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Most immune cells, particularly phagocytes, express various receptors for the Fc portion
of the different immunoglobulin isotypes (Fc receptors, FcRs). By binding to the antibody,
they provide a link between the adaptive immune system and the powerful effector func-
tions triggered by innate immune cells such as mast cells, neutrophils, macrophages, and
NK cells. Upon ligation of the immune complexes, the downstream signaling pathways
initiated by the different receptors are quite similar for different FcR classes leading to
the secretion of preformed and de novo synthesized pro-inflammatory mediators. FcR
engagement also promotes negative signals through the combined action of several mol-
ecules that limit the extent and duration of positive signaling.To this regard, ligand-induced
ubiquitination of FcRs for IgE (FcεR) and IgG (FcγR) has become recognized as a key mod-
ification that generates signals for the internalization and/or delivery of engaged receptor
complexes to lysosomes or cytoplasmic proteasomes for degradation, providing negative-
feedback regulation of Fc receptor activity. In this review, we discuss recent advances in
our understanding of the molecular mechanisms that ensure the clearance of engaged Fcε

and Fcγ receptor complexes from the cell surface with an emphasis given to the coop-
eration between the ubiquitin pathway and endosomal adaptors including the endosomal
sorting complex required for transport (ESCRT) in controlling receptor internalization and
sorting along the endocytic compartments.
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INTRODUCTION
Upon antigen recognition, immunoglobulins can bind via their Fc
tail to Fc receptors (FcRs), which are expressed by many different
cell types and particularly phagocytes.

Most FcRs including receptors for IgA (FcαRI), IgE (FcεRI), and
IgG (FcγRI, FcγRIIA, FcγRIIIA, and FcγRIV) are activating recep-
tors (1, 2). They comprise high-affinity receptors (FcαRI, FcεRI,
FcγRI), that bind monomeric immunoglobulins and low-affinity
receptors (FcγRIII and FcγRIV in the mouse, and FcγRIIA and
FcγRIIIA in humans) that only interact with antibodies in the form
of immune complexes. This ligation can trigger numerous cellu-
lar effector functions including phagocytosis, antibody-dependent
cellular cytotoxicity (ADCC), and secretion of cytokines or other
inflammatory mediators (3).

With the exception of human FcγRIIA, the activating FcRs are
multi-chain receptors composed by a ligand-binding α subunit
and one or more transducing subunit(s) containing in the intra-
cytoplasmatic domain(s), the immunoreceptor tyrosine-based
activatory motif (ITAM).

Upon FcR crosslinking, the signaling pathways propagated by
the activating receptors are quite similar for different FcR classes,
and initiate with ITAM tyrosine phosphorylation by kinases of
the Src family. Then, phosphorylated ITAMs lead to the recruit-
ment of Syk-family kinases, followed by activation of various

downstream targets, such as the linker for activation of T cells
(LAT). Once phosphorylated, LAT recruits the phospholipase
Cγ that hydrolyzes the membrane phosphatidyl inositol 4,5-
bisphosphate [PtdIns(4,5)P2] to form the soluble inositol 1,4,5-
trisphosphate (IP3) and the membrane bound diacylglycerol.
These second messengers increase intracellular calcium level and
trigger further downstream signaling.

Besides calcium-dependent pathways, the Ras- and Raf-MAPK
(mitogen-activated protein kinase) cascades are also triggered
following FcR crosslinking.

Several surface inhibitory receptors are able to counteract
FcR-mediated responses. They share the presence in their cyto-
plasmic tail of an immunoreceptor tyrosine-based inhibitory
motif (ITIM) that, once phosphorylated, recruits and activates
lipid and protein phosphatases [i.e. SH2 domain-containing
inositol-polyphosphate 5-phosphatase (SHIP) and SH2 domain-
containing protein-tyrosine phosphatase (SHP)] (4). Among the
FcR family, the only known ITIM-containing receptor is the low-
affinity receptor for IgG, referred to as FcγRIIB, which can be
expressed into two different isoforms on all cells of the immune
system, with the exception of T and NK cells (2, 5).

To exert its inhibitory properties, FcγRIIB must be co-
aggregated with activating receptors by the same immune complex
at the cell surface (6).
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Regulation of FcR-dependent cell activation also includes
different inhibitory mechanisms originated by activating FcRs
themselves (7–11).

Some ITAM-containing FcRs, such as FcαRI and FcγRIIIA that
are associated with the common γ chain, can generate negative
signals able to affect positive signals delivered by other activating
FcRs co-expressed on the same cell (9, 10). The activating ver-
sus inhibitory ITAM configuration is mostly dependent on how
the ITAM-containing receptor interacts with its ligand. In the
case of FcαRI, multimeric interactions induce an activating signal,
whereas interactions of the receptor with ligands binding at low
valency, such as monomeric IgA, generate an inhibitory response
(9). This latter response involves the action of the phosphatase
SHP-1 and requires the formation of intracellular inhibisome
clusters containing the targeted activating receptor.

Other ITAM-containing FcRs, such as FcεRI, can trigger both
activating and inhibitory signals, thus contributing to their own,
autonomous control (7, 11). In this case, the negative signal
involves the coordinated action of adaptors (12–14), phosphatases
(15, 16), and ubiquitin ligases (17–19) that limit the intensity and
duration of positive signals, thus modulating cellular functions.

A negative-feedback regulation essential for the precise control
of cellular functions is also provided by the internalization and
degradation of activated FcR complexes (20–22).

Multiple endocytic pathways can potentially mediate the
ligand-induced Fc receptor internalization through the action
of adaptor proteins that recognize specific signals present in the
cytoplasmic tails of the plasma membrane proteins (23, 24).

Several recent evidences pointed to FcR ubiquitination as an
important additional signal for membrane protein endocyto-
sis (22).

This review overviews the role of the ubiquitin pathway and
the endosomal sorting complex required for transport (ESCRT)
machinery in the regulation of Fcε and Fcγ receptor internaliza-
tion and sorting along the endocytic compartments.

How this pathway regulates Fc receptor-mediated neutral-
ization of intracellular immune complexes will be also briefly
discussed.

THE UBIQUITIN PATHWAY
Ubiquitination is a post-translational modification in which the
small conserved peptide ubiquitin (Ub) is covalently attached to
the ε-amino group of lysine (K) residues of target proteins (25, 26).

The Ub-conjugating reaction, termed ubiquitination, is cat-
alyzed by the successive action of three classes of enzymes. The
Ub-activating enzyme (E1) forms a thiol-ester bond with the
carboxy-terminal glycine of Ub in an ATP-dependent reaction.
Activated Ub is, then, transferred to the Ub-conjugating enzyme
(E2) by transthiolation, and finally conjugated to the substrate
through the action of the Ub protein ligase (E3). This latter class
of enzymes is responsible for substrate recognition and Ub lig-
ation to the target protein, thus providing specificity to the Ub
system. Like protein phosphorylation, ubiquitination is reversible.
Indeed, several Ub-specific proteases, referred to deubiquitinating
enzymes (DUBs), can cleave Ub from its target.

Proteins can be modified by the addition of a single molecule
of Ub to a single K residue (monoubiquitination) or to different

residues (multiubiquitination). These modifications regulate sev-
eral cellular functions including virus budding, nuclear shuttling,
transcription, and endocytosis (27, 28). Moreover, Ub moieties
are often added to the target protein in the form of polyubiqui-
tin chain (29). Indeed, Ub contains seven amino groups that can
be used for chain formation in vivo (30), and different topologies
of polyUb chains are associated with diverse biological functions
(31). For instance, polyUb chains of at least four Ub molecules
linked via K48, direct degradation of the target protein by the 26S
proteasome (32), whereas K63-linked chains participate in sev-
eral other cellular processes ranging from DNA damage repair to
endocytosis (29, 33).

In regard to ubiquitination as a modification that gen-
erates a signal for endocytosis, several observations suggest
that, although monoubiquitination is sufficient for the inter-
nalization and endosome-to-lysosome trafficking of plasma
membrane proteins in both yeast and mammalian cells (34,
35), multiubiquitination and K63-linked polyubiquitination
lead to a higher rate of endocytosis/lysosomal transport than
monoubiquitination (36–38).

UBIQUITIN AS AN ENDOCYTOSIS SIGNAL OF MEMBRANE
RECEPTORS
The early endosomes, also known as “sorting tubular endosomes,”
represent the first compartment deputed to receive incoming vesi-
cles from plasma membrane. In fact, they accept cargoes destined
to alternative fates, either recycling to the plasma membrane or
endocytic sorting into the intraluminal vesicles (ILVs) of the mul-
tivesicular body (MVB) and the lysosomes responsible for cargo
degradation. Those two alternative fates may depend on which
route the cargo utilizes to enter into the cell and/or which signal
the cargo presents.

Regarding the action of Ub as sorting signal, the first compelling
evidence came from studies on yeast showing that ubiquitina-
tion of cell-surface proteins, such as G-protein-coupled recep-
tors and transporters, is required for their vacuolar/lysosomal
degradation (34, 39).

Studies in mammalian cells helped to support a general model
in which Ub acts as a sorting signal (40). In such a model, ubiqui-
tinated membrane proteins must be recognized by different endo-
somal molecular adaptors to be properly delivered to lysosomes
for degradation.

The best-studied Ub-dependent routes are the clathrin-
dependent endocytosis and the ESCRT-dependent sorting
into MVBs.

Ubiquitinated proteins undergo Ub-dependent internalization
mainly through clathrin-coated pits (36, 41–43).

The internalization process involves the action of several
clathrin-binding adaptors that contain Ub-interacting motif
(UIM) used to specifically recognize the ubiquitinated receptor
(44). Among UIM-containing adaptors involved in endocytosis,
the best characterized are Eps15 and Epsin (45–48). Knockdown of
either Eps15 or Epsin as well as overexpression of mutant Eps15 or
Epsin lacking UIMs inhibits Ub-dependent cargo internalization
(43, 46, 48, 49).

Notably, even cargoes that do not require the Ub pathway for
delivery to early endosomes need Ub as a signal for incorporation
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into the MVBs through the action of the ESCRT machinery
(50–52).

The ESCRT machinery comprises four main distinct complexes
(ESCRT-0, -I, -II, and -III) and several accessory components that
recognize and deliver ubiquitinated membrane proteins into ILVs
within MVB, which ultimately fuse with lysosomes.

The upstream complexes ESCRT-0, -I, and -II contain Ub-
binding domains that are responsible for interactions with ubiq-
uitinated cargoes. ESCRT-0 consists of only two subunits, the
hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs)
and the signal transducing adaptor molecule (STAM), and forms
large domains of clustered ubiquitinated cargoes, thanks to its
polyvalent Ub-binding ability and its known participation in flat
clathrin coats in early endosomes (53). Moreover, Hrs is also able
to bind to the endosomally enriched lipid phosphatidylinositol 3-
phosphate (PI3P), allowing the recruitment of the entire ESCRT-0
complex to early endosomes (54, 55).

Endosomal sorting complex required for transport-I and -II
are heteromeric complexes not stably associated with endosomes,
but able to interact with each other and with ESCRT-0 (56). They
are mainly responsible for membrane budding into the lumen of
the MVB (57, 58).

Endosomal sorting complex required for transport-III consists
of four core and several accessory subunits that once correctly
assembled are responsible for the detachment of membrane buds
into the lumen of the MVB (59, 60). The complex has no Ub-
binding domains, but instead actively recruits DUBs to remove
Ub from the cargo before incorporation into the lumen of MVB.

Thus, the ESCRT machinery performs three different but
related functions: recognition of ubiquitinated cargoes; endoso-
mal membrane deformation allowing cargo to be sorted into endo-
somal invaginations; membrane abscission allowing the release of
ILVs that contain the sorted cargoes.

Notably, several subunits of the ESCRT machinery itself
become ubiquitinated/deubiquitinated. However, it is still unclear
whether these modifications could provide a switch between active
and inactive forms.

THE UBIQUITIN PATHWAY AS ENDOCYTIC ROUTE OF Fc
RECEPTORS
Among the different classes of FcRs, a role for Ub as a sorting sig-
nal has been formally demonstrated only for the high-affinity IgE
receptor, FcεRI, and for the low-affinity IgG receptors, FcγRIIA
and FcγRIIIA.

FcεRI
FcεRI is constitutively expressed on the surface of mast cells
and basophils as a heterotetramer composed by an IgE-binding
α subunit, a four transmembrane-spanning ITAM-containing
β subunit, and two identical disulfide-linked ITAM-containing
γ subunits (61). Upon the ligation of multivalent antigen to
FcεRI-bound IgE molecules, the receptor complex transduces
intracellular signals leading to the release of preformed and de
novo synthesized pro-inflammatory mediators that cause imme-
diate anaphylactic reactions or prolonged allergic inflammation
(62–64).

A negative-feedback regulation of FcεRI activity is provided
by receptor ubiquitination that represents an important signal for
the internalization and delivery of engaged receptor complexes to
lysosomes for degradation.

The rat basophilic leukemia cell line namely RBL-2H3 has been
widely used as an in vitro model since it retains many charac-
teristics of mucosal mast cells, including the surface expression
of ~300,000 FcεRI molecules (65). Early studies performed on
RBL-2H3 cells (66, 67) have shown that FcεRI β and γ subunits
are subjected to ubiquitination upon stimulation with IgE and
multivalent antigen. Upon receptor engagement, both FcεRI sub-
units co-localize with the E3 Ub-ligase c-Cbl into lipid rafts (68)
suggesting the involvement of c-Cbl in receptor ubiquitination.

Our group has, indeed, identified c-Cbl as the main E3 lig-
ase responsible for antigen-induced receptor ubiquitination in
RBL-2H3 cells (69).

We have more recently demonstrated that FcεRI β and γ sub-
units are monoubiquitinated by c-Cbl at multiple sites upon
antigen stimulation, and provided evidence that this modification
controls receptor internalization (70).

Regarding the route(s) involved in FcεRI internalization upon
antigen stimulation, several studies suggest that engaged recep-
tors are internalized via clathrin-dependent endocytosis. Although
FcεRI internalization does not require de novo formation of
clathrin-coated pits (71), early morphological studies demon-
strated that cross-linked FcεRI co-localized with clathrin-coated
pits (72, 73), supporting the conclusion that receptor endocytosis
is mainly clathrin-mediated.

Accordingly, we have reported that a rapid and efficient endo-
cytosis of cross-linked FcεRI complexes required the presence
of the adaptor CIN85 (Cbl-interacting protein of 85 kDa) (74),
which is constitutively bound to endophilin, a regulatory com-
ponent of clathrin-coated pit. However, two independent groups
have more recently reported that siRNA-mediated clathrin deple-
tion does not affect antigen-dependent FcεRI internalization (65,
75), demonstrating that engaged FcεRI complexes can efficiently
take an alternative route for endocytosis if the clathrin pathway is
inhibited.

To this regard, the implication of a lipid raft environment in reg-
ulating antigen-induced FcεRI endocytosis has been also envisaged
(70, 75, 76). Fattakhova and co-authors have firstly reported that
internalized FcεRI complexes remain associated with detergent
insoluble structures (75). Moreover, it was subsequently showed
that engaged FcεRI complexes internalized together with the raft-
associated ganglioside GM1 (76), and that cholesterol depletion
decreased antigen-induced FcεRI internalization (70).

We further evaluated the relationship between lipid rafts and
FcεRI ubiquitination. Our results demonstrated that the recruit-
ment of FcεRI subunits into lipid rafts precedes their ubiqui-
tination, and the integrity of these microdomains is required
for receptor ubiquitination (70). Most importantly, we have also
shown a strong interdependence between lipid rafts and FcεRI
endocytosis.

Thus, a cohesive model is one in which lipid rafts may drive
alternative routes of receptor internalization in the absence of
clathrin. Moreover, a cross-talk between clathrin-dependent and

www.frontiersin.org September 2014 | Volume 5 | Article 449 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Innate_Immunity/archive


Molfetta et al. Ubiquitin-dependent regulation of Fc receptor endocytosis

lipid raft-dependent endocytic routes may also be envisaged in
mast cells. Indeed, proximity between clathrin and lipid rafts
has been described in a morphological study (72), and the pres-
ence of clathrin in lipid raft enriched fractions was subsequently
reported (75).

Regardless of the main endocytic route (clathrin-dependent
versus lipid raft-dependent) involved, the UIM-containing adap-
tor proteins Eps15, Eps15R, and epsin, coupling ubiquitinated
cargoes with components of the budding vesicles (45, 46), can
regulate the endocytic trafficking of ubiquitinated FcεRI com-
plexes. Although individual depletion of Eps15, Eps15R, and epsin
failed to affect FcεRI entry in early endosomes, their simultane-
ous depletion impaired ligand-induced receptor endocytosis in
RBL-2H3 cells (70), suggesting overlapping functions of these
adaptors in regulating the uptake of ubiquitinated FcεRI com-
plexes. This finding is consistent with a recent published result
showing that overexpression of a dominant negative Eps15–DIII–
GFP fusion protein only partially blocks antigen-dependent FcεRI
internalization (65).

Among the different ESCRT complexes, ESCRT-0, and in par-
ticular Hrs, is considered as the best candidate for endosomal Ub-
sorting receptor. Indeed, studies in mammalian cells demonstrate
that loss of the Ub-binding domain of Hrs (a UIM variant that has
two Ub-binding surfaces) disrupts Hrs ability to bind to ubiquiti-
nated proteins and to retain Ub receptors on endosomes (55, 77,
78). Notably, we have observed that Hrs depletion sequesters ubiq-
uitinated receptors into early endosomes and partially prevents
their sorting into lysosomes for degradation (70), demonstrat-
ing a key role for Hrs in regulating the fate of internalized FcεRI
complexes.

Moreover, we found that Hrs itself undergoes covalent mod-
ifications affecting its function as endocytic adaptor. Indeed, we
demonstrated that Hrs is subjected to antigen-dependent tyrosine
phosphorylation and monoubiquitination upon FcεRI engage-
ment, and we identified Syk as the main kinase regulating both
inducible Hrs post-translational modifications in RBL-2H3 cells
(79). Moreover, by siRNA knock down of c-Cbl and complemen-
tary overexpression studies, we demonstrated that Hrs monoubiq-
uitination is under the control of c-Cbl ligase activity, and that
monoubiquitinated forms of Hrs, known to prevent Hrs abil-
ity to bind to ubiquitinated cargo (80), are preferentially con-
fined on cytosolic fractions. On the contrary, an increase of Hrs
phosphorylation was reproducibly observed only in membranes.

Our finding suggests that Hrs may need to be tyrosine
phosphorylated to interact with other ESCRT components in
order to ensure an efficient transport of ubiquitinated cargos
to MVBs. The removal of monoubiquitinated Hrs from endo-
somal membrane could then facilitate the clearance of the non-
functional adaptor and its replacement with non-ubiquitinated
and sorting-competent Hrs.

Overall, these results firstly support a key role for the Ub path-
way and the ESCRT machinery to ensure endocytic trafficking
of an Fc receptor to the lysosomes where degradation of the
complexes can take place (Figure 1).

A role for Ub as a sorting signal in human mast cells and
basophils has not been investigated yet.

FcγRIIA
FcγRIIA is a single chain transmembrane receptor containing both
a ligand-binding extracellular domain and an ITAM-like motif
in its cytoplasmic tail responsible for signal transduction. This
receptor is widely expressed on hematopoietic cells, and its engage-
ment triggers many biological functions including degranulation
and synthesis of cytokines (2). Moreover, FcγR crosslinking on
phagocytes promotes endocytosis of small immune complexes and
phagocytosis of large IgG-opsonized particles. These two internal-
ization processes differ markedly in terms of molecular mecha-
nisms involved: endocytosis is clathrin- and dynamin-dependent
and does not require the integrity of cytoskeleton; phagocyto-
sis involves assembly of F-actin and phosphatidylinositol 3-kinase
activity (81). By following the internalization of FcγRIIA expressed
in a CHO-derived cell line bearing a temperature-sensitive muta-
tion in the E1 enzyme (CHO-ts20), Booth and coworkers provided
the first evidence that the Ub machinery is required for endocyto-
sis of soluble immune complexes by FcγRIIA, but it is dispensable
for actin-driven phagocytosis of large antibody-coated particles
(82). Elimination of the K residues present in the tail of FcγRIIA
impaired endocytosis but did not affect either phagocytosis or
phagosome maturation. Moreover, it was found that FcγRIIA is
mainly modified by the addition of polyUb chains (83), although
the specific K residue(s) involved in polyUb chain formation have
not been identified yet.

The same group subsequently showed that Src family kinase-
mediated tyrosine phosphorylation of FcγRIIA is not required
for receptor endocytosis and ubiquitination of soluble immune
complexes on COS-1 stable FcγR transfectants, but it is neces-
sary for phagocytosis (83, 84). This finding was confirmed in
freshly isolated human monocytes: inhibition of Src, Syk, and PI3K
kinase activities affects FcγR phagocytosis of large opsonized par-
ticles without altering endocytosis of small immune complexes
(84). Conversely, in human neutrophils, FcγRIIA ubiquitination,
achieved by antibody-mediated receptor crosslinking, was found
to be Src kinase-dependent (85).

Thus, the contribution of phosphorylation events in regulat-
ing FcγRIIA ubiquitination appears to be different depending
on the cellular context and experimental conditions. However,
a common molecular mechanism regulating FcγRIIA down-
modulation relies on the requirement of receptor ubiquitination
and clathrin (Figure 2A). Accordingly, the down-regulation of
FcγRIIA expression in human neutrophils is positively regulated
by the clathrin adaptor protein CIN85 (86), as previously reported
for FcεRI (74).

Regarding the role of lipid rafts, Barabè and colleagues demon-
strated that the integrity of lipid rafts is required for a proper
degradation of cross-linked FcγRIIA (87). Recruitment of engaged
FcγRIIA and c-Cbl into lipid rafts is followed by Cbl-dependent
receptor ubiquitination and degradation (85). Whether receptor
ubiquitination occurs at the plasma membrane or later on dur-
ing the transport into early endosomes has not been clarified yet
(Figure 2A).

Concerning the main cellular location (cytosolic proteasomes
versus lysosomes) implicated in FcγRIIA degradation, different
results have been reported depending on the cellular context.
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FIGURE 1 | Model depicting how FcεRI ubiquitination drives endocytosis
of engaged receptor complexes. Upon antigen stimulation, lipid rafts serve
as a platform to recruit engaged FcεRI complexes and the Ub-ligase Cbl that
promotes receptor multiubiquitination. Ubiquitinated receptors are then
recognized by endocytic adaptors containing Ub-interacting motifs that drive
both FcεRI clearance from the plasma membrane (Eps15, Eps15R, Epsin) and

receptor sorting along the endosomal compartments (Hrs). Hrs itself
becomes a substrate for Syk and Cbl enzymatic activities. Monoubiquitinated
Hrs is removed from endosomal sorting sites whereas phosphorylated Hrs
interacts with other endocytic adaptors of the ESCRT complexes to ensure
the transport of ubiquitinated FcεRI complexes into the intraluminal vesicles
(ILVs) of the multivesicular body (MVB) and to the lysosomes for degradation.

Proteasome but not lysosomal inhibitors prevent the rapid (few
minutes upon receptor ligation) receptor degradation observed in
human neutrophils (85), suggesting that ubiquitinated FcγRIIA
itself may become a target for proteasomal degradation. Con-
versely, in monocyte-derived human macrophages, antibody-
cross-linked FcγRIIA complexes are sorted into a lysosomal com-
partment within 60 min of receptor engagement (88), indicat-
ing that lysosomes may also contribute in FcγRIIA degradation
(Figure 2A).

However, a role for UIM-containing adaptors and ESCRT
complexes in FcγRIIA endocytic trafficking to the lysosomal
compartment has not been investigated yet.

FcγRIIIA
FcγRIIIA (type III receptor for IgG; CD16) is a multimeric
receptor composed of a ligand-binding α chain associated with

ITAM-containing γ and/or ζ dimers, initially identified as compo-
nents of the FcεRI and the TCR, respectively (1). It binds to the
Fc portion of human IgG1 and IgG3, is highly expressed on the
cytotoxic CD56dimCD16+ NK cell subset, and mediates ADCC
and cytokine/chemokine release.

FcγRIIIA down-regulation on human NK cells is a consequence
of both metalloprotease-induced shedding and internalization of
cross-linked receptors, and requires an intact actin cytoskeleton
(89–93) and a clathrin-dependent pathway (Molfetta, unpublished
observations).

Notably, we have shown that the FcγRIIIA ζ subunit undergoes
Ub modification upon receptor aggregation in a phosphorylation-
dependent manner (94), and suggested a role for ubiquitination
in driving ζ chain lysosomal degradation, as previously reported
for the same subunit in the context of the TCR/CD3 complex
(95). Moreover, proteasome inhibition also impairs FcγRIIIA ζ
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FIGURE 2 | (A) Schematic representation of FcγRIIA down-regulation by the
ubiquitin pathway is shown. Upon binding with soluble immune complexes,
FcγRIIA undergoes clathrin-dependent internalization, Cbl-mediated
polyubiquitination, and proteasomal or lysosomal degradation depending on
the cellular context. (B) Intracellular neutralization of antibody-coated virions
by TRIM21. Antibody-coated virions are internalized, released into the cytosol

after escaping from the endosome, and detected by the cytosolic intracellular
Fc receptor TRIM21. TRIM, acting as E3 ligase, catalyzes its own
polyubiquitination allowing the recruitment of the ATPase
p97/valosin-containing protein (VCP). VCP promotes the initial viral capsid
unfolding, thus enabling the subsequent proteasomal degradation of the
virion.

chain degradation (Molfetta et al.,unpublished observations), sug-
gesting a cooperation of proteasomal and lysosomal degradative
pathways.

Furthermore, engaged receptor complexes accumulate into
lipid rafts (92), thus the contribution of a lipid raft environment in
regulating FcγRIIIA ubiquitination can be also envisaged, as for-
mally demonstrated for the FcεRI in mast cells and for the FcγRIIA
on human neutrophils.

THE Ub PATHWAY AND THE Fc RECEPTOR TRIM21: A NEW
MECHANISM FOR VIRUS NEUTRALIZATION
Mallery and colleagues have recently discovered that antibodies,
in addition to their extracellular activities, provide protection also
inside cells mediating an intracellular immune response termed
antibody-dependent intracellular neutralization (96). Antibod-
ies that bind to non-enveloped virus before infection remain
attached to the viral particle and are carried into the cell. Antibody-
coated virions are then released into the cytosol after escape
from the endosome and detected by a cytosolic intracellular Fc
receptor called tripartite motif-containing 21 (TRIM21), which
binds to IgG with high affinity (97). TRIM21 also possesses a
RING domain with E3 ubiquitin ligase activity, and through its

enzymatic activity, it targets the virion for proteasomal degrada-
tion. Interestingly, by performing in vitro ubiquitination assay, the
authors found that TRIM21 forms K48 Ub chain only on itself
(96), suggesting that recruitment to the proteasome is not depen-
dent on direct ubiquitination of either the antibody or the virus,
but rather autoubiquitination of the Fc receptor. Although the
precise molecular mechanism of TRIM-mediated viral degrada-
tion in vivo is currently unclear, the same group subsequently
reported that the presence and activity of the ATPase p97/valosin-
containing protein (VCP), an enzyme with Ub-selective segregase
and unfoldase activity, is required for the disassembly and the par-
tial unfolding of the virion allowing its subsequent proteasomal
degradation (98).

A proposed model of TRIM-mediated viral neutralization and
degradation is depicted in Figure 2B.

CONCLUDING REMARKS
As discussed above, ligand-induced ubiquitination of FcRs has
become recognized as a modification that ensures recognition,
internalization, and/or delivery of engaged receptor complexes
to cytosolic proteasomes or lysosomes for degradation, thus
down-regulating Fc receptor-transduced signaling.
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In particular, FcεRI ubiquitination provides a signal for both
internalization and delivery of engaged receptor complexes to lyso-
somes for degradation. In the case of FcγRIIA, Ub-dependent
receptor down-regulation appears to be a common feature upon
binding with soluble immune complexes in both monocytes
and neutrophils. However, the very rapid proteasomal-dependent
FcγRIIA degradation observed in neutrophils may represent a
unique feature of these cells. In this scenario, the use of the pro-
teasomal pathway for FcγRIIA down-regulation could avoid an
excessive activation of neutrophils ensuring a non-inflammatory
clearance of immune complexes. Conversely, in monocytes, a
slower kinetics of endocytosis can guarantee FcγRIIA sorting
along the endocytic machinery and delivery to lysosomes. Future
challenges in the field will be to understand the contribution of
UIM-containing adaptors and the ESCRT machinery in driving
FcγRIIA endocytic sorting, since information is presently available
only for FcεRI.

In regard to FcγRIIIA, it will be important to understand
whether the proteasome is directly responsible for degradation
of ubiquitinated receptor itself and/or promotes degradation of
other ubiquitinated substrates that control receptor endocytosis
and intracellular sorting.

Another major question is whether ubiquitination could con-
tribute to the down-regulation of other FcRs in particular, those
able to trigger either activating or inhibitory signals, such as FcαRI.

As also briefly discussed above, ubiquitination of the cytoso-
lic Fc receptor TRIM21 regulates a new intracellular process
responsible for neutralization of antibody-bound pathogens.

Interestingly, the Ub-ligase activity of TRIM21, in addition to
target viruses for destruction, also alerts the body to infection.
Indeed, upon recognition of antibody-coated virions, TRIM21
catalyzes the formation of free K63-linked Ub chains, which
activate several transcription factors inducing a potent antiviral
state (99).
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