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Background: Coronavirus disease 2019 (COVID-19) is a global pandemic. Previous
studies have reported dyslipidemia in patients with COVID-19. Herein, we conducted a
retrospective study and a bioinformatics analysis to evaluate the essential data of the
lipid profile as well as the possible mechanism in patients with COVID-19.

Methods: First of all, the retrospective study included three cohorts: patients with
COVID-19, a healthy population, and patients with chronic obstructive pulmonary
disease (COPD). For each subject, serum lipid profiles in the biochemical data
were compared, including triglycerides (TG), total cholesterol (TC), high-density
lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C).
Furthermore, bioinformatics analyses were performed for exploring the biological or
immunological mechanisms.

Results: In line with the biochemical data of the three cohorts, the statistical result
displayed that patients with COVID-19 were more likely to have lower levels of TC and
HDL-C as compared with healthy individuals. The differential proteins associated with
COVID-19 are involved in the lipid pathway and can target and regulate cytokines and
immune cells. Additionally, a heatmap revealed that severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) infections were possibly involved in lipid metabolic
reprogramming. The viral proteins, such as spike (S) and non-structural protein 2 (Nsp2)
of SARS-CoV-2, may be involved in metabolic reprogramming.

Conclusion: The metabolic reprogramming after SARS-CoV-2 infections is probably
associated with the immune and clinical phenotype of patients. Hence, metabolic
reprogramming may be targeted for developing antivirals against COVID-19.
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INTRODUCTION

The infections of severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) led to the coronavirus disease 2019 (COVID-
19) pandemic and have been a threat to public health across
the world. There are 464,809,377 confirmed cases of COVID-
19, including 6,062,536 deaths as of March 20, 2022 (World
Health Organization [WHO], 2022). Public health and social
and economic growth have been enormously influenced by
the COVID-19 pandemic. SARS-CoV-2 contains four structural
proteins, [envelope (E), membrane (M), nucleocapsid (N), and
spike (S)], 16 non-structural proteins (Nsp1 to Nsp16), and
eight accessory proteins (orf3a, orf6, orf7a, orf7b, orf8, orf9b,
orf9c, and orf10). These proteins are involved in the viral
life cycle and viral interaction with the host. Although the
interaction between SARS-CoV-2 and the host is a moot point,
the scientific community steadily gained an understanding of
pathogenesis in the past.

Although the interactions between the immune system and
lipid metabolism during SARS-CoV-2 infections remain unclear,
the new development of tumor and metabolism study can
provide new ideas and methods for the influence of SARS-
CoV-2 infections. Interestingly, lipids are involved in viral
pathogenesis and the pathophysiology of viral disease (Nie et al.,
2020). Lipids not only constitute virus envelope but also involve
viral replication and invasion. The composition of viruses and
cells always includes lipids involved in membrane fusion and
replication during the entry and the release from the host cell
membrane. Previous studies (Wei et al., 2020; Jin et al., 2021;
Mahat et al., 2021) have shown that lipid profiles, such as the total
cholesterol (TC), high-density lipoprotein cholesterol (HDL-C),
and low-density lipoprotein cholesterol (LDL-C), in patients with
COVID-19 are significantly altered. TC increases in the cell
membrane, which benefits the virus entry to the host cells and the
membrane fusion (Theken et al., 2021). The alterations of lipid
profile in patients with COVID-19 seem to be proportional to
the clinical phenotype and might be a target for risk evaluation.
In addition, TC can regulate T-cell-mediated immune response
and constitute T-cell receptors (TCRs) as a critical regulator,
directly or indirectly (Bietz et al., 2017; Puleston et al., 2020).
A previous study about lymphocytic choriomeningitis virus
(LCMV) also showed that the clearance of the LCMV was
significantly delayed in hypercholesterolemic mice, and LCMV-
specific CD8+ T cells were suppressed (Ludewig et al., 2001).
Cholesterol accumulation reduced the activation of CD8α-
dendritic cells, thereby impairing Th1 cell responses while
enhancing Th2 cell responses (Kim et al., 2021). Other evidence
from oncology has demonstrated that multiple lipid species can
be sensed by innate immune cells including macrophages and
dendritic cells. Dyslipidemia is a critical regulator of adaptive
immunity, which in turn can regulate adaptive immune cells
(Kim et al., 2021).

However, the concentration of lipid profiles in patients
with COVID-19 was reported with variable values (Gao et al.,
2020; Hu et al., 2020; Lei et al., 2020; Malik et al., 2021).
A likely explanation is that the genetic phenotypes and
underlying diseases are significantly different among patients
with COVID-19. To extend the existing evidence regarding the

relationship between COVID-19 and lipid profile, a retrospective
study and mechanism exploration by bioinformatics analyses
were performed. We did extensive research about the actual
relation between viral pathogenesis and lipid alteration through
existing data. We attempted to elucidate the correlation
between lipid profile and immunoreaction among patients
with COVID-19, including lipid metabolism and profile,
for example, dyslipidemia mechanism, cytokines, and T-cell-
mediated immune response.

MATERIALS AND METHODS

Clinical Information
This retrospective study included three cohorts, 25 COVID-19
cases, 25 cases of the healthly examination population (control
group, CG), and 25 cases with chronic obstructive pulmonary
disease (COPD), recruited from the Huizhou Central People’s
Hospital. COPD and CG never went through a previous infection
with COVID-19 or received the vaccination. The patients
were diagnosed with COVID-19 in light of the World Health
Organization (WHO) guidelines.1 The nasopharyngeal swabs
of patients with COVID-19 were collected for diagnosis. The
laboratory-confirmed patient was defined as a positive result
on the real-time reverse-transcriptase polymerase chain reaction
(RT-PCR) assay of nasopharyngeal swab specimens. These cases
were well balanced for gender, age, and primary disease. All the
COVID-19 symptoms were mild, and no severe cases appeared.
This study was performed according to the principles of the
Declaration of Helsinki and approved by the Huizhou Central
People’s Hospital following its guidelines for the protection of
individual privacy.

Biochemical Measurements
For three cohorts, serum lipid profiles of patients with COVID-
19, patients with COPD, and the healthy examination population
were tested by biochemical methods (Roche Cobas 8000),
including triglycerides (TG), TC HDL-C, and LDL-C. The sera
of patients with COVID-19 were collected on admission.

Dataset Collection
The data based on the initial screening are retrieved mainly from
the National Center for Biotechnology Information. Proteomic
and lipidomic data from the sera/plasma of patients with
COVID-19 were acquired from the early studies (Shen et al.,
2020; Wu et al., 2020) and GEO datasets (GEO accession number:
GSE157103). R was used to screen for differential proteins
and lipids (R Core Team, 2018). Glycolysis pathway data were
acquired from Caccuri et al. (2021). Profiles of serum cytokines
and chemokines in patients with COVID-19 were acquired
from Zawawi et al. (2021). SARS-CoV-2 S, E, Nsp15, Nsp16
(Sharma et al., 2021), and Nsp2 (Davies et al., 2020) proteins
were determined and compared with the host transcriptomic
responses to key viral genes.

1https://extranet.who.int/pqweb/vitro-diagnostics/coronavirus-disease-covid-
19-pandemic-%E2%80%94-emergency-use-listing-procedure-eul-open
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Bioinformatics Analyses
The Venn diagram was generated based on the datasets (Venn,
2022). Gene Ontology (GO) [involving biological process (BP),
cell component (CC), molecular function (MF), and Kyoto
Encyclopedia of Genes and Genomes (KEGG)] were utilized
to analyze the expected signaling pathways and corresponding
functions of differential proteins via the package of R or platform
of Enrichr (Chen et al., 2013; R Core Team, 2018). The
heatmap was also generated by the package of R (R Core Team,
2018). The proteins network was constructed via the STRING
dataset (Szklarczyk et al., 2021). Lipidmap was produced by the
analysis of KEGG (Fahy et al., 2007). CytoHubba, an app of
Cytoscape, was screened for hub genes (Shannon et al., 2003). The
immune cell infiltration analysis was performed by GEPIA2021
(Li et al., 2021).

Statistical Analysis
Values of serum lipid were shown as the mean (M) ± standard
deviation (SD). The comparison for the lipid of three cohorts
was made by one-way ANOVA using the SPSS 24.0 (IBM Corp.).
The least significant difference (LSD) was further compared to
show any significant difference between the two groups. Graphic
plotting was generated using GraphPad Prism 8 (GraphPad
Software, Inc.).

RESULTS

Baseline Characteristics of Coronavirus
Disease 2019 Patients
The study included 75 cases, which consisted of 25 COVID-
19 patients positive for SARS-CoV-2 RNA, 25 cases diagnosed
with COPD that all the history and symptoms supported, and 25

healthy people. The mean ages of CG, patients with COVID-19,
and patients with COPD were 51 ±16.2, 47 ±15.4, and 54 ±17.6
years, respectively. The patients with COVID-19 did not use
any statins according to medication guidelines. Other cohorts
were similar. In all cases, previously diagnosed metabolic diseases
(obesity, hypertension, and diabetes) were not incorporated
based on self-report.

The Lipid Level Change During the
Coronavirus Disease 2019 Courses
We found that there were significant differences in TG (F = 3.506,
P < 0.05), TC (F = 17.123, P < 0.0001), and HDL-C
(F = 21.473, P < 0.0001) levels between the three cohorts, but
no significant difference was observed in LDL-C (F = 0.97,
P > 0.05). In line with the biochemical data of the three
cohorts, the statistical result displayed that the patients with
COVID-19 were more likely to have a lower level of TC
(P< 0.001) and HDL-C (P< 0.001) as compared with the healthy
examination population. Patients with COPD had similar results
(P < 0.001) (Figure 1).

Differential Proteins and Sub-Network
Module Enrichment Analysis
Differential proteins in patients with COVID-19 versus CG
were acquired in GEO datasets. To further study the role
of differential proteins, GO and KEGG signaling pathway
analysis indicated that some proteins were involved in lipid
pathways (Supplementary Table 1), such as the PPAR signaling
pathway, cholesterol metabolism, fatty acid biosynthesis, positive
regulation of cholesterol esterification (GO:0010873), and high-
density lipoprotein particle remodeling (GO:0034375). The
proteome of the sera/plasma of patients with COVID-19
showed 21 common proteins (Figure 2A), which are ORM1,

FIGURE 1 | Comparison of the lipid level between the COVID-19, COPD patients, and healthy population. In COVID-19 and COPD patients, TG and HDL-C
expression was reduced, but not for TC and LDL-C.
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ITIH3, ALB, SAA2, PGLYRP2, APOA1, NID1, GSN, CPN2,
LGALS3BP, AGT, LCP1, C2, CLEC3B, ITIH4, APOM, CRTAC1,
APOA2, ORM2, AHSG, and GPLD1. These 21 proteins had
similar enrichment results that were associated with lipid
pathways (Figure 2B and Supplementary Table 2). The lipid
pathway included cholesterol metabolism, the PPAR signaling
pathway, fat digestion and absorption, positive regulation of
cholesterol esterification (GO:0010873), regulation of cholesterol
esterification (GO:0010872), and so on. Conversely, lipid
composition in patients with COVID-19 did not correspond
with what other studies showed (data not shown). The
enrichment analysis of lipidome in patients with COVID-
19 showed that the blood lipid of humans was mainly
involved in sphingolipid metabolism, cholesterol metabolism, fat
digestion and absorption, and the sphingolipid signaling pathway
(Supplementary Table 3).

Severe Acute Respiratory Syndrome
Coronavirus 2 Infection and Viral
Proteins Cause Metabolic
Reprogramming
The heatmap analysis showed the expression and increment of
LDHA, GAPDH, and PKM post-SARS-CoV-2 infection; UV-
inactivated SARS-CoV-2 can increase LDHA (Figures 3A,B).
The GO and KEGG signaling pathway analysis indicated
that the differential proteins of SARS-CoV-2 in endothelial
cells were involved in glycolysis (Figure 3C). The lipid
pathway and glycolysis occurred showed the potential

for metabolic reprogramming post-SARS-CoV-2 infection
(Figures 3D–F).

Protein Network for Targeting Cytokine
and Chemokine Regulation
The first 10 nodes (subproteins) (APOA1, ALB, AHSG,
APOA2, ITIH4, ITIH3, ORM1, GSN, ORM2, and APOM)
with the highest values were screened as fibrin clot (clotting
cascade) and lipoprotein particle (Figures 4A,B). A protein–
protein interaction (PPI) network for the first 10 nodes was
constructed using the STRING database. These subproteins may
regulate cytokines and chemokines in patients with COVID-
19 (Figure 4C).

Ten Sub-Proteins and Cell Type-Level
Expression Analysis
GEPIA2021 analysis further confirmed the correlations between
the 10 sub-protein levels and cell types. Regarding the 10 sub-
protein expression levels, the analysis of immune infiltration
revealed that the CD4+ cell has the highest median value in the
lung and the CD8+ cell has the highest median value in blood
except GSN. A component analysis of the immune cells showed
that CD4+ T cells, CD8+ T cells, and NK cells were significantly
related to 10 subproteins (Figure 5).

The Viral Proteins Correlate With
Metabolic Reprogramming
The S and Nsp2 proteins may involve metabolic reprogramming
(Figure 6), but N, Nsp15, and Nsp16 would not. S1 subunit

FIGURE 2 | Proteome of the patients with COVID-19 and enrichment analysis. (A) A total of 21 common proteins were identified according to the proteome of the
sera and plasma from patients with COVID-19 by Venn diagram. The blue color shows the proteome of sera of patients with COVID-19, and the red color shows
plasma proteome associated with COVID-19. (B) A total of 21 common proteins involved in lipid pathway by the enrichment analysis, for example, protein–lipid
complex remodeling and high-density lipoprotein particle remodeling.
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FIGURE 3 | SARS-CoV-2 infection upregulates the glycolysis pathway. (A) A heatmap was generated from the SARS-CoV-2 infection and UV-inactivated
SARS-CoV-2 treatment. In both groups, LDHA level was increased. (B) The expression of LDHA, PKM, and GAPDH was significantly different among the healthy
population, SARS-CoV-2, and UV-SARS-CoV-2 groups. (C) The KEGG analysis revealed the SARS-CoV-2 infection and protein correlation involved in the glycolysis
pathway (the green bounding box). (D–F) The BP, MF, CC analysis revealed the SARS-CoV-2 infection involved in the oxidative stress, the lactate dehydrogenase
activity, et al.

seems to regulate HSPA1A, HSPA6, HSPA1B, DDIT3, LDHB,
HSP90B1, and EIF2AK3; S2 subunit seems to regulate HSPA1B,
HSPA1A, HSPA6, and DDIT3; Nsp2 may regulate PLD3, VDAC2,
HSPA8, HSPA5, ERLIN1, ERLIN2, and AGPAT2. These proteins
are related to glycolysis and lipid pathways.

DISCUSSION

Lipid profile alteration was used as a potential biomarker to aid
diagnostics via triggers of viral infection. Our findings indicate
that TC and HDL-C were reduced in patients with COVID-
19, but TG and LDL-C did not. This finding is consistent with
previous studies (Li G. et al., 2020; Li J. et al., 2020; Lv et al.,
2020; Sun et al., 2020; Tanaka et al., 2020; Xie et al., 2020;
Xue et al., 2020; Zhang B. et al., 2020; Zhang Q. et al., 2020).

The serum/plasma concentrations of total TC and HDL-C were
significantly lower in patients with COVID-19 with more severe
diseases but were not for the TG. Significant changes in host
lipidomes were observed in the cases of viral infection with
severe disease, which induced changes in host immune function
and benefited viral replication. On account of population and
deviation, the results are possibly different in LDL-C. Distinctly,
the heterogeneity between studies was generally large-to-extreme
and multiple studies included small sample sizes. Interestingly,
TC and HDL-C levels were associated with the clinical phenotype
of SARS-CoV-2 infection. TC and HDL-C have beneficial effects
on various pulmonary diseases and other diseases (Nie et al.,
2020) and play a key role in modulating both innate and adaptive
immune cell responses (Bietz et al., 2017). HDL has a function
in inducing an anti-inflammatory or inflammatory profile (Van
Lenten et al., 1995; Khovidhunkit et al., 2004). The reduced
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FIGURE 4 | Hub protein in 21 proteins and interaction between hub proteins and cytokines. (A,B) 21 proteins were screened for 10 hub proteins. (C) The interaction
between hub proteins and cytokines.

plasma levels of HDL can be found in patients with infection
and sepsis (Wu et al., 2004; Cirstea et al., 2017). Lipid profile
alteration is a useful indicator for early warning of the severity
of COVID-19 disease (mild or severe) (Nie et al., 2020).

Energy and metabolites are required for cell survival.
SARS-CoV-2 infections lead to a hypoxic microenvironment
(Bhattacharya et al., 2021). This process is akin to the tumor
microenvironment (TME) that the feature of TME is hypoxic.
This promotes the host to compensate for their metabolic
profiles to sustain a reprogramming state. The heatmap analysis
showed that the expression of LDHA, a protein involved in
glycolysis, was increased in SARS-CoV-2 infection. Furthermore,
the proteomic data in two studies were analogous (Shen
et al., 2020; Wu et al., 2020). The interaction network and
enrich analysis revealed that the related pathways of lipid
were located in the central node of all patient groups. There
were significant similarities in lipid pathways among patients
with COVID-19 from different regions. The 21 common
proteins in this study supported this view. Enrichment analysis
showed that the proteins were mainly involved in cholesterol
metabolism, the PPAR signaling pathway, and so on. Anyhow,

the hypoxic microenvironment in patients with COVID-19
increases the metabolic reprogramming for local nutrients and
oxygen. However, the exact role or influence of metabolism
reprogramming in SARS-CoV-2 immune response remains
unclear, and lipids may regulate SARS-CoV-2 infection by
multiple mechanisms.

Mechanisms derived from the previous study may also shed
light on factors contributing to SARS-CoV-2 infectivity, where
cholesterol is important either through immune regulator or
by mediating signal pathway. The effects of lipids on infection
development play a pivotal role. The function of lipids was
gradually decrypted, which was used as an alternative source in
pathologic conditions (Olsen et al., 2021), and was involved in
the virus infection, was involved in transport of cell membrane,
and activated intricate signaling pathways related to the immune
system (Yu et al., 2021). Lipid metabolism dysfunction in the
host has extensive effects on immune cells. The hub proteins
were correlated with cytokines and chemokines in patients
with COVID-19, and a distinct connection with immune
cells was identified. However, the explanations for the lipid
phenotype of patients are complex. In addition, individuals
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FIGURE 5 | Immune cell type-level expression analysis. In regard to (A–J), the analysis of immune infiltration revealed that the CD4+ cell has the highest median
value in the lung, and the CD8+ cell has the highest median value in blood except for GSN. A component analysis of the immune cells showed that CD4+ T cells,
CD8+ T cells, and NK cells were significantly related to the 10 subproteins.
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FIGURE 6 | The viral proteins involved in metabolic reprogramming. S1 regulated HSPA1A, HSPA6, HSPA1B, DDIT3, LDHB, HSP90B1, and EIF2AK3; S2 regulated
HSPA1B, HSPA1A, HSPA6, and DDIT3; Nsp2 regulated PLD3, VDAC2, HSPA8, HSPA5, ERLIN1, ERLIN2, and AGPAT2. N, Nsp15, and Nsp16 did not modify
metabolic reprogramming.

with underlying comorbidities (primary disease and metabolic
disturbance in patients) will have more dramatic changes such
that cholesterol provides a more complicated explanation and
elaborate medical regimen. Due to the complex composition of
lipids and a dynamically anabolic process, different points-in-
time may respond very diversely to changes in lipid metabolism
and give rise to ambiguous phenotypes. Enrichment analysis
of lipids showed blood lipids of humans mainly involved
in the sphingolipid metabolism, the cholesterol metabolism,
fat digestion and absorption, and the sphingolipid signaling
pathway, which suggested that the pathway was mainly for
lipid-controlled biosynthesis or signaling. However, the studies
of blood lipid were very heterogeneous. The quantification of
blood lipids is still non-determined because of the complex
component and much fluctuation of lipid quality and quantity
in different space and time.

Interestingly, the lipid levels in patients with COPD changed
and compared with the healthy population, but it was similar
to patients with COVID-19. In addition, hypoxia is a common
characteristic of patients that can change the metabolism (Grieb
et al., 2021; Palm and Ekström, 2021). Hence, the patients were
artificially ventilated, a procedure that can cause intraoperative
complications but also can remit glycolysis or further metabolic
reprogramming. So, the external reason was partially confirmed.
The glycolysis suppression may be taken as a strategy for
COVID-19 therapy and has profound therapeutic implications
and significance. On the other hand, the lipid metabolism in
patients with COVID-19 as a major altered function is highly
similar to infection and sepsis, which is in accordance with
a reply for multiple pathogens infection and in modulating
inflammatory responses by the lipid moieties. These results
indicate that metabolism plays a key role in SARS-CoV-2
pathogenesis and is a possible therapeutic target.

Meanwhile, the data showed that LDHA expression is
increased in UV-SARS-CoV-2 infection. Besides anoxia,
metabolic reprogramming was induced by the viral proteins as

well. Viral structural proteins are involved in such processes.
Numerous viruses (Negro, 2010; Funderburg and Mehta, 2016;
Melo et al., 2016; Tisoncik-Go et al., 2016; Eisfeld et al., 2017;
Kyle et al., 2019), such as Ebola virus, HIV, HBV, HCV, and
homologous SARS-CoV (Wu et al., 2017) and MERS (Yan et al.,
2019), can dramatically alter the human plasma lipidome. Even
in the 12 years since the SARS-CoV infection, lipidome had been
significantly changed (Wu et al., 2017). Therefore, viral proteins
are involved similarly in metabolic reprogramming.

The viral proteins (Nsp2 and S) also affect lipid synthesis
and modification (Díaz, 2020). The S protein of SARS-CoV-2
is a key protein. Numerous studies have confirmed that the S
protein binds to ACE2 receptors on the surface of host cells to
facilitate viral entry (Du et al., 2009; Walls et al., 2020). The S
protein comprises S1 and S2 subunits in the virus replication
cycle, binding the host cell receptor or fusing the viral envelope
with host cell membranes. S1 plays an important role in protein
processing in the endoplasmic reticulum, lipid, atherosclerosis,
and so on. S2 was concerned with protein processing in the
endoplasmic reticulum, the lipid, and atherosclerosis. Therefore,
both S1 and S2 also modify lipid synthesis. Nsp2, a non-structural
protein of SARS-CoV-2, disrupts host cell cycle and has similar
functionality, which was concerned with protein processing in
the endoplasmic reticulum, the lipid, and atherosclerosis. Our
analysis revealed that S and Nsp2 proteins are associated with
HSPA5, HSPA6, and LDHB in metabolic reprogramming. The
hub proteins do not overlap, so SARS-CoV-2 pathogenesis is
complicated. These findings also suggest an unknown potential
protein inducing lipid synthesis and modification. What is
driving the metabolic reprogramming is not clear.

In this study, essential baseline data, such as primary
disease and statin use or not, might eliminate the observed
heterogeneity. However, the exact timing of the blood collection
for lipid profile remains uncertain. However, this can be ignored,
as lipid metabolism of SARS-CoV-2 infection is a lengthy
process as stated earlier. To eliminate the large between-study
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heterogeneity, population experiments have been incorporated in
this study. This study mainly discussed pivotal lipids (TC and
HDL-C) and glycolysis in metabolic reprogramming but did not
mention other lipid species, such as the sphingolipids, and their
related pathways, or amino acids, organic acids, and nucleotides.
In addition, the full impact of metabolic reprogramming in
SARS-CoV-2 infection cannot be confirmed by cell culture
without pressures imposed by the immune microenvironment.

CONCLUSION

In conclusion, viral infection induces the alteration of host
metabolic reprogramming, which is a remarkable feature. This
alteration not only changes the immune and clinical phenotype
of patients but is also involved in viral pathogenesis. So the
virus–host interaction is figured thoroughly out. Therefore,
antivirals may be developed via further study of the metabolic
reprogramming mechanism along with the key proteins.
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