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Synaptic and circuit development of the
primary sensory cortex
Se-Young Choi 1

Abstract
Animals, including humans, optimize their primary sensory cortex through the use of input signals, which allow them
to adapt to the external environment and survive. The time window at the beginning of life in which external input
signals are connected sensitively and strongly to neural circuit optimization is called the critical period. The critical
period has attracted the attention of many neuroscientists due to the rapid activity-/experience-dependent circuit
development that occurs, which is clearly differentiated from other developmental time periods and brain areas. This
process involves various types of GABAergic inhibitory neurons, the extracellular matrix, neuromodulators,
transcription factors, and neurodevelopmental factors. In this review, I discuss recent progress regarding the biological
nature of the critical period that contribute to a better understanding of brain development.

Biological nature of the critical period
Many vertebrate animals, including humans, recognize

their environment and learn how to live using experiences
from the early time window of their lives. During this
time, the nervous system actively develops neural circuits
in accordance with experience inputs. The phenomenon
of brain function is at first immature and is then opti-
mized according to experience, as can be observed in
many animals. So, how does this experience change the
brain? This has long attracted the attention of many
scientists.

Early studies of the critical period
This so-called “experience” from the external environ-

ment is accommodated by the cerebral cortex. In order
for this experience to be properly accepted as an input
signal, a neural circuit that is finely optimized by the input
signal is needed. This optimization requires both fine
tuning of the synapse structure and synaptic plasticity. It
should be noted that the receiving of input signals, which
are important for the fine tuning of synapses during this

time, is not an experience that occurs at any time but
rather is an experience that occurs at an early “specific
time” in life. The critical period is when sensory input is
strongly connected to the optimization of the neural cir-
cuit. Indeed, the ability to control synaptic function for
certain types of learning and memory is not constant over
a lifetime, often reaching a peak at a specific time after
birth and generally decreasing at various rates as age
increases. A representative example of this learning is the
parental imprinting of graylag geese by Austrian zoologist
and founder of modern ethology Lorenz in 1935, which
allows a subject to be considered as a mother during a
short period of time after the goslings hatch (13–16 h
after birth).
A more detailed examination of this phenomenon was

done in a study of the cat visual cortex. The binocular
region of the vertebral animal’s visual cortex receives
signals from both eyes, but neurons in certain regions of
the visual cortex are more likely to receive and process
input signals from one eye. This is called ocular dom-
inance1. Studies of ocular dominance in cats and monkeys
have shown that several cells that perceive similar visual
characteristics are located together in a single column
structure and that these structures receiving the input
from each eye act in a competitive manner2. It is
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important to note that these changes make it possible for
a particular period of experience to permanently change
neural circuits on a large scale3. The trans-neuronal
transport technique, which stains neurons involved in the
eye or lateral geniculate nucleus, provides anatomical
evidence for the experience-dependent changes that occur
in ocular dominance and for the presence of a critical
period. Interestingly, when one eye is impaired (i.e.,
“monocular deprived”), it changes the ocular dominance
in the visual cortex; this effect is maximized during the
first few weeks of life (4–8 weeks for cats)4. Mice also have
a critical period in the visual cortex, which occurs during
days 21–32 of age5,6. In addition to the visual cortex, early
studies investigating critical periods have been performed
in the somatosensory cortex. When one of the fingers was
cut, the area within the somatosensory cortex changed
toward receiving information from the adjacent fingers7.
If a specific whisker of a rat or mouse is removed, then the
sensory cortex that receives the signal from the whisker
will lose synaptic connections.

Early studies of the mechanism of critical period
Since the existence of a critical period was discovered

>40 years ago4, subsequent researches have sought to
identify the biological mechanism of the critical period.
One of the most intensively studied is GABAergic inhi-
bitory neurons. Even before the molecular nature of the
critical period was studied, GABAergic neurons had been
considered to be critical for the synaptic plasticity of the
cerebral cortex. In the cerebral cortex of a young animal
which is not within the critical period, long-term poten-
tiation (LTP) can be induced successfully in layer 2/3,
whereas LTP does not occur in adult animals8–10. Other
evidence suggests that the inhibitory circuit of layer 4 may
be involved in altering synaptic properties during the
critical period. In other words, during this period inhibi-
tion is relatively weak, the door of change is open, and the
synaptic properties can be changed. Susumu Tonegawa’s
research group developed a transgenic mouse line
whose forebrain specifically overexpresses brain-derived
neurotrophic factor (BDNF) under the control of the
α-Ca2+/calmodulin-dependent protein kinase II (αCaM-
KII) promoter11. Interestingly, the BDNF-overexpressing
transgenic mice shows earlier development of GABAergic
inhibitory neurons as well as earlier start of critical period.
The activity of inhibitory neurons was measured in dark-
reared mice by harvesting these neurons in a dark room
immediately after birth; their inhibitory activity was
observed to be significantly lower in comparison with
normal mice. In addition, the inhibition was restored to
almost normal levels when the dark-reared mice were
exposed to light for 2 days right before the time when the
critical period was almost finished12. In addition, it has
been reported that the ocular dominance shift that

normally occurs during the critical period was impaired in
transgenic animals with decreased GABA synthesis13,14.
In these animals, long-term administration of benzodia-
zepine, a GABAA receptor agonist, restored long-term
depression (LTD) induction14 and ocular dominance
plasticity13,15. Thus the development of BDNF-induced
inhibitory neurons can be hypothesized to lead to synaptic
plasticity, allowing changes to occur during the critical
period. Recently, Lamberto Maffei’s research group has
further reported that normal inhibition and ocular dom-
inance plasticity occur in the BDNF-overexpressing
transgenic mice, even in dark-rearing conditions16.

Functional key player: GABA and GABAergic neurons
Based on this research, many follow-up studies have

characterized the GABAergic neurons involved in the
critical period. GABAergic inhibitory interneurons in
the cerebral cortex are classified according to their
unique biomarkers, including parvalbumin (PV), soma-
tostatin (SOM), vasoactive intestinal peptide (VIP), and
ionotropic serotonin receptor 5HT3a (5HT3aR)128.
Among these, inhibitory neurons modulating the critical
period are PV (+) inhibitory neurons, also called fast-
spiking interneurons17. PV expression in these inter-
neurons is considered to be consistent during the critical
period18. PV (+) neurons mainly act on the soma and
proximal dendrites of excitatory neurons, inducing
perisomatic inhibition, thereby regulating the firing
and backpropagation of action potentials in excitatory
neurons19–21. The development of PV (+) neurons is
induced by BDNF signaling in an experience-dependent
manner11,22. During the critical period, GABAergic
inhibition is increased in cortical layers 2–3, and gluta-
matergic signaling is weakened to decrease the
excitatory–inhibitory balance23. The function of PV (+)
cells, as well as the role of other inhibitory neurons, has
also been extensively studied at the circuit level. For
example, layer 5b SOM (+) neurons regulate layer
4 spiny stellates neurons, thus controlling early devel-
opment in the thalamocortical recipient layer24. The
importance of the disinhibitory circuit of VIP-spiny
stellate neurons is also attracting attention25. During
the critical period, excitatory circuits were found to be
selectively changed only in the principal cells, PV (+) and
SOM (+) cells, whereas inhibitory and thalamocortical
synapses did not change26. The ionotropic GABAA

receptor plays an important role during the critical per-
iod in mediating GABA signaling. The GABA receptor
alpha 1 subunit, which allows fast-spiking activity, has
been reported to play an important role during the cri-
tical period27. In addition, the conductivity of the GABAA

channel itself can be altered by BDNF signaling during
the critical period28. Another characteristic of GABAA

receptors is that they exhibit an excitatory function at the
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onset of development and then convert to exerting an
inhibitory effect. This is due to the altered expression of
the KCC2 transporters29,30. Interestingly, brief termina-
tion of this depolarizing GABA signaling decreases
inhibitory neuronal transmission and the expression of
BDNF and perineuronal net (PNN) components31.
Finally, the synthesis and reabsorption of GABA is also
attracting attention as a regulator of the critical period32.
So, how does this GABAergic signaling regulate the
entire neuronal circuit with which the excitatory nerves
are associated? First, the inhibitory neural circuit affects
Hebbian synaptic plasticity, such as LTP and LTD. This
synaptic plasticity plays an important role in maturing
the circuit in the primary sensory cortex during the cri-
tical period33,34. Another effect of inhibitory neuronal
circuit is spike timing-dependent plasticity (STDP).
STDP is a type of plasticity formed by the timing of two
action potentials firing in the presynaptic cell and post-
synaptic cell, and GABAergic signaling modulates the
action potential backpropagation and perisomatic
inhibition35,36.

Structural key player: perineuronal net and extracellular
matrix (ECM)
The other feature to be considered with PV (+) neurons

is PNN37. The frontiers in critical period research indicate
that the structural factors controlling spine formation,
such as the ECM, may be important because the dendritic
spine motility decreases at the end of the critical period38.
In actuality, the ECM exists outside of neurons to physi-
cally support cells and optimize neurotransmission. The
PNN is one of the typical ECM components composed of
brevican, aggrecan, neurocan, phophacan, and tenascin-
R39. Dr. Maffei’s group removed the ECM by destroying

the extracellular glycoproteins and found that ocular
dominance plasticity was re-introduced in the older visual
cortex40. Additionally, removal of the ECM promotes
dendrite synthesis41. It is well known that neuronal ECM
is important for structural fine-tuning of axons and
synapses42. In particular, PNNs are distributed around PV
(+) neurons and regulates synaptic input to these neu-
rons. If visual or somatosensory experiences are blocked
during the critical period, the development of PNNs
decreases and plasticity is maintained43. In addition, since
chondroitin sulfate (a major component of PNNs) accu-
mulates in PNNs during the critical period, the beginning
of ocular dominance plasticity disappears in CSGal-
NAcT1 knockout (KO) mice, which lack chondroitin
sulfate synthesis44. Removal of PNNs also changes the
excitatory–inhibitory balance by lowering the inhibitory
activity of the neuronal network into a juvenile state45. In
addition, Ngr1 (a receptor of chondroitin sulfate) termi-
nates the critical period by inhibiting the monocular
deprivation-mediated reduction of intracortical input to
the PV (+) neuron-connected disinhibitory micro-
circuit46. Cell adhesion-related molecules that regulate
these extracellular environments with PNNs and synap-
togenesis are also emerging as other modulators. Typical
representatives are neural cell adhesion molecules
(NCAMs) and polysialic acid (PSA)47. NCAM and PSA
regulate ocular dominance plasticity by modulating the
maturation of the GABAergic circuits48. There have been
reports that the protein degradation activity of tissue
plasminogen activator, which degrades the ECM, is
required for the effects of monocular deprivation49,50.
Cartilage link protein also regulates the formation of
PNNs associated with the critical period51. Recently, it has
also been found that light reintroduction causes matrix

Fig. 1 Factors modulating the critical period. Factors that are known to control the critical period to date are depicted in the area where they
operate predominantly. Factors with unclear action sites are listed on the left side and the neurodevelopmental disease-related factors are listed on
the right side. The green cell is a PV (+) inhibitory neuron, the blue cell is a pyramidal neuron, and the orange cell is a glia cell (microglia).
Perineuronal net is depicted in pale gray. Receptors or channels are red and cell adhesion molecules are black
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metalloproteinase-9-mediated ECM degradation and cri-
tical period reactivation52.

Critical period controllers
What, then, can control the critical period? In the early

studies investigating critical period modulators, there
were early attempts to detect genes that were differentially
expressed before and after the critical period. CREB53,
EGR154, EGR1/ZIF26855, Munc13-356, and major histo-
compatibility complex (MHC)-I57 were found to be can-
didates for critical period modulators. These attempts
have been extended by a series of recent advancements in
molecular biology techniques (Fig. 1). Recently, the tran-
scriptome of OTX2, a key critical period-related tran-
scription factor (described below), was used to identify
Kv3.1 and OXY1 by using interneuron-specific RNA-seq/
Chip-seq techniques58.

Neuromodulators
One of the first factors to control the critical period is the

neuromodulator. Earlier studies have revealed that the
functions and circuit optimization of the primary sensory
cortex are modulated by cholinergic59, noradrenergic59,60,
and serotonergic61 inputs from extra-retinal pathways. A
following study showed that the G-protein coupled
receptor-mediated phospholipase C (PLC) signaling path-
way modulates N-methyl-D-aspartate receptor-dependent
LTD induction in the visual cortex62,63. These studies have
been conducted steadily to date, and chronic treatment with
fluoxetine, an selective serotonin reuptake inhibitor anti-
depressant, has been shown to reintroduce ocular dom-
inance plasticity in adults64,65, suggesting that 5-HT may
control the plasticity of the critical period. It is also known
that the expression of LYNX1, which inhibits nicotinic
signaling, controls the critical period by controlling choli-
nergic innervation and the excitatory–inhibitory balance66.
Recently, the GABA-B receptor has also been shown to
modulate ocular dominance plasticity67. Also, the synthesis
of adenosine by ectonucleotidases and the disruption of the
adenosine A1 receptor have been reported to be important
for juvenile plasticity in the auditory cortex68. In particular,
endocannabinoids induce GABAergic maturation of fast-
spiking PV (+) neurons by regulating inhibitory LTD69.
Treatment with a cannabinoid type 1 (CB1) receptor ago-
nist in the dark-exposed state of adult rats results in the
maturation of inhibition70. BDNF results in the secretion
endocannabinoids through TrkB signaling in the visual
cortex70,71. The BDNF–endocannaboid axis is also regu-
lated by other signals associated with G-protein coupled
receptors and PLC-beta signaling, such as mGluR72,73.

Transcriptional factors and immediate early genes
To understand how inhibitory circuits are reconstituted

by input signals given in the early days of life, attention

should be paid to the activity dependency of inhibitory
circuit development. I have already discussed activity-
dependent BDNF action in depth11,74,75. The main
hypothesis is that pyramidal neurons secrete BDNF and
that the inhibitory neurons develop as a result of this
secreted BDNF76,77. However, the upstream signaling that
causes the pyramidal neurons to secrete BDNF in an
activity-dependent manner is still unclear. Over the past
several years, attempts have been made to understand this
in terms of activity-dependent transcriptional modulation.
Among them, there is a transcription factor called
orthodenticle homeobox 2 (OTX2). OTX2 defects caus-
ing eye malformation in humans distort eye structure and
function to various degrees, depending on the expression
levels of the gene78. Interestingly, OTX2 is produced in
the retina but is secreted and transported through the
visual ascending pathway, where it is then absorbed into
the cell after binding to PNNs on the surface of PV (+)
neurons in the visual cortex129. If OTX2 and PNN are
blocked by manipulating the glycosaminoglycan-binding
sequence of OTX2, reactivity of ocular dominance plas-
ticity occurs79. OTX2 regulates a variety of critical period-
related factors, including IGF180. Neuronal Per Arnt Sim
domain protein 4 (NPAS4) is another neuronal activity-
dependent transcription factor81 whose expression is well
known to modulate neurite outgrowth and the function of
synaptic proteins82. Interestingly, NPAS4 regulates
experience-dependent GABAergic synapse development
by expressing factors necessary for the formation and
maintenance of inhibitory synapses innervating excitatory
neurons83.
Arc is an activity-dependent immediate early gene in the

neural system, and its importance has long been under-
stood. Increased Arc expression in adult mice results in
restoration of ocular dominance plasticity, such as
juvenile-like plasticity and LTD induction in the adult
visual cortex, and impaired LTD in Arc KO mice was
restored by a protein synthesis inhibitor84. Arc mRNA
expression itself was also increased in the critical period,
and this increase was found to be important for juvenile-
like plasticity. Another well-known factor is CREB. Visual
stimulation in juvenile mice has been shown to increase
CREB-induced transcription, and this effect has been
shown to decrease in adults85. In addition, visual experi-
ence during the critical period has been reported to
increase the expression of miR-132, a CREB-induced
microRNA86,87. Interestingly, these mechanisms involve
epigenetic modulation by posttranslational modification
of histone proteins43. This idea is based on the finding
that histone deacetylase (HDAC) inhibitors regulate the
critical period in the visual cortex85 and that HDAC188

and HDAC289 affect the functions of PV (+) neurons in
the critical period.
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Glia
The last issue to consider is the functions of glial cells

during the critical period. It has been reported that central
nervous system myelination is associated with the termi-
nation of the critical period90 and that the injection of
immature astrocytes can reintroduce ocular dominance
plasticity in older cats91. These reports have expanded the
interest in how glia regulates the critical period. In recent
decades, accumulating evidence has shown that glia is not
simply a backbone for neurons but actively communicates
with neurons to regulate brain function92–94. For example,
astrocytes can communicate with neurons and develop
inhibitory circuits via their CB1 receptors95. Recently, it
has been found that ocular dominance plasticity dis-
appears when the P2Y12 receptor, which selectively exists
in non-activated microglia and causes early injury
responses, is eliminated96. In addition, a systemic injec-
tion of lipopolysaccharides during the critical period has
shown that inflammation affects the critical period97.
Recently, studies on glial factors have been carried out. It
is reported that infusion of leukemia inhibitory factor
affects MT-4-mediated expression of PV, Kv3.1, and
GAD-65 and inhibits neuronal development during the
critical period98. In the future, investigation into glial
regulation of the critical period is expected to highlight
many interesting issues.

Others
So, how did the search and identification of the factors

related to the critical period come about? As an early
study, it was found that the Cpg (candidate plasticity
gene) family is expressed when the dentate gyrus of the
hippocampus is treated with kainate to induce strong
firing. It is known that CPG15 is expressed at the
beginning of the critical period99. Many critical period-
related molecules have since been discovered. Many
developmental modulators, such as IGF-1100, Nogo-66
receptor101, NogoR1102, neuregulin-1 and ErbB4 sig-
naling103,104, and neurogranin105, have been shown to
control the critical period. One of the interesting factors
is the Clock gene, which is related to the circadian
rhythm. Clock KO animals showed PV (+) neuron
development and delay of ocular dominance plasti-
city106. This results in the new question of whether
other factors that regulate circadian rhythms, such as
BMAL, are also involved in the critical period. Another
such factor is Paired-immunoglobulin-like receptor B
(PirB), which was originally known to regulate axonal
regeneration by binding to MHC class I and Nogo107.
Interestingly, PirB controls ocular dominance plasti-
city108. Acute interruption of PirB expression in the
adult leads to new synapse formation, resulting in
increased L5 miniature excitatory synaptic current fre-
quency, increased spine density, and restoration of

amblyopia109. Since PirB is also expressed in microglia,
the role of microglia in the critical period control
function of PirB may be worthy of investigation.

Neurodevelopment and critical period
Neurodevelopmental diseases
Developmental changes in the critical period can often

overlap with the pathology of certain neurodevelopmental
diseases. Therefore, if there are interesting molecules
related to the developmental diseases, it could be
important to check the importance of these factors in
association with critical period. In FMR1 KO mice, there
is delayed maturation of fast-spiking GABAergic neurons
in the sensory cortex due to BDNF–TrkB signal distortion
and cortical developmental abnormalities during the cri-
tical period110. PV (+) neuron-specific MeCP2 condi-
tional KO mice lack experience-dependent plasticity
during the critical period, whereas SOM (+) neuron-
specific and glutamatergic neuron-specific MeCP2 cKO
mice show no such effect in the critical period111. In a
mouse model involving a factor associated with Rett
syndrome (CDKL5 −/y mice), PNN expression levels in
the V1 area are lower but the number of PV (+) neurons
is increased, resulting in more innervation to pyramidal
neurons and a change in the excitatory–inhibitory bal-
ance112. SYNGAP1 haploinsufficiency causing neurode-
velopmental disease affects dendrite growth and spine
plasticity in the neocortex113. In addition, the altered
critical period can be observed in animal models of autism
spectrum disorder. Semaphorin 7A, a factor of autism
spectrum disorder 15q24 microdeletion syndrome, is
important for feed-forward GABAergic inhibition in the
somatosensory barrel cortex and is also important for
barrel formation and layer 4 circuit development114.
Autism spectrum disease-associated Engrailed-2 KO ani-
mals show an increase in PV (+), SOM (+), and NPY (+)
neurons at postnatal day 30 and a decrease in SOM (+)
and NPY (+) neurons in adults. The visual function of
Engrailed-2 KO animals is normal, but their binocularity
is increased, and there is no response to brief monocular
deprivation during the critical period115. In addition,
SAP102 KO animals, a model of intellectual disability,
show normal barrel formation with a reduced number of
thalamocortical axons, as well as altered kinetics of the
NMDA receptor116.

Changes in development of other cortex
Then how can we distinguish between critical period

changes and neurodevelopmental changes? To date, this
is not clear. One simple issue to be considered is whether
these factors exert these specified effects only in the pri-
mary sensory cortex or also elsewhere in the brain. Fur-
thermore, it is necessary to examine whether other cortex
regions show changes in circuit formation during the
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critical period. For example, a phenomenon similar to
the critical period has been found in some other cortices,
such as the medial prefrontal cortex (mPFC). Neurons
in layer 5 of the mPFC can be classified as PH cells or
non-PH cells, according to the existence of H-current.
After 2 weeks of weaning, social isolation decreases
the action potential firing rate and synaptic input to
PH cells in mice117. In addition, when NMDA is blocked
with MK-801, development of the PV (+) and CB (+)
neurons of the mPFC is decreased118. It is reported
that fluoxetine treatment increases PCA-NCAM and
GAD95/97 expression, decreases the number of PV (+)
neurons covered with PNNs, and changes the interneuron
structure of the mPFC119. Therefore, the extent to which
these developmental modulators are involved in
experience-dependent circuit development within the
critical period is very diverse and unclear. It is also unclear
how many of the neuronal and cognitive defects seen in a
KO animal model of a certain factor are related to the
critical period. However, if these relationships are clarified
in the future, it may be possible to derive a method for
restoring normal structure and function in these devel-
opmental disorders based on critical period reinstate
approaches.

Changes in adult cortex
Since the concept of the critical period was first

associated with the earlier time window of life, the idea
that plasticity disappears in adults has prevailed for a
while. However, it has been shown (mostly in rodents)
that ocular dominancy plasticity can be controlled even in
adult age120. Taken together, the ocular dominancy
plasticity mechanism in juveniles and adults appears to be
somewhat mixed. However, the detailed mechanisms
for reintroducing ocular dominancy plasticity in adults
might distinguish the “critical period” from “neurodeve-
lopment”. One interesting finding is that experience from
an enriched environment modulates adult plasticity121,122.
Studies of other critical period regulators are underway
to reveal these mechanisms. One such study showed
that an enriched environment increases histone H3
acetylation when reopening the critical period123. Another
reason for the significance of adult plasticity is that it
may contribute to the development of treatments
for human sensory impairments, such as amblyopia124.
A series of treatments, including transcranial direct
current stimulation125 and high-frequency transcranial
electrical stimulation126, have been tried to cure
amblyopia. Studies of the critical period study are helpful
in determining the optimal timing of those treatments.
In fact, transcranial magnetic stimulation causes a
decrease in PV (+) neurons, which is not effective before
postnatal day 30 but has been shown to be effective
after127.

Conclusions
Finally, why are neuroscientists interested in the

critical period? In other words, what is the academic
appeal of the critical period? First, the rapid changes of
the critical period during brain development are intri-
guing. In adults, it is necessary to perform brain functions
(such as sensation, decision-making, and movement)
stably based on established neural circuits, so the plasti-
city of circuits is not necessarily active. The critical period
is a time window where such changes are very active, and
there are many interesting and significant changes in
cerebral cortex. Another reason for this interest may arise
from the critical period’s activity- and/or experience-
dependent mechanisms. Activity dependency is a very
important topic in many areas of neuroscience. Since the
critical period is basically the time when neuronal circuits
are optimized by external experience, the experience
input triggers all changes. This feature is different from
the normal neurodevelopment process that develops
naturally regardless of external stimuli. The
circuit–behavior correlation is another factor that makes
critical period interesting. The sensory experience can be
manipulated easily and precisely by controlling the input
(shining a light, touching a whisker, etc.) or temporarily
controlling the sensory organs (temporary operation of
the eyelid, shaving a certain whisker, etc.). In particular,
since these changes occur in the sensory cortex, it is also
beneficial to apply recently developed imaging technics
(e.g., in vivo two-photon imaging). Lastly, these findings
can be developed into human therapeutic applications,
such as amblyopia treatment and cochlear implants. The
technique of treating sensory defects based on critical
period studies will open up new horizons in rehabilitation
medicine. The features of these various critical period
studies will be attractive to many neuroscientists in the
future.
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