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Background. Mathematical models offer the potential to analyze and compare the effectiveness of very different interventions to
prevent future cardiovascular disease.We developed a comprehensiveMarkovmodel to assess the impact of three interventions to
reduce ischemic heart diseases (IHD) and stroke deaths: (i) improvedmedical treatments in acute phase, (ii) secondary prevention
by increasing the uptake of statins, (iii) primary prevention using health promotion to reduce dietary salt consumption.Methods.
We developed and validated a Markov model for the Tunisian population aged 35–94 years old over a 20-year time horizon. We
compared the impact of specific treatments for stroke, lifestyle, and primary prevention on both IHD and stroke deaths. We then
undertook extensive sensitivity analyses using both a probabilistic multivariate approach and simple linear regression (meta-
modeling). Results. +e model forecast a dramatic mortality rise, with 111,134 IHD and stroke deaths (95% CI 106567 to 115048)
predicted in 2025 in Tunisia. +e salt reduction offered the potentially most powerful preventive intervention that might reduce
IHD and stroke deaths by 27% (−30240 [−30580 to −29900]) compared with 1% for medical strategies and 3% for secondary
prevention. +e metamodeling highlighted that the initial development of a minor stroke substantially increased the subsequent
probability of a fatal stroke or IHD death. Conclusions. +e primary prevention of cardiovascular disease via a reduction in dietary
salt consumption appearedmuchmore effective than secondary or tertiary prevention approaches. Our simple but comprehensive
model offers a potentially attractive methodological approach that might now be extended and replicated in other contexts
and populations.

1. Background

Cardiovascular diseases (CVDs) cause nearly one-third of all
deaths worldwide. 80% of these deaths occur in low-income
and middle-income countries. Ischemic heart diseases
(IHD) and stroke account for the greatest proportion of
CVDs [1–3].

+e burden of IHD and stroke is considerable, and they
are the first and second leading causes of death, respectively,

worldwide [4, 5]. +ey accounted for 15.2 million deaths
(15.0 million to 15.6 million) in 2015 [4]. According to the
World Health Organization (WHO), there are 15 million
people worldwide who suffer from stroke each year, among
them, 5 million die and another 5 million are left perma-
nently disabled, causing a heavy burden for the family and
community.

+e burden of stroke will increase significantly over the
next 20 years, particularly in developing countries [6]. +us,
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the analysis of the effectiveness of health promotion in-
terventions is urgently required for appropriate planning to
reduce this burden [7].

Traditional epidemiological study designs cannot ad-
dress these issues; even clinical trials are usually restricted by
inclusion and exclusion criteria and not necessarily gener-
alizable to the entire population [8].

Mathematical modeling overcomes many of these lim-
itations. It plays a crucial role in helping to guide the most
effective and cost-effective ways to achieve the goals of health
promotion, designed and validated to guide health policies
and development strategies at several levels [9, 10].

Briefly, a model is a simplification of a real situation and
can encompass a simple, descriptive tool up to systems of
mathematical equations [11].

+e application of mathematical models in medicine has
proved useful and has become more frequent, especially for
cardiovascular diseases (CVDs) [12–16] and assessing po-
tential impacts of policies or interventions designed to alter
disease trajectories in Tunisia [17, 18].

A commonly used technique is Markov modeling, an ap-
proach that models groups of individuals transitioning across
specified pathways, informed by transition probabilities [18–20].

Due to the frequent uncertainty of the Markov model’s
inputs, sensitivity analyses to assess the robustness of the
model results are strongly recommended by modeling
guidelines. Such uncertainty analyses assess confidence in a
chosen course of action and ascertain the value of collecting
additional information to better inform the decision [21].

Our study aims (i) to describe a comprehensive Markov
model based on both a probabilistic multivariate approach
and simple linear regressionmetamodeling and (ii) using the
model to evaluate the effects of increases in uptake of stroke
treatments lifestyle changes and primary prevention among
the Tunisian population aged 35–94 years old in 2025. We
examined three interventions: (a) improved medical treat-
ments in the acute phase, (b) secondary prevention of stroke
by increasing the prescribing of statins, and (c) primary
prevention aiming to reduce salt intake.

2. Methods

In this study, we describe the development of a Markov IHD
and stroke model.

2.1. Definition of Markov Model. Markov models are a type
mathematical model based on matrix algebra which de-
scribes the transitions a cohort of patients make among a
number of mutually exclusive and exhaustive health states
during a series of short intervals or cycles. In this model, a
patient is always in one of the finite number of health states;
events are modeled as transitions from one state to another
and contribution of utility to overall prognosis depend on
length of time spent in health states [19]. +e components of
a Markov model are shown below (Figure 1):

(i) States: the set of distinct health states under con-
sideration in the model, together with the possible
transitions between them.

(ii) Cycle length: the length of time represented by a
single stage (or cycle) in a Markov process: Markov
models are developed to simulate both short-cycle
and long-term processes (e.g., cardiovascular
diseases).

(iii) Transition probabilities: the matrix of probabilities
of moving between health states from one stage to
the next.

2.2. Process of Mathematical Modeling Based on Markov
Approach. Before starting the data collection and the cal-
culation, we first defined our model by specifying the dif-
ferent states that can be included based on the literature and
expert opinions:

S � S1, S2, . . . , S3 , set of states in the process. (1)

Having specified the structure of the model in terms of
the possible transitions between states, we defined the
transition probabilities based on available data.

+e transition probability (TPij) is defined as a condi-
tional probability (Pt(sj/si)) of making a transition (mov-
ing) from state i to state j during a single cycle (t).
Additionally, transition probabilities are stratified by sex and
age groups ag ∈ c1, c2, . . . , cg , where c1, c2, . . . , cg repre-
sents a set of age groups [19, 22].

One of the goals of the Markov model is to study the
potential effects of some health promotion interventions.
We modeled first a baseline scenario and then the in-
tervention scenarios.

For the baseline scenario, we assumed no change will
happen during the period “T” of study (20 years) in either
the present uptake rates of medical therapies or population
level uptakes of specific nutrients.

Based on the model structure in Figure 1, we assume that
we will apply three interventions to study their impact on
mortality in the future (over the 20 years: from t� year 1 to
year 20).

We define a policy Π � (I0, I1, I2, I3) as a set of the
health promotion interventions.

I0 refers the baseline scenario: we assumed no change
will happen during 20 years.
I1: scenario aimed to improve medical treatments in
acute phase.

Healthy
population

Dead

SickTP1,1

TP1,2

TP1,3 TP2,3

TP2,2

Figure 1: Markov diagram states and transition probabilities (each
circle represents a Markov state and arrows indicate transition
probabilities).
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I2: scenario for secondary prevention.
I3: scenario for primary prevention.

Starting by the baseline scenario, the process of the
Markov model is based on the two first steps below:

Step I. Calculate probabilistic transition probabilities
Probabilistic sensitivity analysis aims to fully evaluate the

combination of uncertainty in all model inputs (including
transition probabilities) simultaneously on the robustness of
model results.

+e point estimates in the model can be replaced with
probability distributions, where the mean of the distribution
reflects the best estimate of the parameter.

In this step, each input parameter (TPij) is assigned an
appropriate statistical distribution, and a Monte Carlo
simulation is run multiple times (e.g., 1000). +e iteration is
stopped when the difference of the outcomes is sufficiently
small.

We assume for example that TPs follow the distribution
defined by beta (α, β), where α probability distributions are
defined on the interval [0, 1] parameterized by two positive
shape parameters, denoted by α and β, that appear as ex-
ponents of the random variable and control the shape of the
distribution [23].

Step II. Calculate the number of people in each state for the
baseline scenario

+e next step is to define the number of people in each
state based on the TPs between states and the number of
people in the starting state “healthy people.”

In this stage, we define the number of people in each state
for the baseline scenario (healthy people (NHP), sick (NS),
and deaths (ND)) for all gender and age groups from t� year
1 to yearT, given by the following equations:

NHPt � NHPt−1 × 1− TPi,j ,

NSt � NSt−1 + NHPt−1 × TP1,2 ,

NDt � NDt−1 + NHPt−1 × TP1,3  + NSt−1 × TP2,3 .

(2)

Another indicator can be calculated based on this model,
that is, life years gained (LY) defined by the following
equation:

LYt � NHPt −NDt. (3)

+e model is then run several times (e.g., 1000 simu-
lations). For each simulation model, parameter values are
randomly drawn from each of the distributions, and the
expected model outcome is recorded. +e 1000 simulations
result in a distribution of expected model outcomes
(e.g., deaths), which reflects the overall parameter un-
certainty in the mode [24].

At the end of the simulation, the mean as well as the
lower bound (LB) and upper bound (UB) of 95% confidence
interval of the inputs and outputs will be calculated, which
correspond to Steps I and II presented in Algorithm 1.

Step III. Calculate the number of people in each state for the
interventions scenarios

For the interventions scenarios, the model required a
base estimate of risk reduction in deaths and the age effect to
calculate policy effectiveness (ΠIi

e ) of each intervention.
+e policy effectiveness is defined by the following

formula:



Ii

e

� 1− RRi × ae( , (4)

where RRi is the risk reduction associated with the in-
tervention Ii(i�1:3) obtained from previous randomized
controlled trials and meta-analyses to estimate the re-
duction in age-specific deaths and ae represents the age
effects for each intervention risk reduction value.ΠIi

e is then
used to scale the transition probabilities connected to death
states.

In this stage, after recalculating the TPs, we define the
number of people in each state (healthy people (NHPIi), sick
(NSIi), and deaths (NDIi) for all sex and age groups from
t� year 1 to yearT for the interventions scenarios Ii, given
by the following equations:

NHPli
t � NHPli

t−1 × 1−TP1,2 −TP1,3 × 

Ii

e

⎛⎝ ⎞⎠,

NSli
t � NSli

t−1 + NHPli
t−1 × TP1,2 ,

NDli
t � NDli

t−1 + NHPli
t−1 × TP1,3  + NSli

t−1 × TP2,3 × 
Ii

e

⎛⎝ ⎞⎠,

LYli
t � NHPli

t −ND
li
t .

(5)

Step IV. Calculate the final outputs (DPPs and LY)
Finally, we calculate the total number of CVD deaths

(ischemic stroke and IHD deaths) that could be prevented or
postponed (DPPs) and the life years gained (LY) under each
specific scenario (equations (6) and (7)), compared to the
baseline scenario for all sex and age groups from t� year 1 to
yearT for the interventions scenarios Ii.

DPPli
st

� NDli
t −ND

l0
t , (6)

LYli
gt

� LYli
t − LY

l0
t . (7)

Step V. Linear regression metamodeling
Most current modeling studies are limited to the first

four stages and ignore this important step of metamodeling
to analyze which model inputs are most influential in af-
fecting the results. +e goal of metamodeling was thus to
increase the transparency of decision-making analytic
models and better communicate their results.

+is step is based on the application of a simple linear
regression metamodel (LRM) for the optimal
policy (Figure 2) [25].
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+e original motivation for metamodeling was to define
a simpler mathematical relationship between model outputs
and inputs than the actual model.

+e LRM is defined by the following formula:
ND � β0 + βi,jTPi,j + ε, (8)

where ND is the number of deaths (output of the model); β0
(the intercept) is the expected outcomewhen all parameters are
set to zero; TPi,j, the transition probabilities (inputs); βi,j, the

other coefficients, are interpreted relative to a 1-unit change in
each parameter on the original scales; and ε is the residual term.

Furthermore, the absolute value of the coefficients of the
parameters “βi,j” can be used to rank parameters by their
importance: the higher the coefficient is, the more the
variable is important and relevant.

+e algorithm below summarizes the process with three
states that could be generalized to n states depending on the
context to study (Algorithm 1).

Step I. Calculate probabilistic transition probabilities
for all k ∈ 1Male, 2 Female{ } do
for all age groups ag ∈ c1, c2, . . . , cg  do
for t � 1.....T do

TPi,j⟵ beta(αi,j, βi,j)

end for
end for

end for
Step II. Calculate the number of people in each state NHP, NS, and ND (Baseline scenario)
for all k ∈ 1Male, 2 Female{ } do
for all age groups ag ∈ c1, c2, . . . , cg  do
for t � 1.....T do
NHPt � NHPt−1 × (1− TPi,j)

NSt � NSt−1 + (NHPt−1 × TP1,2)

NDt � NDt−1 + (NHPt−1 × TP1,3) + (NSt−1 × TP2,3)

LYt � NHPt + NDt

end for
end for

end for
Step III. Calculate the number of people in each state for the interventions scenarios
for all k ∈ 1Male, 2 Female{ } do
for all age groups ag ∈ c1, c2, . . . , cg  do

for all intervention Ii ∈ Π � (I1, . . . , I3) do
ΠIi

e � 1− (RRi × ae) where RRIi
is the intervention risk reduction value and ae its age effects

for t � 1 . . . T

NHPli
t � NHPli

t−1 × (1−TP1,2 −TP1,3 ×ΠIi
e )

NSli
t � NSli

t−1 + (NHPli
t−1 × TP1,2)

NDli
t � NDli

t−1 + (NHPli
t−1 × TP1,3) + (NSli

t−1 × TP2,3 × ΠIi
e )

LYli
t � NHPli

t −ND
li
t

end for
end for
end for

end for
Step IV. Calculate the final outputs (DPPs and LY)
for all k ∈ 1Male, 2 Female{ } do
for all age groups ag ∈ c1, c2, . . . , cg  do
for all intervention Ii ∈ Π � (I1, . . . , I3) do
DPPli

st
� 

T
1 ND

li
t −ND

l0
t

LYli
gt

� 
T
1 LY

li
t − LY

l0
t end for

end for
end for

end for
Step V. Linear regression metamodeling
Calculate the βi,j coefficients of the parameters
for all k ∈ 1Male, 2 Female{ } do
for all age groups ag ∈ c1, c2, . . . , cg  do
Solve the equation ND � β0 + βi,jTPi,j + ε

end for
end for

ALGORITHM 1: Comprehensive algorithm of the Markov model and of sensitivity analysis.
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2.3. Case Study. +e algorithm introduced above has been
implemented using R (Version R.3.2.0.) software and ap-
plied on Tunisian data. +e source codes are available from
the authors upon request.

Our model predicts both IHD and stroke deaths in 2025
among the Tunisian population aged 35–94 years old, both
men and women, and compares the impact of specific
treatments for stroke, lifestyle changes, and primary
prevention.

2.4. Model Structure. Data were integrated and analyzed
using a closed cohort model based on a Markov approach,
with transition probabilities starting from population free of
ischemic stroke and moving to health states reflecting the
natural history of ischemic stroke [26, 27]. +erefore, the
starting states are defined by the size of the population and
the number of strokes occurring within this population. +e
number of persons moving from the starting states to the
stroke and death states is estimated by the transition
probabilities (Table 9 in the appendix in the supplementary
materials).

+ere are two absorbing states: IHD and stroke deaths
and non-IHD and stroke deaths as competing risks for
mortality. IHD and stroke have several risk factors in
common; increased salt intake is associated with hyper-
tension which is one of the major risk factors for both stroke
and IHD. +erefore, any policy aimed at decreasing pop-
ulation level’s intake of salt will reduce the risk of both
diseases [28].

Potential overlaps between the healthy, minor, major
stroke, and deaths are managed by calculating the condi-
tional probabilities of membership. A key element of the
model is the calculation of the transition probabilities (TPs),
particularly those related to stroke and IHD mortality
(Figure 3). +e TP calculations are detailed in Table 10 in the
Appendix in the supplementary materials.

2.5. Baseline Scenario. In the baseline scenario, we assumed
there would be no change over the 20-year model period in
the present uptake rates of acute phase medical treatments
(thrombolysis, aspirin, and stroke unit) or treatments for
secondary prevention following stroke (aspirin, statin, an-
ticoagulants, blood pressure control, and smoking cessation)
or treatment and policies for primary prevention (blood

pressure control, glucose control, lipid lowering, salt uptake,
and smoking cessation).

2.6. Prevention Scenarios. In this paper we evaluated the
following three scenarios:

(1) I1: the first scenario aimed to improve medical
treatments in the acute phase: increasing throm-
bolysis prescribing from 0% to 50% and hospitali-
zation in stroke units from 10% to 100% in Tunisia.

(2) I2: the second scenario aimed to act on medical
treatments after a stroke: increasing the prescribing
of statins from 11% to 100% (secondary prevention).

(3) I3: the third scenario aimed to reduce the con-
sumption of salt by 30%, from 14 grams to 9 grams
per day (primary prevention).

Total policy refers to the combined effects of all the three
previous strategies: acute treatment + secondary pre-
vention + primary prevention.

2.7. Modeling Policy Effectiveness and Its Impact in Mortality.
+e model applies the relative risk reduction (RRR), as
mentioned in the algorithm above, quantified for each in-
tervention scenario in previous randomized controlled trials
and meta-analyses based on international studies (data are
detailed in the Appendix in the supplementary materials
(Table 8)).

2.8. Data Sources. Published and unpublished data were
identified by extensive searches, complemented with specif-
ically designed surveys. Data items included (i) number of
stroke patients (minor and major), (ii) uptake of specific
medical and surgical treatments, (iii) population data in the
initial study year (2005) and (iv) mortality data (after one year
(data in 2006) and after 5 years (data in 2010)). Data sources
are detailed in Appendixin the supplementary materials.

2.9. Model Outputs. +e outputs of this model are the
prediction of stroke and IHD deaths prevented or postponed
(DPPs) and the life years gained (LY) among the Tunisian
population aged 35–94 years old starting from 2005 over a
twenty-year time period(to 2025) with and without possible
interventions to reduce this mortality.

We modeled all the intervention scenarios to calculate
the total number of CVD deaths (ischemic stroke and
IHD deaths) that may be prevented or postponed and the
LY for each specific scenario compared to the baseline
scenario.

3. Results

3.1. Baseline Scenario. In the baseline scenario, the model
forecast 111140 [95% CI 106570 to 115050] IHD and is-
chemic stroke deaths for people aged 35–94 years between
2005 and 2025, including 68890 [95% CI 65730 to 72350]
among men and 42250 [95% CI 38840 to 44600] among
women.

Real life Outputs (e.g.
deaths (ND))

Inputs (TPij)

LRM:
ND = β0 + βij TPij + ε

Figure 2: Simple linear regression metamodel (LRM) to sum-
marize the relationship between model inputs and outputs.
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+emodel estimated that the acute stroke treatment and
secondary prevention following stroke would, respectively,
prevent 230 [95% CI 200 to 260] deaths due to stroke and
IHD and 1920 [95% CI 1830 to 2000] in 2025, whilst primary
prevention could prevent 20330 [95% CI 20050 to 20610]
cumulative deaths due to stroke and IHD in 2025.

In terms of life years, 150 [95% CI 130 to 180] and 2390
[95% CI 2300 to 2490] would be gained in 2025 by acute
stroke treatment and secondary prevention, respectively,
whereas for primary prevention (blood pressure control,
glucose control, lipid lowering, and smoking cessation),
14590 [95% CI 14350 to 14820] life years would be gained in
2025 (Table 1).

3.2. Scenario Projections

3.2.1. Improvement on Acute Stroke Treatment. If we adopt a
strategy to increase thrombolysis uptake from 0% to 50%
and stroke units use from 10% to 100%, 600 [95% CI 550 to
650] fewer deaths could be achieved by 2025 (Table 2).

In terms of life years, 370 [95% CI 330 to 410] would be
gained in 2025 by increasing thrombolysis uptake (Figure 4).

3.2.2. Improvement on Secondary Prevention. If the uptake
of statins for secondary prevention following stroke could be
increased from 11% to 100%, 3300 [95% CI 3190 to 3410]
fewer deaths could be avoided by 2025 (Table 2).

In terms of life years, 4120 [95% CI 4000 to 4250] would
be gained in 2025 (Figure 4).

3.2.3. Food Policies. If the Tunisian government imple-
mented a strategy recommended by the WHO to reduce the
daily consumption of salt by 30 % (from 14 g/day to 9 g/day),
30240 [95% CI 29900 to 30580] deaths could be avoided by
this scenario in 2025 (Table 2). +is results in 20630 [95% CI
20350 to 20910] life year gain by 2025 (Figure 4).

3.3. Linear Regression Metamodeling of the Optimal Policy.
+e table below shows the results of linear regressing pa-
rameters on the stroke and IHD deaths prevented or

postponed (DPPs) by the salt reduction intervention. +e R2

is 0.8999, suggesting that 89. 99% of the variance in the
model outcomes is explained by our model (Table 3).

Figure 5 shows the five first important parameters based
on the absolute value of the coefficients of the parameters. In
our case study, the uncertainty of the probability of minor
stroke in the first year has the greatest impact on the stroke
and IHD deaths estimates associated with salt reduction,
followed by the probability of the stroke-free population to
die from stroke and IHD causes in the year 1 and the
probability of recurrent stroke in ischemic stroke patients
after one year. Although the main objective of the meta-
regression is to identify the most important parameters of
the model, it could also serve to give a rough idea of the size
of the effect of each parameter. We know that for each unit
increase in the independent variable, our outcome should
increase by I

2 units. For example, the probability for the
stroke-free population to have first stroke in the year 1 has
an absolute coefficient of 646.35; this means that for each
10% risk increase in this probability, strokes and IHD will
increase by 65 IHD and stroke deaths. However, this should
be interpreted with caution since the meta-analysis re-
gression model assumes a linear relationship between
outcomes and inputs which is not the case in a Markov
model (Figure 5).

4. Discussion

In this study, we have developed a simple but comprehensive
Markov model and used it to identify key factors that predict
mortality from stroke and IHD in Tunisia in the future, as
well as the potential impacts of some medical and health
policies.

Different mathematical models have been highly used in
medical decision making [19, 29–32], but the technique of
metamodeling is less developed inmedicine. It has been used
to identify the importance of variables that can justify the
best medical decisions among pregnant women with deep
vein thrombosis [33]. Additionally, linear regression met-
amodels have also been used in some epidemiological
studies [25, 34].

TP4,4

TP2,4

TP1,1 TP1,2

TP1,5

TP1,6TP1,6

TP1,3

TP3,3

TP2,5

TP2,3
TP2,6 TP3,5

TP3,6

TP4,6

TP4,5

Minor
stroke and

TIA
Minor

stroke and
TIA

Stroke-free
population

Major
stroke

Nonstroke
and IHD

deaths

Stroke and
IHD

deaths

Figure 3: Stroke model structure. TIA: transient ischemic attack; IHD: ischemic heart diseases.
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+is analysis is the first modeling study of stroke and
IHD mortality in Tunisia, based on a rigorous and com-
prehensive modeling approach consisting of three stages:

(i) Apply the Markov model in medical and strategic
decision making.

(ii) Provide a probabilistic sensitivity analysis.
(iii) Use a linear regression metamodeling for the op-

timal policy.

+is model has several strengths. First it requires mul-
tiple epidemiological national data on ischemic stroke and
demographics. In general, the data used in the model were of
good quality. However, some assumptions were necessary to
fill gaps in the missing information. We made transparent

assumptions with clear justification (see Appendix in the
supplementary materials).

Another advantage characterizing our approach and
differentiating it from the univariate traditional method of
deterministic sensitivity analysis is that it allows varying all
the parameters of the model simultaneously and thus ex-
ploring the whole parameter space. +e use of only one-way
sensitivity analyses is limited compared with multiway
analyses [35].

Furthermore, to increase the transparency of decision-
making analytic models, we have used metamodeling in this
study by applying a simpler mathematical relationship be-
tween model outputs and inputs to analyze which are the
most influential inputs on the output.

Our metamodeling approach summarizes the results of
the model studied in a transparent way and reveals its
important characteristics.

+e intercept of the regression result is the expected
outcome when all parameters are set to zero. +e other
coefficients are interpreted relative to a 1-unit change in each
parameter on the original scales. For example, in our case,
changing the risk of the first minor stroke in the first year
from the actual value to 1 increases the number of stroke and
IHD deaths by 646 deaths. In addition, the regression co-
efficients describe the relative importance of the uncertainty
in each parameter. And the use of the linear metamodeling
regression method can overcome the limitations of other
traditional statistical methods [36].

In addition, models often ignore the interaction effect
between the input parameters of a model when defining the
results. However, in our study, the use of conditional
probabilities allows us to take into account interactions in
our algorithm.

We also analyzed, in parallel of the deaths prevented or
postponed (DPPs), the life years gained according to the
different scenarios. +us, our approach allows interpreting
two key indicators in epidemiology via a rigorous and
comprehensive mathematical algorithm.

Nevertheless this modeling approach has also some
limitations; in fact, a major limitation of our work is that the

Table 1: Life years and deaths due to stroke and IHD estimations in 2025 keeping the same practices of 2005 by gender.

Life years [95% CI] Stroke and IHD deaths [95% CI]
Men
Acute stroke treatment 80 [70 to 100] −140 [−170 to −120]
Secondary prevention following stroke 1500 [1420 to 1580] −1170 [−1240 to −1110]
Primary prevention 12180 [11960 to 12400] −16760 [−17020 to −16510]
Policy total∗ 6830 [6700 to 6990] −8530 [−8710 to −8340]
Women
Acute stroke treatment 60 [50 to 80] −80 [−100 to −70]
Secondary prevention following stroke 860 [800 to 920] −720 [−770 to −670]
Primary prevention 2410 [2310 to 2510] −3570 [−3690 to −3450]
Policy total∗ 3730 [3610 to 3850] −4860 [−5000 to −4720]
Both
Acute stroke treatment 150 [130 to 1804] −230 [−260 to −200]
Secondary prevention following stroke 2390 [2300 to 2490] −1920 [−2000 to −1830]
Primary prevention 14590 [14350 to 14820] −20330 [−20610 to −20050]
Policy total∗ 10560 [10360 to 10770] −13380 [−13610 to −13160]
∗Total policy refers to the combined effects of all the three previous strategies: acute treatment + secondary prevention + primary prevention.

Table 2: Life years and deaths due to stroke and IHD by in-
corporating strategies in 2025 by gender.

Stroke and IHD deaths [95%
CI]

Men
Acute stroke treatment −350 [−390 to −310]
Secondary prevention following
stroke −2060 [−2150 to −1970]

Primary prevention −24500 [−24810 to −24200]
Policy total −23940 [−24240 to −23640]
Women
Acute stroke treatment −220 [−250 to −190]
Secondary prevention following
stroke −1240 [−1310 to −1170]

Primary prevention −10630 [−10830 to −10430]
Policy total −17050 [−17300 to −16800]
Both
Acute stroke treatment −600 [−650 to −550]
Secondary prevention following
stroke −3300 [−3410 to −3190]

Primary prevention −30240 [−30580 to −29900]
Policy total∗ −40990 [−41390 to −40600]
∗Total policy refers to the combined effects of all the three previous
strategies: acute treatment + secondary prevention + primary prevention.
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model is a closed cohort, and demographic changes were not
considered.

Linear regression is the metamodeling approach most
widely used bymany researchers for its simplicity and ease of
use. +us, our linear approximation of all input parameters
can be considered as a limit, as state-transition models are
nonlinear in general. In all metamodeling approaches, the
loss of some information is always inevitable [25].

Another limitation of our study is not to consider in the
model the costs of the strategies.

In terms of public health, the present modeling study
focuses on the future impact of ischemic stroke treatment
scenarios and population-level policy interventions on
ischemic stroke and IHD deaths and life years gained in
Tunisia. +e model forecast a dramatic rise in the total
cumulative number of IHD and Stroke deaths: by 2025,

Women
Men
Both

15000
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5000
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Primary
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Figure 4: Life years estimations by incorporating strategies by gender in 2025.

Table 3: Regression coefficients from metamodeling on the stroke and IHD deaths by the salt reduction intervention.

Parameters Dependent variable (Y): stroke and IHD deaths
Intercept 1337.86
TP1,2: probability for the stroke-free population to
have first stroke in the year 1 646.35

TP1,3: probability for the stroke-free population to
have first major stroke in the year 1 6.18

TP1,6: probability for the stroke-free population to die
from stroke and IHD causes in the year 1 38.49

TP1,1: probability for population free of stroke 2.45
TP2,3: probability of recurrent stroke in ischemic
stroke patients after 1 year 13.05

TP2,6: probability for the minor stroke patients to die
from stroke and IHD causes in the year 1 6.67

TP2,4: probability for first minor stroke (1st year) to
minor stroke subsequent years 0.45

TP3,3: probability of recurrent stroke in ischemic
stroke patients after 5 years −6.49

TP4,6: probability for the stroke patients to die from
stroke and IHD deaths causes 1 year after first
admission

−1.72

TP4,4: probability for minor stroke subsequent years −2.96
TP3,6: probability for the major stroke patients to die
from stroke and IHD causes −0.10

Observations 1000
R2 0.8999
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this number was estimated to reach more than 100,000
deaths.

Secondly, the model shows that the rise of thrombolytic
treatment and hospitalization in intensive care units of
stroke increased statin use for secondary prevention pale in
comparison with the salt reduction impact on future deaths
(1%, 3% vs 27% deaths prevented by 2025).

+e benefits of thrombolytic treatment among patients
with acute ischemic stroke are still matter of debate:
thrombolytic treatment increases short-term mortality and
symptomatic or fatal intracranial haemorrhage but decreases
longer term death or dependence [25]. Many studies proved
that stroke units have significant benefit to patient outcomes
in terms of reducing mortality, morbidity, and improving
functional independence. Stroke unit care was also cost
effective [37–39].

+e substantial effect of salt reduction intervention
found in our study is consistent with the literature [40, 41].
High salt intake is associated with significantly increased
risks of stroke and total cardiovascular disease ranging from
a 14% to 51% increase, depending on salt intake and pop-
ulations [42–44].

Furthermore, our results are consistent with a modeling
study in Tunisia using a different approach. Different
strategies for salt reduction were associated with substantial
lowering of CVD mortality and were cost saving apart from
health promotion [45] and consistent with the Rose hy-
pothesis that the population level strategies are more ap-
propriate in terms of less medicalization [46].

5. Conclusions

+e approach presented here is attractive since it is based on
a simple comprehensive algorithm to present the results of
sensitivity analysis from the Markov model using linear
regression metamodeling. +is approach can reveal im-
portant characteristics of Markov decision process including
the base-case results, relative parameter importance, in-
teraction, and sensitivity analyses.

+us, we recommend using this algorithm for Markov
decision process; it can be the object of creation of a
complete modeling package in R software and can be ex-
tended to other contexts and populations.

In terms of public health, we forecast that absolute
numbers of IHD and stroke deaths will increase dramatically

in Tunisia over 2005–2025. +is Large increase in stroke and
IHD mortality in Tunisia needs many actions not only in
acute stroke treatment such as implementing more basic and
organized stroke units but also in population level primary
prevention such as salt reduction in order to manage and
treat acute strokes and to alleviate the global burden of these
diseases.

Our study highlights the powerful impact of salt re-
duction on deaths from stroke and IHD. Furthermore, the
reducing dietary salt intake across the population appears an
effective way of reducing heart disease events and saving
substantial costs. +is result matches with that of the
mathematical model. Indeed our metamodeling highlights
that the probability of the first minor stroke among the
healthy population has the greatest impact on the stroke and
IHD death estimations, which confirms the importance of
primary prevention. Prevention is thus the best strategy to
fight against stroke and IHD deaths.
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