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ABSTRACT

Purpose: Recent studies have shown that long non-coding RNA (lncRNA) play an important 
role in cancer metabolism and development. The lncRNA small nucleolar RNA host 
gene 7 (SNHG7) was reported to be upregulated in colorectal cancer and contribute to its 
progression. In the current study, we investigated the role of lncRNA-SNHG7 in breast cancer 
and explored the underlying mechanism.
Methods: We monitored the expression of lncRNA-SNHG7 in breast cancer tissues and 
breast cancer cell lines. We evaluated the effects of lncRNA-SNHG7 on cell proliferation and 
glycolysis in breast cancer cells by knocking down or overexpressing lncRNA-SNHG7. We 
searched for the potential microRNA (miRNA) target of lncRNA-SNHG7 and evaluated the 
effects of the target miRNA on glycolysis. We evaluated the potential regulation of lncRNA-
SNHG7 by c-Myc.
Results: LncRNA-SNHG7 was up-regulated in both breast cancer tissues and breast cancer 
cell lines. Knocking down lncRNA-SNHG7 inhibited breast cancer cell proliferation while 
overexpressing lncRNA-SNHG7 enhanced cell proliferation. Knocking down lncRNA-SNHG7 
resulted in decreased expression of lactate dehydrogenase A (LDHA) and decreased glycolysis. 
LncRNA-SNHG7 targeted miR-34a-5p to regulate LDHA expression and glycolysis. c-Myc bound 
to promoter of lncRNA-SNHG7 and positively regulated lncRNA-SNHG7 expression.
Conclusion: We demonstrated that c-Myc regulated glycolysis through the lncRNA-SNHG7/
miR-34a-5p/LDHA axis in breast cancer cells.

Keywords: Breast neoplasms; Glycolysis; MIRN34 microRNA human; Proto-Oncogene 
Proteins c-myc; RNA, long noncoding

INTRODUCTION

Breast cancer is cancer originating from breast tissue and is one of the world's most 
commonly diagnosed cancers [1]. Public health data indicate that the global burden of breast 
cancer in women is increasing and the number of breast cancer cases diagnosed are also 
increasing every year [2]. In China, breast cancer is the 6th leading cause of cancer-related 
death in women and it is expected that the number of cases will reach 2.5 million by 2021. 
Breast cancer not only threatens women's physical and mental health, and causes a huge 
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economic burden [3]. Therefore, it is important to understand breast cancer development 
and search for potential therapeutic targets.

Glucose is an important carbon source for energy-producing metabolic processes. Cancer 
cells are characterized by glucose metabolism that involves increased glucose uptake and 
aerobic glycolysis. Glycolysis is the process of converting glucose into pyruvate, which 
eventually results in the production of lactate (fermentation). Enhanced glycolysis is a 
striking feature of breast cancer and other cancers as the cancer cells rely on the glycolytic 
pathway for their energy needs. This characteristic has been successfully exploited for 
cancer diagnosis and tumor response assessment [4]. Besides providing cellular energy, 
the metabolic intermediates of glycolysis also play an essential role in macromolecular 
biosynthesis, which benefits the cancer cells under conditions of diminished nutrient supply. 
Recently, it was reported that tumor glycolysis could be used as a potential target for cancer 
therapy as interrupting/disrupting tumor glycolysis would impact tumor growth by energy 
depletion and sensitization to therapeutics [5,6].

Long non-coding RNAs (lncRNAs) are a class of RNA molecules that are longer than 200 
nucleotides in length but are not translated to proteins. LncRNAs have been known to 
regulate gene expression at the transcriptional and post-transcriptional levels. Several 
lncRNAs have been demonstrated to be critical in cancer development and/or maintenance 
[7]. The regulation of glycolysis by lncRNAs in cancer cells has also been described [8]. The 
c-myc oncogene is a master regulator linked to most types of cancers and controls many 
aspects including cellular growth and metabolism [9]. The transcriptional regulation of 
lncRNAs by c-Myc has been shown through genome-wide studies. Conversely, lncRNAs 
could also regulate c-Myc expression at both transcriptional and post-transcriptional 
level. Therefore, understanding the lncRNA-c-Myc network in cancer could provide useful 
information to target lncRNAs for cancer treatment [7].

MicroRNAs (miRNAs) are small non-coding RNAs consisting of about 22 nucleotides [10]. 
MiRNAs regulate gene expression by complementing with the 3′ untranslated region of their 
target messenger RNAs (mRNAs), which leads to degradation of the target mRNA. Multiple 
studies have revealed that miRNAs tightly regulate metabolic pathways in cancer cells. 
MiRNAs regulate the expression of not only glucose uptake receptors but also the enzymes 
involved in glycolysis [11].

In the current study, the roles of lncRNA- small nucleolar RNA host gene 7 (SNHG7) was 
investigated in breast cancer. The effects of lncRNA-SNHG7 on glycolysis in breast cancer cell 
line were also evaluated and the underlying mechanisms were further explored.

METHODS

Cell culture
Normal breast epithelial cells MCF10A and breast cancer cell lines MDA-MMB-436, HS578T, 
SKBR3, MDA-MB-231, and MCF-7 were purchased from the Shanghai Cell Bank of the 
Chinese Academy of Science. MCF10A cells were maintained in Dulbecco's Modified Eagle 
Medium (DMEM)/F12 medium supplemented with 5% horse serum, epidermal growth factor 
(20 ng/mL), insulin (10 µg/mL), hydrocortisone (0.5 mg/mL), cholera toxin (100 ng/mL), 
and penicillin (100 U/mL) and streptomycin (100 µg/mL) (Thermo Fisher, Waltham, USA). 
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MDA-MMB-436, HS578T, MDA-MB-231, and MCF-7 were cultured in Roswell Park Memorial 
Institute 1640 medium containing 10% fetal bovine serum (FBS, Life Technology, Pleasanton, 
USA), 2mM L-glutamine, 20 mM HEPES, 1 mM sodium pyruvate, 100 U/mL penicillin, and 
100 μg/mL streptomycin medium supplemented with 2 mM glutamine and 15% FBS. HS578T 
cells were cultured in DMEM medium supplemented with 10% FBS, 0.01 mg/mL bovine 
insulin and 100 U/mL penicillin, and 100 μg/mL streptomycin (Thermo Fisher). Cells were 
cultured in a 5% saturated CO2 atmosphere at 37°C.

Tissue preparation
A total of 30 paired breast tissues samples (lumA/B, n = 19; basal-like, n = 6; human 
epidermal growth factor receptor 2 [HER-2], n = 3; normal-like, n = 2) were collected 
from patients by surgical resection. The diagnosis of breast cancer was confirmed by 
histopathological evaluation. A total of 50 biologically independent samples (lumA/B, n 
= 25; basal-like, n = 10; HER-2, n = 9; normal-like, n = 6) were used in correlation analyses 
conducted between c-Myc and lncRNA-SNHG7 in breast cancers. The use and conduct of all 
the human materials were approved by the Institutional Review Board (IRB) in the Second 
Hospital of Hebei Medical University (IRB No. SHHBYU-085-JC1). All participants signed the 
informed written consent.

The atlas of non-coding RNA in cancer (TANRIC) analysis
We analyzed a total of 837 patients, including 138 stage I, 480 stage II, 180 stage III, 15 stage IV, 
15 stage Tis, and 9 stage X patients. These patient samples had been evaluated for histologic 
characteristics and immunostained for estrogen receptor, HER2/neu, epidermal growth factor 
receptor, cytokeratin 5/6, p53, and Ki-67. The clinical subtypes of these 837 patients included 
lumA/B (n = 417+191), basal-like (n = 139), HER-2 (n = 67), normal-like (n = 23).

Subcellular fraction
MCF-7 cells were harvested and washed with phosphate-buffered saline. After centrifugation, 
the cell pellets were subjected to fractionation using the Subcellular Protein Fractionation Kit 
for Cultured Cells (Thermo Fisher) following the manufacture's protocol. The cytoplasmic 
and nuclear fractions were subjected to RNA extraction or western blot. Poly (ADP-ribose) 
polymerase (PARP) and β-actin were used as markers for cytoplasm and nucleus in western 
blot and U1 were used as a marker in real-time polymerase chain reaction (RT-PCR).

Lentivirus transduction and cell transfection
Lentivirus expressing control short hairpin RNA (shRNA) or lncRNA-SNHG7 shRNA, and 
lentivirus expressing lncRNA-SNHG7 (pCDH-lncRNA-SNHG7) or empty vector (pCDH), miR-
34a-5p mimics, miR-34a-5p inhibitors, and control miRNAs were purchased from RiboBio 
(Guangzhou, China). MCF-7 cells or MDA-MB-231 cells were seeded in 24-well or 96-well 
plates and transduced with lentivirus. The cells were harvested for analysis 48 hours post 
transduction. In some experiments, MCF-7 cells were transfected with miR-34a-5p mimics or 
inhibitors using Lipofectamine 2000 (Thermo Fisher) following the manufacturer's protocol 
and then transduced with lentivirus immediately. Cells were harvested for analysis 48 hours 
post transfection/transduction.

Cell Counting Kit-8 (CCK-8) assay
The CCK-8 assay was used to monitor cell viability. Briefly, MCF-7 cells were seeded in a 
96-well plate and transduced with the lentivirus. At 48 hours post transduction, the CCK-8 
reagent was added at a final concentration of 100 µL/mL medium (Sigma Aldrich, St Louis, 
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USA) and the cells were incubated for 2 hours. The absorbance was read at 450 nm using 
BioTek™ PowerWave™ Microplate Spectrophotometer (Thermo Fisher).

Lactate production assay
MCF-7 cells transduced with lentivirus expressing control shRNA or lncRNA-SNHG7 shRNA 
were cultured for 24 hours. The lactate levels in the culture medium were determined using 
the Lactate Assay Kit (Colorimetric; Abcam, Cambridge, USA) according to manufacturer's 
instructions.

Extracellular acidification rate (ECAR)
The ECAR was measured in MCF-7 cells following lentiviral transduction and/or miRNA 
transfection using the Seahorse XF96e analyzer (Seahorse Bioscience, North Billerica, USA) 
according to the manufacture's instruction. Briefly, MCF-7 cells were seeded in a 96-well XF 
cell culture microplate with complete growth medium following lentiviral transduction and/or 
miRNA transfection. ECAR was measured using an XF96 analyzer in XF base medium containing 
4 mM glutamine following sequential addition of 10 µM glucose, 1 µM oligomycin and 50 mM 
2-DG. Data were analyzed by a Seahorse XF Glycolysis Stress Test Report Generator.

Biotin pull down assay
For antisense oligomer affinity pull down assay, biotin-labeled sense or antisense DNA 
oligomers corresponding to lncRNA-SNHG7 (RiboBio) were incubated with MCF-7 cell lysate 
in DNase/RNase free conditions. After incubation for 1 hour, streptavidin-coupled agarose 
beads (Thermo Fisher) were added to isolate the RNA-RNA complexes. The lncRNA-SNHG7 
and miR-34a-5p levels were analyzed by quantitative RT-PCR (qRT-PCR).

qRT-PCR
Total RNA was extracted from tissues, and the MCF-7 and MDA-MB-231 cells using Trizol 
reagent (Thermo Fisher) following manufacturer's instructions. The RNA was reverse 
transcribed into complementary DNA by using PrimeScript RT reagent kit (Takara, Dalian, 
China). SYBR Green RT-PCR Master Mix was used for qPCR assay which was performed 
on an ABI 7500 RT-PCR system (Thermo Fisher). U6 was used as the internal control 
for normalization of the relative miRNA expression. All primers used for RT-PCR were 
purchased from Qiagen (Germantown, USA).

Western blotting
Total proteins were extracted from MCF-7 and MDA-MB-231 cells using M-PER™ Mammalian 
Protein Extraction Reagent (Thermo Fisher), and protein concentration was measured by 
using Pierce BCA Protein Assay Kit (Thermo Fisher). A total of 20 µg of protein was loaded 
onto a sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis gel and later 
transferred to polyvinylidene fluoride membrane. Following transfer, the membranes were 
blocked with 5% non-fat milk in 0.1% tween-20 in tris buffered saline (TBST) for 1 hour at 
room temperature. Then primary antibodies were added and the membranes were incubated 
at 4°C overnight. Next day, after 3 washes with TBST, the membranes were incubated 
with horseradish peroxidase-conjugated corresponding secondary antibodies at room 
temperature for 1 hour. Immunoreactive proteins were detected using Clarity™ Western ECL 
Blotting Substrates (Bio-Rad, Hercules, USA). The density was quantitated and analyzed 
using ImageJ. Primary antibodies used in the current study were: anti-HK2 (Thermo Fisher), 
anti-GPI (Thermo Fisher), anti-PFKL (Thermo Fisher), anti-ALDB (Thermo Fisher), anti-
TPI1 (Sigma Aldrich), anti-PGK1 (Thermo Fisher), anti-PGAM1 (Sigma Aldrich), anti-ENO1 
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(Sigma Aldrich), anti-PKM2 (Sigma Aldrich), anti-lactate dehydrogenase A (LDHA; Thermo 
Fisher), anti-glyceraldehyde 3-phosphate dehydrogenase (GAPDH; Thermo Fisher), and 
anti-β actin (Sigma Aldrich).

Immunoprecipitation (IP)-semiquantitative PCR
IP-PCR was performed following a modified protocol as described previously [12]. Briefly, 
MCF-7 cells were lysed in hypotonic buffer (10 mM HEPES [pH 7.6], 1.5 mM MgCl2, 
10 mM KCl, and 0.2 mM phenylmethylsulfonyl fluoride) containing 0.5% NP40 and 
supplemented with RNase A inhibitor and DNase I. The cell lysates were precleared with 
protein A/G beads (Sigma Aldrich) and then incubated with protein A/G beads coated 
with the indicated antibodies for 3 hours at 4°C. Then beads were washed 3 times with 
wash buffer (10 mM Tris [pH 7.6], 100 mM KCl, 5 mM MgCl2, and 1 mM dithiothreitol) 
and eluted using elution buffer (50 mM Tris [pH 8.0], 1% SDS, and 10 mM EDTA) at 65°C 
for 10 minutes. To isolate protein-associated DNA from the eluted immunocomplexes, 
the samples were treated with proteinase K at 37°C for 30 min, followed by 2 rounds each 
of phenol-chloroform-isoamyl alcohol (25:24:1) and chloroform extraction, and then 
precipitated with ethanol. The purified DNA was subjected to PCR analysis. Primers used 
for PCR were: lncRNA-SNHG7: Forward: 5′-CTAGGACGTCTGCTCACTGG-3′, Reverse: 
5′-CAGGAGGGCTTAGTTACATTGGA-3′. GAPDH: Forward: 5′-TACTAGCGGTTTTACGG 
GCG-3′, Reverse: 5′-TCGAACAGGAGGAGCAGAGAGCGA-3′.

Luciferase reporter assay
To determine the effect of c-Myc on lncRNA-SNHG7 promoter, MCF-7 cells and MDA-MB-231 
cells were transduced with lentivirus expressing control shRNA or c-Myc shRNA (RiboBio), 
and co-transfected with the PGL3-WT lncRNA-SNHG7 promoter or mutant constructs and 
Renilla luciferase reporter plasmid. The firefly and Renilla luciferase activities were measured 
using a Dual-luciferase reporter assay system (Promega, Madison, USA) 24 hours post 
transduction/transfection.

Statistical analysis
Data are presented as mean ± standard deviation and analyzed using GraphPad Prism 8 
software (GraphPad Software, San Diego, USA). Student's t-test, 1- or 2-way analysis of 
variance with Bonferroni post hoc test was used for analysis. The difference was considered as 
significant when p < 0.05.

RESULTS

Increased level of lncRNA-SNHG7 was detected in breast cancer tissue and 
cell lines
To investigate the potential role of lncRNA-SNHG7 in breast cancer, we monitored the level 
of lncRNA-SNHG7 in breast cancer tissues. As shown in Figure 1A, we detected significantly 
increased level of lncRNA-SNHG7 in tumor tissues when compared to normal breast tissue. 
In addition [13], we analyzed a total 837 patients cases by TANRIC and found that increased 
level of lncRNA-SNHG7 was correlated with decreased patient survival (Figure 1B). Next, we 
monitored the level of lncRNA-SNHG7 in several breast cancer cell lines including MDA-
MMB-436, HS578T, MDA-MB-231, MCF-7, and HS578T. As shown in Figure 1C, compared to 
normal breast epithelial cells, all the breast cancer cell lines had significantly higher level of 
lncRNA-SNHG7, which is consistent with the results from patient tissues. We monitored the 
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expression pattern of lncRNA-SNHG7 by cell fractionation. The quality of the fractions was 
confirmed by western blotting. As expected we detected the nuclear marker, PARP, mainly in 
the nuclear fractions and β-actin was detected only in the cytoplasmic fraction (Figure 1D). 
RT-PCR analysis of fractionated nuclear and cytoplasmic RNA revealed that lncRNA-SNHG7 
localized mainly in the cell cytosol while the small nuclear RNA U1 localized only in nucleus 
and β-actin mRNA mainly localized in cell cytosol (Figure 1E). Taken together, our data 
demonstrated that lncRNA-SNHG7 was up-regulated in breast cancer and mainly localized in 
cell cytosol.

LncRNA-SNHG7 promoted proliferation of breast cancer cells
To evaluate the effect of lncRNA-SNHG7 on cell proliferation of MCF-7 cells, we transduced MCF-
7 cells with lentivirus expressing shRNA against lncRNA-SNHG7 or lentivirus expressing control 
shRNA. Transduction of lentivirus expressing shRNA against lncRNA-SNHG7 significantly 
decreased the endogenous level of lncRNA-SNHG7 (Figure 2A). Correspondingly, the total 
cell number in MCF-7 cells transduced with lentiviruses expressing lncRNA-SNHG7 shRNA1 
or shRNA2 was lower than the total cell number in MCF-7 cells transduced with lentivirus 
expressing control shRNA, and the difference became significant on day 5 (Figure 2B). In 
addition, MCF-7 cell transduced with lentiviruses expressing lncRNA-SNHG7 shRNA1 or shRNA2 
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had significantly decreased cell viability compared to MCF-7 cells transduced with lentivirus 
expressing control shRNA (Figure 2C). Transduction of MCF-7 cells with lentivirus expressing 
lncRNA-SNHG7 resulted in significantly higher lncRNA-SNHG7 level (Figure 2D) compared to 
the non-transduced cells or cells transduced with the control lentivirus. The overexpression of 
lncRNA-SNHG7 resulted in higher cell number and the difference was significant on day 5 post 
lentiviral transduction (Figure 2E), which was due to the significantly increased cell viability 
of MCF-7 cells overexpressing lncRNA-SNHG7 (Figure 2F). Similar results were obtained using 
MDA-MB-231 cells (Supplementary Figure 1). Taken together, our data demonstrated that 
lncRNA-SNHG7 promoted breast cancer cell proliferation.

Knockdown of lncRNA-SNHG7 inhibited glycolysis in breast cancer cells
Next, we investigated the functional role of lncRNA-SNHG7 in glycolysis in MCF-7 cells. 
We observed acidification of the culture medium of MCF-7 cells. In contrast, knocking 
down lncRNA-SNHG7 by transducing lentivirus expressing lncRNA-SNHG7 shRNA1 or 
shRNA2 in MCF-7 cells prevented the acidification of culture medium (Figure 3A). We 
also detected significantly decreased lactate production in MCF-7 cells transduced with 
lentivirus expressing lncRNA-SNHG7 shRNA1 or shRNA2, when compared to MCF-7 cells 
transduced with lentivirus expressing control shRNA (Figure 3B). Knocking down lncRNA-
SNHG7 also significantly decreased cell glycolysis assessed by the ECAR (Figure 3C and D). 
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As knocking down lncRNA-SNHG7 affected glycolysis, we next investigated which of the 
glycolysis enzymes were affected by the knockdown. Using western blotting and RT-PCR, we 
identified that knocking down lncRNA-SNHG7 did not affect the protein and mRNA levels of 
most glycolysis enzymes including HK2, GPI, PFKL, ALDB, TPI1, PGK1, PGAM1, ENO1, and 
PKM2 (Figure 3E and F). In contrast, we detected significantly decreased protein and mRNA 
levels of LDHA in MCF-7 cells transduced with lentivirus expressing lncRNA-SNHG7 shRNA1 
or shRNA2 (Figure 3E and F), suggesting that lncRNA-SNHG7 regulated the expression of 
LDHA. Similar results were obtained using MDA-MB-231 cells (Supplementary Figure 2). 
Collectively, we demonstrated that lncRNA-SNHG7 regulated LDHA expression and glycolysis.
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control shRNA or lncRNA-SNHG7 shRNA were cultured for 24 hours. Levels of lactate in the culture medium were then measured and normalized to cell number. 
(C, D) ECAR was measured in MCF-7 cells expressing either control shRNA or lncRNA-SNHG7 shRNA by Seahorse XF assays. (E, F) Western blotting and qRT-PCR 
analysis of glycolysis enzymes in MCF-7 cells expressing either control shRNA or lncRNA-SNHG7 shRNA. 
Data were presented as mean ± standard deviation. 
lncRNA = long non-coding RNA; sh = short hairpin; ECAR = extracellular acidification rate; qRT-PCR = quantitative real-time polymerase chain reaction. 
*p < 0.01.
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LncRNA-SNHG7 regulated LDHA level by targeting miR-34a-5p
Next, we investigated the mechanism of lncRNA-SNHG7 regulated LDHA expression. 
LncRNAs have been shown to function as miRNA sponges. LncRNA-SNHG7 was identified 
to binding to miR-34a (Figure 4A), which has been described previously [14]. To confirm the 
interaction between lncRNA-SNHG7 and miR-34a, we performed the pull-down assay. We 
found that a biotin-labeled antisense DNA probe of lncRNA-SNHG7 enriched the endogenous 
lncRNA-SNHG7 while the sense DNA probe did not (Figure 4B). In addition, lncRNA-SNHG7 
antisense DNA probe was able to pull down miR-34a-5p (Figure 4B). These results indicated 
that lncRNA-SNHG7 interacted with miR-34a-5p. To test whether the regulation of LDHA by 
lncRNA-SNHG7 depended on miRNA. LncRNA-SNHG7 shRNA lentivirus transduced-MCF-7 
cells were transfected with miR-34a-5p inhibitors and the LDHA protein level was monitored. 
As shown in Figure 4C, the expression of lncRNA-SNHG7 shRNA resulted in decreased LDHA 
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expression. In contrast, overexpression of miR-34a-5p inhibitor in MCF-7 cells expressing 
lncRNA-SNHG7 shRNA rescued the expression of LDHA. Overexpression of lncRNA-SNHG7 
resulted in up-regulation of LDHA expression while this upregulation was inhibited by 
overexpression of miR-34a-5p (Figure 4D). Therefore, these results indicated that lncRNA-
SNHG7 regulated LDHA expression through miR-34a-5p. Knocking down lncRNA-SNHG7 
resulted in decreased cell glycolysis as measured by ECAR. In contrast, overexpressing 
miR-34a-5p inhibitor rescued the decreased cell glycolysis mediated by lncRNA-SNHG7 
knockdown (Figure 4E and F). Taken together, our data demonstrated that lncRNA-SNHG7 
targeted miR-34a-5p and regulated LDHA expression and glycolysis.

LncRNA-SNHG7 is a direct transcriptional target of c-Myc
Next, we investigated whether c-Myc regulated lncRNA-SNHG7 expression as it has been 
previously reported that the promoter of SNHG7 was strongly bound by endogenous 
c-Myc [15]. Transduction of lentivirus expressing c-myc shRNA significantly decreased 
endogenous lncRNA-SNHG7 level and c-Myc expression in both MCF-7 cells and MDA-MB-231 
cells (Figure 5A). In contrast, transduction of lentivirus expressing c-myc significantly 
increased lncRNA-SNHG7 level and c-Myc expression in MCF-7 cells and MDA-MB-231 
cells (Figure 5B). These results indicated that c-Myc positively regulated lncRNA-SNHG7 
expression. We further evaluated whether the promoter of lncRNA-SNHG7 conferred c-Myc 
dependent transcriptional activity. DNA fragments of lncRNA-SNHG7 promoter containing 
a predicted wild-type or mutant c-Myc binding region were inserted into the promoter 
region of a luciferase reporter plasmid pGL3 (Figure 5C). As was expected, significantly 
increased luciferase activity was only obtained in MCF-7 cells that were transfected with 
luciferase reporter plasmid containing the wild type lncRNA-SNHG7 promoter but not the 
mutant promoter. Knocking down c-Myc by lentiviral transduction significantly decreased 
the luciferase activity (Figure 5D). Overexpression of c-Myc by lentivirus transduction 
significantly increased the luciferase activity in MCF-7 cell transfected with reporter plasmid 
containing wild type promoter (Figure 5E). These results indicated that c-Myc could regulate 
transcription through lncRNA-SNHG7 promoter. The binding of c-Myc to lncRNA-SNHG7 
promoter was further verified by ChIP assay. As shown in Figure 5F, anti-c-Myc antibody 
successfully pulled down the chromatin fragments containing the lncRNA-SNHG7 promoter. 
Correspondingly, we detected a positive correlation between lncRNA-SNHG7 expression and 
c-Myc expression. Taken together, our data demonstrated that c-Myc positively regulated 
lncRNA-SNHG7 expression.

DISCUSSION

In the current study, we found that lncRNA-SNHG7 was significantly up-regulated in breast 
cancer tissues and higher level of lncRNA-SNHG7 was associated with decreased survival in 
patients. In addition, increased levels of lncRNA-SNHG7 were detected in 5 breast cancer 
cell lines. These findings suggest a potential role for lncRNA-SNHG7 in breast cancer 
development and maintenance.

We further explored the potential function of lncRNA-SNHG7 in breast cancer. As we detected 
higher levels of lncRNA-SNHG7 in breast cancer cell lines compared to normal breast cells, 
we sought to determine whether lncRNA-SNHG7 expression affected the cell viability of 
breast cancer cells. By knocking down lncRNA-SNHG7 using lentivirus expressing lncRNA-
SNHG7 shRNA in MCF-7 cells, we found decreased cell viability and cell numbers. In contrast, 
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https://ejbc.kr


overexpressing lncRNA-SNHG7 resulted in increased cell viability and cell numbers. These 
results revealed that lncRNA-SNHG7 promoted cell proliferation. Several studies on lncRNA-
SNHG7 have also revealed the effects of lncRNA-SNHG7 on cell proliferation. For example, 
She and colleagues reported that lncRNA-SNHG7 promoted the proliferation, migration and 
invasion, and inhibited apoptosis of lung cancer cell by increasing expression of Fas apoptotic 
inhibitory molecule 2 [16].

LncRNAs are transcribed RNAs that regulate gene expression by base-pairing with DNA or 
RNA in a sequence-specific manner [17]. LncRNAs can act as miRNA sponges and reduce 
their regulatory effects on mRNAs [18]. In the current study, we identified that lncRNA-
SNHG7 targeted miR-34a-5p. The interaction between lncRNA-SNHG7 and miR-34a has 
been described previously. Li and colleagues reported a negative correlation between SNHG7 
and miR-34a in colorectal cancer [14]. In addition, SNHG7 facilitated the proliferation 
and metastasis by regulating GALNT7 expression by sponging miR-34a in CRC cell lines. 
Interestingly, miR-34a has been reported as a tumor suppressor in multiple types of cancer 
and is down-regulated in cancers [19]. MiR-34a has been found to inhibit self-renewal and 
invasion of cancer stem cells (CSCs), and promote the sensitivity of CSCs to chemo- and 
radiotherapy [20,21]. In breast cancer, overexpression of miR-34a significantly increased 
the sensitivity of adriamycin-resistant MCF-7 cells to adriamycin by directly inhibiting the 
target Notch 1 [22]. Besides Notch 1, miR-34a has been reported to regulate a variety of target 
mRNAs including the hepatocyte growth factor receptor, MET, the pro-oncoproteins, Myc 
and N-Myc, and various cyclins and cyclin-dependent kinases, that results in the inhibition of 
cell proliferation, migration, invasion, and tumor suppression [23-25].

One principal biochemical characteristic of cancer cells is a metabolic switch from oxidative 
phosphorylation to increased glycolysis [26]. LDHA catalyzes the conversion of pyruvate to 
lactate and is considered as a key checkpoint in anaerobic glycolysis. In the current study, we 
demonstrated that SNHG7 regulated glycolysis in MCF-7 and MDA-MB-231 cells. Knocking 
down SNHG7 inhibited lactate production and glycolysis. We further identified that knocking 
down SNHG7 down-regulated the LDHA expression, suggesting that SNHG7 positively 
regulated LDHA expression. Interestingly, we also demonstrated that the knocking down 
SNHG7 down-regulated LDHA expression and glycolysis through miR-34a, as inhibiting miR-
34a prevented this effect. The regulation of glucose metabolism and tumor growth by miR-
34a-LDHA axis in breast cancer has been described previously. Xiao et al. [27] reported that 
LDHA was a direct target of miR-34a and that miR-34a negatively regulated LDHA in MCF-7 
cells. LDHA promoted glycolysis and cell proliferation while LDHA-induced glycolysis and 
cell proliferation was inhibited by miR-34a. In the current study, we also demonstrated that 
SNHG7 knockdown mediated inhibition of LDHA expression and glycolysis was prevented 
by inhibition of miR-34a. Therefore, we have, for the first time, described the regulation of 
glycolysis by SNHG7/miR-34a/LDHA axis.

C-Myc belongs to the Myc family, which is an important oncoprotein that contributes to cancer. 
As a transcriptional factor, c-Myc is critical for cell proliferation, apoptosis, metabolism, and 
several other cellular processes [28]. C-Myc has also been shown to influence the expression of 
lncRNA transcripts. For example, c-Myc could directly bind to the promoter region of lncRNA 
CCAT1 and promote its transcription, resulting in cell proliferation and invasion of colon 
cancer cells [29]. Wang et al. [30] reported that SNHG12 was a direct transcriptional target of 
c-Myc and promoted cell migration by regulating MMP13 expression. In the current study, we 
demonstrated that c-Myc bound to the promoter of SNHG7 and promoted SNHG7 promoter-
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mediated transcription of luciferase. In addition, we detected a positive correlation between 
SNHG7 and c-Myc expression, which indicated that c-Myc positively regulated SNHG7 expression 
and indirectly regulated glycolysis in breast cancer cells.

In summary, we demonstrated that c-Myc regulated the lncRNA-SNHG7 expression. SNHG7 
up-regulated LDHA expression by targeting miR-34a-5p and resulted in the regulation of 
glycolysis in breast cancer cells.

Our findings suggested that c-Myc regulated glycolysis through the lncRNA-SNHG7/miR34a-
5p/LDHA axis.

SUPPLEMENTARY MATERIALS

Supplementary Figure 1
(A, B) MDA-MB-231 cells were transduced with sh-ctrl or sh-lncRNA-SNHG7 lentivirus, pCDH 
or pCDH-lncRNA-SNHG7 lentivirus, and then subjected to cell viability assays.

Click here to view

Supplementary Figure 2
Knocking down lncRNA-SNHG7 inhibits glycolysis in breast cancer cells. (A) MDA-MB-231 
cells expressing either control shRNA or lncRNA-SNHG7 shRNA were cultured for 24 hours. 
Levels of lactate in the culture medium were then measured and normalized to cell number. 
(B, C) ECAR was measured by Seahorse XF assays in MDA-MB-231 cells expressing either 
control shRNA or lncRNA-SNHG7 shRNA. (D, E) qRT-PCR and Western blot analysis of LDHA 
in MDA-MB-231 cells expressing either control shRNA or lncRNA-SNHG7 shRNA.

Click here to view
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