeadScan. The

experiment was repeated twice for WT and 3x for hta1D and hta2D strains.

H2A sequence alignments
All DNA sequences were acquired from the Saccharomyces Genome Database (https://www.yeast-

genome.org/) and aligned using SerialCloner or SnapGene. All protein sequences were acquired

from Uniprot (http://www.uniprot.org/) and aligned by Clustal Omega (http://www.ebi.ac.uk/Tools/

msa/clustalo/).

Western blotting of H2A
Strains were grown in YPD at 30˚C with agitation to log phase (OD600 = 1); cells were either

untreated or exposed to the following drug treatments at 30˚C with agitation: 0.01% MMS for 2 hr,

0.03% MMS for 1 hr, 0.2M HU for 1 hr, 0.2M HU + 0.03% MMS for 1 hr. Lysates were extracted

according to Adams et al. (1997) and https://research.fhcrc.org/gottschling/en/protocols/yeast-pro-

tocols/protein-prep.html and Western blotted onto PVDF. Blots were probed with anti-H2A (Abcam
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#13923; 1:5000), anti-H2AT126 (Aves Lab custom antibody; gift from Krebs lab; 1:2500), or anti-

H2AS129ph (Abcam; ab15083; 1:2500) in 2.5% milk in 1X PBS (pH 7.4). The signals were detected

with HRP-conjugated secondary antibody (1:2500) and ECL (Pierce). Western blot signals were quan-

tified by ImageJ. The fold change in signal from WT was determined by comparing the relative

quantification value (rqv) of a mutant to the relative quantification value of the WT (rqv = ratio of the

indicated band to the loading control, with background subtracted). Each experiment was repeated

at least three times and quantified; individual and mean values, SEM and p-values to control are

reported in Supplementary file 9.

H2AT126 antibody information
The anti-H2A.1T126 custom chicken antibody was generated by Aves Lab (http://aveslab.com). The

antibody was raised against the phosphopeptide KKSAKA[pT]KASQEL. An attempt to create a sec-

ond batch of this antibody by the same procedure was not specific, thus the specificity of antibodies

created in this manner is variable. Only experiments with the H2A.1-specific antibody preparation

are included.

Chromatin immunoprecipitation
ChIP was performed in biological duplicate as previously described (Aparicio et al., 2005;

House et al., 2014b) using anti-H2A.1T126 (custom preparation, Aves Lab), normal chicken IgY (Milli-

pore AC146), anti-H2B (Abcam ab1790), or anti-H3 (Millipore 05–928) and Dynabeads Protein G

(Invitrogen) or anti-IgY agarose beads (Invitrogen) for immunoprecipitation. Time points were taken

after release from synchronization in 5 mM a-factor for 1.5 hr at 30˚C with shaking. DNA levels were

measured by qPCR using SYBR Green PCR mastermix (Roche) or Power SYBR Green PCR Master

Mix (Applied Biosystems); qPCR reactions were run in duplicate amplifying a 200 bp fragment 0.6 kb

upstream of the CAG repeat or at ACT1. Enrichment at the CAG repeat was determined by the

DDCt method; H2B and H3 ChIP was additionally normalized to enrichment at an ACT1 control

locus. See Supplementary file 4 for raw IP/Input values, qPCR conditions, and primer sequences.

Sister chromatid recombination assays
Assays were performed as previously described (House et al., 2014b; Mozlin et al., 2008). Briefly,

Trp+ Ade- cells were grown in YEPD to saturation. Total viable cell count was measured by plating

10�5 dilutions on yeast complete (YC) media and recombinants were selected by plating 10�2 dilu-

tions on YC-Trp-Ade. Recombination rates were calculated by the method of the median and rates

were tested for statistical significance using the Student’s t-test (Supplementary file 5). Outliers

according to the Grubb’s test were removed.

Break-induced recombination assays
Assays were modified from Anand et al. (2014). Briefly, colonies on YEPD+Nourseothricin were seri-

ally diluted and plated on YEPD and YEP+Galactose in duplicate. Colonies were counted and per-

cent viability on YEP+Galactose was determined by dividing by the number of colonies on YEPD. To

determine the frequency of BIR and other types of repair, all YEP+Galactose colonies were pinned

onto YEPD, YEPD+Nourseothricin, and YC-URA. BIR frequency was calculated as number of URA+

NAT- cells divided by the number of colonies on YEPD and tested for statistical significance using

the Student’s t-test (Supplementary file 7).
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Appendix 1

Supplemental methods

HTA1 point mutants
FY406 H2A point mutant strains were a gift from Dr. Jessica Downs (Harvey et al., 2005). The

H2A point mutants are contained on a CEN plasmid containing either hta1-T126A or hta1-

S129A point mutation, a wild-type copy of HTB1, and a HIS3 marker. Both the HTA1/HTB1

and HTA2/HTB2 loci are deleted in these strains so the sole copies of H2A and H2B are

expressed from the plasmid. A YAC containing a (CAG)85 repeat tract was introduced by

cytoduction as previously described (Callahan et al., 2003). For genomic integration of hta1

point mutants, the HTA1 gene plus 200 bp upstream and 347 bp downstream of the gene was

cloned into either the pFA6a-KanMX6 or the pFA6a-HPH vector. The hta1-T126A, T126E,

S129A or T126A/S129A point mutations were integrated into the HTA1 plasmid via cloning

and PCR-based gene replacement methods integrated the mutations, confirmed by PCR and

sequencing. Replacement of HTA2 in HTA1 gene locus: A selectable KANMX6 gene was

knocked-in 150 bp downstream of the HTA2 stop codon. The entire HTA2 gene and KANMX6

marker was PCR amplified with primers with 40 bp tails homologous to the HTA1 locus.

Integration of HTA2+KANMX6 into the HTA1 gene locus was confirmed by PCR and

sequencing. The HTA2 gene at its endogenous locus was deleted.

HTA1 and HTA2 gene copy number verification
hta1D and hta2D strains used in this study (Supplementary file 8) were grown overnight and

subjected to DNA extraction via phenol:chloroform and bead beating. Samples were diluted

and total genomic HTA1 and HTA2 levels were measured in duplicate by qPCR using Power

SYBR Green PCR Master Mix (Applied Biosystems, 4367659). Absolute quantities were

determined by comparison to a standard curve and normalized to the control locus ACT1

(Supplementary file 8). Given the high sequence similarity between HTA1 and HTA2, primers

were designed such that they were specific to HTA1 or HTA2. Primer sequences are in

Supplementary file 8.

Histone Phosphatase Assay
Cells were grown to mid-log phase and subsequently treated with 0.035% MMS for 3 hr. For

on blot assays, 9.25 � 107 were collected. For in tube assays 1.26 � 109 cells were collected.

CIP treatment on-blot: Whole cell lysates were extracted according to Adams et al. (1997)

and https://research.fhcrc.org/gottschling/en/protocols/yeast-protocols/protein-prep.html and

Western blotted onto PVDF. Post-transfer, membranes were activated, blocked in 5% BSA in

1X TBST for 1 hr and washed with 1X TBS. Membranes were cut in half, placed in 5 mL of 1X

Cutsmart buffer and either treated with to 10 U of calf intestinal alkaline phosphatase (CIP)

(NEB #M0290S) or received no treatment. Membranes were incubated for 1 hr at 37˚C. CIP

pre-treatment: Histones were acid extracted according to Jourquin and Géli (2017). For the

phosphatase treatment, 0.5 ul of purified histones was resuspended in 1X Cutsmart buffer and

incubated with 3 U CIP (NEB #M0290S) for 1 hr at 37˚C. Control samples were incubated with

no CIP added. Samples were Western blotted onto PVDF and subsequently probed.

Visualization and quantification: Blots were probed with anti-H2A (Abcam ab13923; 1:5000),

anti-H2AT126 (Aves Lab custom antibody; gift from Krebs lab; 1:2500), or anti-H2AS129ph

(Abcam; ab15083; 1:2500) in 5% BSA in 1X PBS (pH 7.4). The signals were detected with HRP-

conjugated secondary antibody (1:2500) and ECL (Pierce). Western blot signals were

quantified by ImageJ.
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Single strand annealing assays
Assays were modified from Vaze et al. (2002). For viability assays, colonies were grown for 2–

3 divisions in YP-Lactate at 30˚C, serially diluted, and plated on YEPD and YEP+Galactose in

duplicate. Colonies were counted and percent viability was determined (number of colonies

on YEP+Galactose divided by the number of colonies on YEPD). See Supplementary file 6.

HO induction and measuring repair kinetics
Time course experiments were performed as previously described (Vaze et al., 2002). Briefly,

400 mL YP-Lactate was inoculated with 1�3 � 106 cells. Cells were grown overnight at 30˚C.

Fifty millilitres of cells were removed and then galactose was added to a final concentration of

2% to induce the DSB. Aliquots were removed at the indicated timepoints and DNA was

extracted using phenol:chloroform and bead beating. Purified DNA was normalized using a

Qubit (dsDNA BR kit; Q32850), digested overnight with KpnI and Southern blotted using a

probe specific to LEU2.

Western blotting for phosphorylated Rad53
Protein extraction was performed as previously described (Foiani et al., 1994). Briefly 5 OD of

cells at the indicated timepoints were treated with 20% trichloroacetic acid and bead-beating.

Total protein extracts were separated on a 7.5% gel, blotted onto PVDF and probed with anti-

Rad53 (Abcam ab166859; 1:1000). Phosphorylated Rad53 is visible as a retarded band on the

blot.

qPRT-PCR of Pol32 levels
mRNA extraction was done on approximately 1.2 � 108 logarithmically growing cells using the

Illustra RNAspin Mini kit (GE, 25-0500-70). cDNA synthesis was done using SuperScript II

Reverse Transcriptase (Invitrogen, 18064022). mRNA was diluted and POL32 levels were

measured in duplicate by qPCR using Power SYBR Green PCR Master Mix (Applied

Biosystems, 4367659). Absolute quantities were determined by comparison to a standard

curve of genomic DNA and normalized to the control locus ACT1 (Supplementary file 10).

Primer sequences are in Supplementary file 10.
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