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ABSTRACT Clostridium acetobutylicum and Clostridium ljungdahlii grown in a syntro-
phic culture were recently shown to fuse membranes and exchange cytosolic contents,
yielding hybrid cells with significant shifts in gene expression and growth phenotypes.
Here, we introduce a dynamic genome-scale metabolic modeling framework to explore
how cell fusion alters the growth phenotype and panel of metabolites produced by
this binary community. Computational results indicate C. ljungdahlii persists in the co-
culture through proteome exchange during fusing events, which endow C. ljungdahlii
cells with expanded substrate utilization, and access to additional reducing equivalents
from C. acetobutylicum-evolved H2 and through acquisition of C. acetobutylicum-native
cofactor-reducing enzymes. Simulations predict maximum theoretical ethanol and iso-
propanol yields that are increased by 0.64mmol and 0.39mmol per mmol hexose sugar
consumed, respectively, during exponential growth when cell fusion is active. This mod-
eling effort provides a mechanistic explanation for the metabolic outcome of cellular
fusion and altered homeostasis achieved in this syntrophic clostridial community.

IMPORTANCE Widespread cell fusion and protein exchange between microbial organ-
isms as observed in synthetic C. acetobutylicum/C. ljungdahlii culture is a novel observa-
tion that has not been explored in silico. The mechanisms responsible for the observed
cell fusion events in this culture are still unknown. In this work, we develop a modeling
framework that captures the observed culture composition and metabolic phenotype,
use it to offer a mechanistic explanation for how the culture achieves homeostasis, and
identify C. ljungdahlii as primary beneficiary of fusion events. The implications for the
events described in this study are far reaching, with potential to reshape our under-
standing of microbial community behavior synthetically and in nature.
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The genus Clostridium is comprised of Gram-positive, rod-shaped, anaerobic bacteria
with a unique diversity in metabolic functionality (1–3). Clostridium organisms are

capable of consuming the vast majority of biomass-derived carbohydrates, collectively
producing a broad range of fermentation products. Organisms within the genus identi-
fied as promising for chemical and biofuel synthesis have been categorized based on
their fermentation product profiles and substrate utilization, and they generally fall
into four broad and overlapping categories: solventogens, acetogens, cellulolytic
organisms, and chain elongators (2, 4). This natural metabolic versatility has motivated
the development of several Clostridium organisms as production platforms in both
monocultures and cocultures. Solventogenic Clostridium acetobutylicum (Cac) has been
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a prominent industrial production platform for ABE (acetone-butanol-ethanol) fermen-
tation for more than a century (5) and has been elevated into the exemplar butanol-
producing organism (3, 4, 6–8). Many efforts have focused on improving productivity
(9–21) or shifting fermentation product profile toward the IBE (isopropanol-butanol-
ethanol) fermentation (22–24). Acetogens Clostridium ljungdahlii (Clj) and Clostridium
autoethanogenum have both been explored for bioprocessing by exploiting their
native ability to directly convert CO2 and CO to ethanol and acetate using the Wood-
Ljungdahl pathway (WLP) (25–29). In addition, different autotrophic clostridia have
been coupled with Clostridium kluyveri in synthetic cocultures to produce valuable me-
dium-chain alcohols and fatty acids from syngas (30–32).

Complementary to experimental efforts aimed at developing these organisms into
viable production platforms, computational genome-scale reconstruction and analysis
efforts have been directed toward both understanding the metabolism of Clostridium
organisms and redirecting it to achieve specific metabolic outcomes. Due to its long-
standing industrial usage in the Weismann process, Cac is the most prominently mod-
eled Clostridium. Several genome-scale reconstruction efforts have been undertaken to
both understand metabolic phenotype (33–38) and engineer the overproduction of
butanol (39). Genome-scale metabolic (GSM) model reconstruction and engineering of
autotrophic C. autoethanogenum and Clj have been carried out to understand energy
metabolism (40, 41), maximize autotrophic growth (42), maximize ethanol and 2,3-
butanediol production from syngas (41, 43, 44), and understand proteome allocation
(45). A community GSM model of a synthetic C. autoethanogenum/Eubacterium rectale
coculture was also used to design a biocatalyst system with enhanced butyrate pro-
duction (46).

Bolstering their potential as viable coculture fermentation platforms is the sur-
prising observation that, in a glucose-fed—supplemented with small amounts of
fructose—syntrophic coculture, the genetically distinct Cac and Clj fuse membranes
and exchange their proteomes and RNA, resulting in a drastically different profile of
fermentation products with enhanced substrate carbon recovery into products
compared to physically separated cocultures (47, 48). Cac uses glucose, fructose,
and other sugars to produce acetate, butyrate, butanol, acetone, ethanol, acetoin,
CO2, and H2. Clj cannot use glucose (using only fructose among the common sug-
ars) and cannot survive in a glucose-based culture medium in monoculture.
However, in syntrophic coculture, it grows using CO2 and H2 released by Cac. When
grown in monoculture in the basal medium of the coculture but supplemented
with fructose and/or CO2/CO/H2, Clj produces only acetate and ethanol (48). In co-
culture, acetone was converted to isopropanol (2-propanol, which neither organism
produces in monoculture), and acetoin to 2,3-butanediol (which Clj can in principle
produce alone but did not in control cultures) (48). In coculture, 2,3-butanediol was
formed without any detectable acetoin in the medium, thus suggesting direct
transfer of acetoin from Cac to Clj (48). Furthermore, the large concentrations of 2-
propanol produced in coculture combined with electron balances for the individ-
ual-species metabolism suggested direct electron transfer (48). Significantly, there
was a larger fraction of substrate carbon converted into products with much lower
levels of CO2 and H2 released. These phenotypes were abolished when the two
organisms were separated by a permeable membrane (48).

In this study, we aim to gain insight into how the observed cell fusion/protein
exchange events shape metabolism to enable the enhanced fermentation product
yields. To this end, we first developed a growth kinetic model that accounts for the cell
fusion events and the growth of both nonhybrid Cac and Clj as well as Cac and Clj cells
in a hybrid state, that is, cells that contain proteins from both organisms. By introduc-
ing a single fusion parameter (characterizing the rate of cell fusion/proteome exchange
in the coculture), we are able to recapitulate the growth kinetics observed experimen-
tally and accurately predict the relative abundance of each organism through the sta-
tionary phase despite significant differences between the specific growth rates of each

Foster et al.

January/February 2021 Volume 6 Issue 1 e01325-20 msystems.asm.org 2

https://msystems.asm.org


organism. We then couple the growth model with a dynamic multispecies metabolic
modeling framework (DMMM) (49) to quantify how community metabolism changes
as a result of the observed cell fusion events. When we considered our coculture
growth model with both nonhybrid and hybrid GSM models for Cac and Clj in
DMMM, approximately 10-fold increases in ethanol and 2,3-butanediol maximum
theoretical titer and a 5-fold increase in isopropanol maximum theoretical yields
(per unit of hexose sugar consumed) were observed after 33 h. Results agree qualita-
tively with experimental observations and point toward the expanded substrate uti-
lization and cofactor regeneration capacity in hybrid Clj (compared to nonhybrid Clj)
as a primary reason for both the persistence of Clj in the coculture at high abun-
dance and the observed shift in fermentation product profiles and yields. Maximum
Cac H2 evolution (and thus Clj H2 uptake) and unconstrained soluble carbon cross-
feeding were required to achieve the observed maximum theoretical titers, indicat-
ing that the transfer of metabolic activity during cell fusion events and the cross-
feeding of soluble carbon and reducing equivalents both play a role in shaping the
observed coculture phenotype.

RESULTS
Growth model with cell fusion recapitulates hybrid cell abundance and

predicts species relative abundance.We fitted the growth model to the experimen-
tally measured relative abundances of Cac and Clj cells over a 48-h culture. Figure 1
compares model predictions to experimental data. Relative abundances were calcu-
lated from genome copy number data (48). Consistent with experiments, initial condi-
tions for the growth model ordinary differential equation (ODE) integration were
defined as 10% nonhybrid Cac and 90% nonhybrid Clj (48). The growth model fusion
parameter (f) which minimized the weighted squared Euclidian distance between
model prediction and experimental measurements upon integration was selected for
use. Standard deviations calculated from three replicate experimental measurements
per data point were used to weight the objective function. The obtained value for f
was 1.09� 10212 liter cells21 h21. The predicted relative abundance of each organism
agreed with experimental relative abundances across the stationary phase and fell
within a single standard deviation of experimental values for all data points except at
the 12-h time point. In addition to predicting the organism abundances well, the
growth model predicted both hybrid and nonhybrid Cac cells to grow similarly to

FIG 1 A comparison of the predicted time-dependent fractional abundance of Cac and Clj genome in
coculture with experimental ranges. Error bars correspond to 61 standard deviation from mean gene
copy number measurements.
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nonhybrid Cac cells in monoculture despite continuously occurring fusion events. This
suggests that despite proteome exchange, Cac growth phenotype is unchanged by
fusion with Clj. This also suggests that fusion events prevent slower-growing Clj from
being outcompeted by the faster-growing Cac in the culture (as happens when growth
is simulated in the absence of fusion events). Thus, the primary metabolic shift caused
by cell fusion/proteome exchange occurs in Clj cells. The trend of rapid increase in Cac
abundance followed by more or less constant abundance of Cac and Clj across the re-
mainder of the simulation is in agreement with experimental observations.

Figure 2 shows the predicted change in relative abundances of nonhybrid Cac, non-
hybrid Clj, and total hybrid cells over time and compares those values to experimen-
tally resolved (47) relative abundances. An initial lag in cell fusion was observed experi-
mentally but fell outside the predictive capability of our model, as we chose to
describe the system using a single fusion parameter value with a clear mechanistic
meaning, rather than attempting to identify empirical correlations which could better
match model predictions to experimental measurements. As Clj was transformed from
nonhybrid to hybrid cells, the abundance of nonhybrid Clj rapidly declined while the
abundance of hybrid cells rapidly increased. Nonhybrid Cac was predicted to grow rap-
idly upon inoculation, but after 1.4 h, predicted nonhybrid Cac cell relative abundance
reached a maximum and decreased when hybrid surpassed nonhybrid Cac abundance.
The rapid growth of nonhybrid Cac also ensured nonzero relative abundance during
the stationary phase. The rapid increase in nonhybrid Cac relative abundance followed
by a decrease in relative abundance agrees qualitatively with experimental measure-
ments, as does the rapid decrease in relative abundance of nonhybrid Clj cells.
However, the maximum nonhybrid Cac relative abundance is 27% less than the experi-
mental maximum nonhybrid Cac relative abundance, and the maximum predicted
hybrid cell relative abundance is 22% greater than the experimental maximum hybrid
cell relative abundance. Because a single fusion parameter was used, the growth
model was also unable to capture the initial lag in hybrid cell formation observed in

FIG 2 Comparison of the relative abundance of nonhybrid and hybrid cells in the coculture
estimated by the growth model with experimentally observed abundances. The time interval in
the figure (and used for the simulation) represents the time from inoculation (time = 0 h) through
the end of the stationary phase (time = 48 h).

Foster et al.

January/February 2021 Volume 6 Issue 1 e01325-20 msystems.asm.org 4

https://msystems.asm.org


experiments, and the maximum experimental nonhybrid Cac relative abundance was
measured 7.6 h after the model predicted nonhybrid Cac relative abundance reached
its maximum value. While Fig. 2 indicates that agreement with experiments is qualita-
tive at best, a significant number of unlabeled cells across all measured time points
were reported (more than 10% of cells were unlabeled across four of six time points)
with the experimental flow cytometry results. In fact, a maximum of 48% of cells were
unlabeled (did not fluoresce) at the 40-h time point. Therefore, these data were not
considered for model training and were used only for comparative purposes to high-
light where attention is needed from both experimentalists and modelers to better
understand the mechanisms at play in this system. As previously noted (47), it is likely
that cell fusion events and hybrid cells are even more abundant than what is captured
through flow cytometry, which is in line with the higher abundance of hybrid cells pre-
dicted by the fusion/growth model.

Using the growth model defined for nonhybrid and hybrid state cells in equations 2
to 4, the relative abundances of nonhybrid and hybrid-state Cac and Clj cells in the co-
culture were predicted. Figure 3 shows the change in the relative abundances of non-
hybrid and hybrid Cac and Clj cells over time. The faster-growing Cac cells reached
steady state after approximately 30 h and were primarily in nonhybrid form (42% non-
hybrid Cac at time= 30 h). Slower-growing Clj cells reached a steady state in relative
abundance after approximately 35 h and were primarily in hybrid state (99% hybrid Clj
at time= 35 h). The predominance of Cac in its nonhybrid form was due to a higher
mid-exponential growth rate which ensured that the rate of cell fusion/proteome
exchange did not exceed the growth rate of nonhybrid Cac. The faster equilibration of
the Cac abundance was the result of a rapid decrease in Cac growth rate after its expo-
nential phase (consistent with the onset of the solventogenesis and sporulation pro-
gram). Note that after 15 h the Cac growth rate was an order of magnitude lower than
that of Clj. The predicted dominance of Cac in its nonhybrid form and the rapid deple-
tion of nonhybrid Clj are both in qualitative agreement with experimental flow cytome-
try results (47). Absolute and relative abundances of hybrid and nonhybrid cells across
the growth model simulation are reported in Data Set S3 in the supplemental material.

Hybrid model flux variability analysis reveals nonnative reactions contributing
to growth phenotype. Table 1 describes the active network of hybrid and nonhybrid
GSM models used to simulate coculture metabolism and their observed maximum
growth rates upon flux balance analysis (FBA). Reaction contents from iCAC802 and
iJL680 were merged to create hybrid models, but organism-specific biomass equations
were retained because significant DNA exchange was not observed experimentally in a
single 40-h coculture fermentation (47). In order to understand how hybrid cell metab-
olism was affected by cell fusion events, we performed flux variability analysis (FVA)
with hybrid and nonhybrid models to identify the set of nonnative reactions whose

FIG 3 (a) Growth model-predicted Cac fractional abundance in nonhybrid and hybrid states. (b) Growth model-
predicted Clj fractional abundance in nonhybrid and hybrid states.
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bounds did not span or contained zero (thus influencing growth rate) in each hybrid
model under maximum growth conditions.

After removing thermodynamic infeasible and energy-generating cycles, a total of
120 Cac-specific metabolic reactions from iCAC802 were capable of carrying flux in the
Clj hybrid cell model, and 55 native Clj reactions which were blocked in iJL680 became
unblocked. The expanded activity resulted in a 4.5% increase in maximum growth rate
compared to iJL680 when 5mmol gram dry weight (gDW)21 h21 fructose was used as
the sole carbon source. This increased growth rate was the result of only two necessarily
active Cac-specific reactions: NADPH:NAD1 oxidoreductase (b-specific) and (S)-dihy-
droorotate:(acceptor) oxidoreductase. The expanded cofactor regeneration capacity
afforded by NADPH:NAD1 oxidoreductase (b-specific) enabled hybrid Clj to supply addi-
tional reducing equivalents in the form of NADPH to fuel biomass precursor (fatty acid,
amino acid, pantothenate, and coenzyme A) synthesis pathways and increase growth. In
the absence of an external H2 supply, the NADP1 reduction critical for supplying elec-
trons to biomass precursor synthesis in nonhybrid Clj is dependent upon the availability
of an equal ratio of NADH and reduced ferredoxin and is catalyzed by ferredoxin:NADP
reductase (45). Because NADPH:NAD1 oxidoreductase (b-specific) is dependent upon a
single NADH, to reduce a single NADP1 molecule to NADPH, its presence increased net
NADPH availability from 6.9mmol gDW21 h21 in iJL680 to 7.0mmol gDW21 h21 in hybrid
Clj under maximum growth conditions. (S)-Dihydroorotate:(acceptor) oxidoreductase is
menaquinone dependent in Clj (45), but NAD1 dependent in Cac (35). Inclusion of Cac
(S)-dihydroorotate:(acceptor) oxidoreductase replaced menaquinone dependence with a
reaction which regenerates NADH in the pyrimidine synthesis pathway and decoupled
the conversion of orotate to S-dihydroorotate from fumarate reductase activity, which is
otherwise needed to oxidize menaquinone. This enabled an increase in UMP availability
for nucleotide metabolism from 0.028 to 0.031mmol gDW21 h21 to marginally improve
growth rate. While iJL680 could not grow when glucose was substituted for fructose as
the sole carbon source (as Clj does not natively produce glucose transporters), the hybrid
Clj model predicted a growth rate identical to that observed with fructose as the sole
carbon source and identical Cac-native reactions contributing to the growth phenotype.
Reactions converting glucose to fructose 1,6-bisphosphate (fdp) were necessarily active
upon glucose substitution. However, because the net cofactor demand for conversion of
glucose to fdp is identical to the requirement for converting fructose to fdp, the pre-
dicted growth rates were identical.

Upon inclusion of iJL680 reactions in the Cac hybrid model, and after removing
thermodynamic infeasible and energy-generating cycles, 159 previously blocked
reactions in iCAC802 and 85 reactions in iJL680 became capable of carrying flux. The
expanded active network of hybrid Cac yielded a 2.5% increase in maximum growth
rate compared to iCAC802 with 5mmol gDW21 h21 of either glucose or fructose as
the sole carbon source. This was the result of Clj-specific phosphoserine transami-
nase activity. In Cac, L-serine is synthesized from glycine (generated primarily
through threonine degradation), with a carbon donated from 5,10-methylenetetra-
hydrofolate. Inclusion of phosphoserine transaminase completes the pathway which
synthesizes serine directly from 3-phosphoglycerate (3-pg). Direct L-serine synthesis

TABLE 1 Active metabolic network and maximum growth rate using 5mmol gDW21 h21

fructose as the sole carbon source under nutrient-rich conditions for nonhybrid and hybrid
cell models

Model
Unblocked
reaction

Total
metabolites

Source of
biomass equation

Max growth
rate (h21)

Cac nonhybrid (iCAC802) 527 438 iCAC802 0.79
Clj nonhybrid (iJL680) 539 453 iJL680 0.22
Cac hybrid 764 496 iCAC802 0.81
Clj hybrid 713 579 iJL680 0.24
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from 3-pg rather than as a by-product of folate biosynthesis and threonine degrada-
tion increased L-serine production by 0.14mmol gDW21 h21 in hybrid Cac, consist-
ent with the observed improvement in growth efficiency. Thus, while the majority of
nonnative metabolic reactions merged into hybrid models are either replicated or
unnecessary to support extra growth, a small subset of reactions help to improve
growth rate in each organism upon cell fusion/proteome exchange. In Clj, this is
achieved primarily through more efficient electron transfer and cofactor regenera-
tion, while in Cac, this is achieved through L-serine synthesis directly from glycolytic
intermediate 3-pg. Flux variability analysis results for each hybrid and nonhybrid
metabolic model are provided in Data Set S2.

Hybrid model DMMM simulation recapitulates coculture phenotype and sheds
light on cross-feeding. Two scenarios were considered when simulating coculture me-
tabolism with DMMM. In the first scenario (here referred to as the nonfusing case), only
nonhybrid metabolic models and standard Monod growth kinetics were used to
describe metabolism and growth. In the second scenario (here referred to as the cell fus-
ing case), both hybrid and nonhybrid metabolic models were used with the growth
model developed in this study to describe metabolism, cell fusion, and growth. In both
scenarios, culture substrate consumption was constrained by experimental fermentation
profiles as outlined in Materials and Methods. In the nonfusing case, CO2 and H2 cross-
feeding were Clj’s primary source of carbon and external reducing equivalents needed
for growth. Results indicate that these activities are insufficient to support the observed
Clj growth. When CO2 and H2 cross-feeding was maximized, within 8 h Clj made up less
than 1% of total biomass. Furthermore, except for acetone and L-lactate, maximum theo-
retical extracellular titers predicted by the simulation without fusing events were less
than the experimentally reported titers, which implies that additional sources of carbon
and reducing equivalents must be accessible to Clj in the coculture. In contrast, under
the biomass maximization assumption the maximum predicted L-lactate titer was over
20-fold greater than the experimental titer of 0.03 g/liter (possibly because L-lactate de-
hydrogenase is activated by fructose 1,6-bisphosphate in Cac). Because acetone is a fer-
mentation product of Cac exclusively, the increased Cac abundance predicted by the
nonfusing case led to an increase in the acetone maximum theoretical titer, which was
1.1 g/liter greater than the experimental titer. However, the sum of the maximum theo-
retical yields for isopropanol and acetone was 50% less than the combined experimental
acetone and isopropanol yields. This indicates that the nonfusing case is incapable of
delivering enough flux toward two- or three-carbon fermentation products for even
qualitative agreement with experiments.

In contrast, Clj persisted in the cell fusing case, and maximum theoretical extracellular
titers at the 33-h mark were increased by between 4.59- (acetate) and 15.40-fold (L-lactate)
over the nonfusing case. Clj was able to persist because the hybrid Clj model contained
glucose transporters, giving Clj access to the culture’s primary carbon source. Predicted
maximum titers also exceeded experimental titers for all fermentation products except bu-
tanol. The cell fusing case delivered enough carbon toward isopropanol to exceed
summed experimental acetone and isopropanol yields, and enough carbon was directed
toward either acetate or ethanol to exceed summed experimental two-carbon fermenta-
tion product yields after 33h of simulation time. Figure 4 compares the difference in time-
varying maximum theoretical extracellular titers predicted by nonfusing and cell fusing
cases alongside experimental measurements for eight fermentation products and total
soluble carbon upon maximizing theoretical biomass yields across 33 h. We define soluble
carbon as all atomic carbon contained in extracellular fermentation product pools. The
results demonstrate increased titer/yield when fusion events are present in the simulation
and better qualitative agreement with experimental observations. All yields are calculated
for a basis of per millimole hexose sugar consumed.

While maximum theoretical titers predicted by the cell fusing case agree qualita-
tively with experimental results, demonstrating the need for hybrid metabolic models
and inclusion of a kinetic description of cell fusion in the growth model to explain co-
culture phenotype, results fall short of quantitative agreement. Under the maximum
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growth assumption, soluble carbon titer falls below experimental values at every time
point across the simulation, and at the 33-h time point the cell fusing case had pro-
duced 5.3 g/liter of soluble carbon, while the experimental soluble carbon titer was
13.5 g/liter. This likely results from events outside the DMMM predictive scope. For
example, DMMM assigns maximum growth as an objective, but Cac cells do not maxi-
mize growth and grow slowly (if at all) during solventogenesis and sporulation (50, 51).
Fermentation profiles indicate Cac solventogenesis begins at approximately the 11-h
time point (marked by the onset of butyrate consumption and enhanced butanol pro-
duction in the experimental fermentation product profiles).

The ability of the cell fusing case to better recapitulate experimental fermentation
titers is partially caused by the inclusion of hybrid models. However, H2 cross-feeding
also plays a role in increasing maximum theoretical fermentation product titers in the
simulation. To better understand how H2 cross-feeding impacts simulation results, we
performed an additional simulation (here referred to as no H2 cross-feed) in which we
estimated maximum theoretical fermentation product titer when H2 cross-feeding

FIG 4 Comparison of maximum theoretical extracellular titers predicted by DMMM across 33-h time interval by the nonfusing case and cell fusing case
alongside experimentally measured fermentation profiles for ethanol, isopropanol, 2,3-butanediol, butanol, butyrate, acetone, acetate, L-lactate, and total
soluble carbon.
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from Cac to Clj was blocked. Figure 5 compares maximum theoretical titers predicted
by the cell fusing case and no H2 cross-feed after 33 h. Acetate was the fermentation
product with the least variability between the two scenarios. When interspecies H2

exchange was blocked, the maximum theoretical acetate titer decreased by 21%.
Acetate synthesis is not dependent upon reduced cofactors. Therefore, decreased Clj
abundance in the absence of cross-feeding was the only limitation to acetate forma-
tion, and not the availability of reducing equivalents, as was the case with other fer-
mentation products. Isopropanol was the only other fermentation product for which,
under the no H2 cross-feed scenario, maximum theoretical titer did not decrease by
more than 58%. Isopropanol was exported by both hybrid Cac and hybrid Clj. Hybrid
Clj converted acetone cross-fed from nonhybrid Cac to isopropanol whereas hybrid
Cac converted cross-fed acetate from hybrid Clj to isopropanol, enabling a combined
maximum titer within 37% of the cell fusing case. However, under no H2 cross-feed,
the maximum theoretical titer exceeded experimental titer by only 0.6 g/liter. For etha-
nol, H2 cross-feeding was required to ensure that maximum theoretical titer after 33 h
exceeded experimental titer. Even though the maximum theoretical butanol titer for
the cell fusing scenario fell below the experimental value, upon H2 cross-feeding the
maximum theoretical titer rose from 9.2 g/liter below the experimental titer to within
2.3 g/liter. The energy and reducing equivalent cost of acetate consumption was con-
siderable, thus limiting acetate consumption and conversion to alcohol fermentation
products.

With the mechanistic details of how cell fusion enables metabolic shifts in coculture
phenotype, we next sought to identify how we must constrain our model to enable
quantitative agreement with the experimental fermentation product profiles, since
multiple growth phases for both organisms in this system are known to deviate from
maximum growth (50–52). Towards this end, we first predicted species/hybrid state
cell abundances using our growth model in the absence of metabolic models. We then
constrained substrate utilization by each organism/cell type in the metabolic simula-
tion using the relative abundances of each organism/cell type predicted by our growth
model. To achieve consistency with experimental soluble carbon yield during the first
10.4 h of the simulation, we set Clj growth rate to 5% of the theoretical maximum
value. This relaxation is consistent with a Clj lag phase. In addition, the Cac growth rate
was set to 56% of the theoretical maximum value during the first 10.4 h of the simula-
tion. In the absence of this stipulation, the soluble carbon titer was 69% less than the

FIG 5 Maximum theoretical fermentation product extracellular titers predicted by the cell fusing case
(with H2 cross-feeding) and without H2 cross-feeding at the 33-h time point in the DMMM simulation
alongside experimentally measured titers.
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experimentally reported titer after 10.4 h. Consistency with Cac solventogenesis and
sporulation program was achieved by further reducing Cac growth rate to 35% of the
theoretical maximum over the 10.4- to 33-h time interval. During the same time span,
Clj was assumed to maximize growth, and growth was constrained to be within 1% of
its theoretical maximum value. Across the 10.4- to 33-h time interval, we also allowed
Cac and Clj to consume fermentation products in accordance with experimental obser-
vations. Table 2 shows the percent optimality choices, corresponding growth phases,
and fermentation products consumed for each organism during three different time
spans. Hybrid and nonhybrid Cac consumed butyrate and lactate during solventogene-
sis/sporulation programming, with the lower bound on rate of consumption of either
compound defined according to rate of consumption calculated from interpolated fer-
mentation profiles. Hybrid and nonhybrid Clj were allowed to consume acetone during
the 21- to 33-h time interval to maintain consistency with experimental observations,
with lower bounds on the rate of consumption placed according to the rate of con-
sumption calculated from interpolated fermentation profiles. Figure 6 depicts a com-
parison of predicted fermentation profiles when a single FBA calculation was per-
formed at each time step across a 33-h DMMM simulation with the abovementioned
growth rate relaxations and added fermentation product uptake constraints. Except for
butanol and butyrate, predicted fermentation profiles precisely match experimental
measurements. Predicted extracellular butanol and butyrate titer deviated by at most
2.0 and 0.81 g/liter, respectively, from experimental titers between the 10.4- and 33-h
time points. This result suggests that upon updating the optimality criteria of both Cac
and Clj according to the growth stage, the modeling framework developed in this
study accurately captures the experimentally observed fermentation profiles. Temporal
maximum theoretical titers for the cell fusion, no cell fusion, and no H2 cross-feeding
cases and the fermentation profiles estimated with added constraints to match experi-
mental profiles are provided in Data Set S4.

DISCUSSION

In this study, we deployed a novel kinetic growth model and unique hybrid cell
metabolic models within the DMMM framework to explore causes of the unexpectedly
high fermentation product yields and persistence of Clj at high abundance in the Cac/
Clj coculture. In the absence of a rate expression describing cell fusion and growth of
hybrid state cells, a standard Monod growth kinetic model was insufficient to explain
culture behavior. By adding rate expressions for cell fusion and hybrid cell population
growth to our growth model, we were able to accurately predict species relative abun-
dance through the stationary phase. By deploying our growth model within DMMM
with novel hybrid metabolism genome-scale models, we have demonstrated the need
for both to explain the coculture phenotype, as Clj is needed in high abundance to
maximize fermentation yields but is outcompeted by Cac when it lacks glucose trans-
porters acquired through cell fusion/protein exchange.

TABLE 2 Growth efficiency and substrate utilization assumptions for Cac and Cljmade to
achieve consistency with experimental fermentation product profiles

Time
interval (h) Organism

Corresponding
growth stage

Growth
efficiency

Fermentation
product(s)
consumed

0–10.4 Cac Exponential 0.56
Clj Lag 0.05

10.4–21 Cac Solventogenesis/sporulation 0.35 Butyrate, lactate
Clj Exponential 1

21–33 Cac Solventogenesis/sporulation 0.35 Butyrate, lactate
Clj Exponential 1 Acetone
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Although results largely agree with experiments, our model’s underprediction of
soluble carbon titer indicates that there is room to constrain the model further to
more accurately predict the coculture phenotype. The maximum growth assumption
limits FBA scope in systems which do not tend to evolve toward biomass maximiza-
tion (53). Other objectives, such as maximum ATP production (54, 55), minimum nu-
trient uptake (56), or maximization of growth and metabolite production (57), have
been used within FBA to improve predictions in systems that do not tend to maxi-
mize biomass formation. In the Cac/Clj syntrophy, cells grow below the theoretical
maximum yields during Clj lag (52), Cac solventogenic (50), and Cac sporulation (51)
phases. Updating the optimality criteria allowed the model to allocate more carbon
toward fermentation products to reach quantitative agreement with experimental
extracellular titer measurements. Manually adjusting constraints to accommodate
metabolic shifts in which the culture consumes fermentation products or recasting

FIG 6 Comparison of predicted and experimental extracellular fermentation product titers in DMMM simulation with lower bounds on Cac and Clj growth
rate relaxed to 56% and 5% of the theoretical maximum, respectively, during the first 10.4 h of the simulation and lower bounds on Cac relaxed to 35% of
the theoretical maximum over the 10.4- to 33-h time interval. Substrate utilization was constrained according to species/cell-type relative abundances
predicted by the growth model. Upper and lower bounds on fermentation product exchange fluxes were placed according to experimental production
rates when fermentation products were produced during the culture. Lower bounds were placed on fermentation product uptake according to
experimental consumption rates when fermentation products were observed to be consumed in experiments.
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the problem in the form of a least-squares optimization which minimizes the differ-
ence between predicted and experimental extracellular titers also helps to improve
prediction accuracy. Experimental fermentation profiles indicate two such events are
present in this system. The first occurs at approximately the 11-h mark and corre-
sponds to the solventogenic shift and onset of sporulation program in Cac (charac-
terized by butyrate consumption and increased butanol excretion, and identical to
the shift observed in Cac monoculture). The second metabolic shift occurs at approxi-
mately the 21-h mark. At this point, acetone accumulated in the medium is con-
sumed, and isopropanol production increases dramatically. This shift was not
observed in Clj monoculture because Clj does not produce acetone. Therefore, in
addition to relaxing the lower bound of growth in each organism independently
according to observed shifts in fermentation product profiles, better agreement with
experimental soluble carbon titer was achieved by constraining fermentation prod-
uct consumption and excretion in accordance with known metabolic shifts at time
points inferred from fermentation product profiles.

In a broader context, the implications of this study in explaining how microbial
communities achieve homeostasis are far reaching, with the potential to reshape our
understanding of syntrophic, multimicroorganism systems. The striking difference
between the behavior of simulations with and without hybrid cell models points to a
need for reexamination of the potential for cell fusion and chemotaxis mechanisms
in bacteria when modeling microbial consortia in order to reliably predict community
behavior. The cell fusion events described in this study achieve large-scale protein
exchange between bacteria, and allow for the persistence of Clj at a relative abun-
dance that would be otherwise impossible. Because mechanistic interactions of mi-
crobial consortia are notoriously difficult to study (58), it is possible that this type of
event is more widespread than we know, and a reason for the inexplicable persist-
ence of slow-growing organisms at high relative abundances in other microbial com-
munities. Persistence of slow-growing organisms in microbial communities is often
attributed to extracellular polymeric substance excretion/biofilm formation (59), but
this is not the case in the liquid culture examined in this study. The findings pre-
sented here point to a number of distinct metabolic advantages gained by Clj as the
primary reason for cell fusion and pinpoint specific activities which enable the
observed growth profiles and fermentation yields. However, the mechanistic details
of how Clj is able to fuse membranes with Cac and extract the cytosolic material it
needs to grow more efficiently remain unknown. A better understanding of this pro-
cess could inform how synthetic cocultures should be designed for bioproduction in
the future.

MATERIALS ANDMETHODS
Experimental batch fermentation data. Batch fermentation data were obtained from the work of

Charubin and Papoutsakis (48). Batch culture initial loading conditions were as follows: 5 g/liter fruc-
tose and 80 g/liter glucose supplemented with Turbo Clostridium growth medium (CGM) comprised
of 1.0 g/liter KH2PO4, 1.25 g/liter K2HPO4, 1.0 g/liter NaCl, 0.01 g/liter MnSO4·H2O, 0.348 g/liter MgSO4,
0.01 g/liter FeSO4·7H2O, 2.0 g/liter asparagine, 5.0 g/liter yeast extract, 2.0 g/liter (NH4)2SO4, 2.46 g/li-
ter sodium acetate, 0.20mg/liter Na2WO4·2H2O, 0.02 g/liter CaCl2·2H2O, 4.0mg/liter 4-aminobenzoic
acid, 10ml of 100� trace element solution, and 10ml of 100� Wolfe’s vitamin solution. Coculture
samples at approximate 12-h intervals through 48 h (corresponding to late stationary phase of the
culture) were used for growth kinetic model training and validation purposes. Optical density meas-
urements at a wavelength of 600 nm (OD600) were used to estimate specific growth rate of each orga-
nism required for the growth model. Cac and Clj genome copy number were used to estimate the rel-
ative abundance of each species in coculture and were determined using quantitative PCR (qPCR)
(48). The relative abundance of hybrid cells, nonhybrid Cac cells, and nonhybrid Clj cells was deter-
mined using flow cytometry and florescence microscopy (47). Extracellular glucose, fructose, lactate,
acetate, butanol, butyrate, acetone, acetoin, ethanol, isopropanol, and 2,3-butanediol titer measure-
ments obtained using high-pressure liquid chromatography (HPLC) were used for metabolic model
comparison and analysis (48). All experimental data used in this study are provided in Data Set S1 in
the supplemental material.

Kinetic description of Cac/Clj coculture growth with cell fusion events. Monod growth kinetics
were adopted to describe the growth of both nonhybrid and hybrid Cac and Clj cells in the coculture.
Specific growth rates (parameters in the growth model) for hybrid and nonhybrid cells were estimated
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from monoculture OD600 of each species that were inoculated under initial conditions similar to the co-
culture (48). To ensure linearity between adjacent points of the OD600 curve (and thus validity of Monod
growth kinetics), p-chip interpolation (60) was performed before calculating time-dependent specific
growth rate. Specific growth rate was calculated over 0.1-h intervals across 48 h (through stationary
phase) according to equation 1 (61).

mn ¼
ln ODn

600
�
ODn21

600

� �

tn 2 tn21
(1)

where n are integer values on the interval [1, 481], tn is the time at n time point, mn is the growth rate
over the tn21 to tn time interval, and ODn21

600 and ODn
600 are the beginning and ending interpolated OD600

values over the n21 to n time interval.
Four key assumptions were made in the kinetic description of coculture growth and cell fusion:

1. Fusion events occur only between nonhybrid cells.
2. Because growth rates for individual hybrid states are indistinguishable in the coculture, for each

organism and hybrid state, the growth rate used corresponds to the time-dependent specific
growth rate of the organism in monoculture with identical initial conditions calculated
according to the interpolated monoculture OD600 curves.

3. No genomic DNA is exchanged during cell fusion events.
4. A total of five doubling times are required for cells that have exchanged proteins but

retained their genetic identity to fully dilute all nonnative protein and revert back to
nonhybrid cells. Each doubling time interval is characterized by a distinct cell population
with a fractional abundance of nonnative proteins that decreases progressively as the
number of doubling times since cell fusion increases. Five doubling times were chosen to
ensure the model could capture the effect of hybrid cell recycling on nonhybrid cell
abundance at later time points.

The system of ordinary differential equations (ODEs) describing the change in abundance with
respect to time of all nonhybrid and hybrid state cells in the coculture system (and thus coculture
growth) is represented by equations 2 to 4. The system accounts for two distinct cell types: (i) nonhybrid
cells that have not exchanged proteins (nonhybrid Cac and nonhybrid Clj) and (ii) hybrid cells that have
exchanged proteins but retained their genetic identities as either Cac or Clj. A single cell fusion parame-
ter (f) was introduced to describe the rate of cell fusion/proteome exchange.

dXk
0

dt
¼ mk

0X
k
0 2

Y
k 9 ¼ Cac orClj

fXk 9
0 þmk

5X
k
5 ; k ¼ Cac or Clj (2)

dXk
1

dt
¼

Y
k 9 ¼ Cac orClj

fXk 9
0 2 mk

1X
k
1 ; k ¼ Cac or Clj (3)

dXk
l

dt
¼ mk

l21X
k
l21 2 mk

l X
k
l ; k ¼ Cac orClj; l ¼ 2; . . . ; 5 (4)

Equations 2, 3, and 4 model the growth of nonhybrid cells, hybrid cells in the first hybrid state, and
hybrid cells at all other hybrid states, respectively. When integrated with respect to time, this system
of ODEs predicts the dynamic coculture species/hybrid state composition. In these equations, super-
scripts k and k9 both correspond to the set of organisms in the coculture (i.e., Cac and Clj). Subscript l
corresponds to the hybrid state, with a value of 0 representing nonhybrid cells, and values between
1 and 5 representing hybrid states after 1, 2, 3, 4, or 5 doubling times. Each of them contains decreas-
ing amounts of the nonnative protein as, in the absence of replenishment through DNA transcription
and translation, the abundance of nonnative protein in a hybrid cell is halved upon cell division.
Although RNA is also exchanged between the two microbes, the short half-life of mRNA would not
allow passing functional mRNA from the mother cell to daughter cells upon cell division. Parameters
in the formulation include mk

l , which is the specific growth rate of organism k; hybrid state l, which is
time dependent and calculated using equation 1; and fusion parameter f. The fusion parameter is
the rate constant relating the rate of fusion/proteome exchange to the abundance of nonhybrid Cac
and nonhybrid Clj cells. We assume that fusing events are first order with respect to both nonhybrid
Cac and nonhybrid Clj abundances. Dependent variables in the system of equations include Xk

l ,
which is the abundance of nonhybrid cells (if l = 0) or hybrid cells at different hybrid states (if l = 1, 2,
3, 4, or 5) of organism k.

Equation 2 contains three terms which contribute to the overall change in abundance of nonhybrid
cells. The first term on the right-hand side of the expression corresponds to the Monod equation for
growth of nonhybrid species. The second term quantifies the rate of fusion/exchange of protein events,
with rate constant f multiplying nonhybrid Cac and nonhybrid Clj abundances. The third term in equa-
tion 2 is the Monod equation for growth of hybrid cells after the fifth doubling time, which we define as
the point at which nonnative proteins in hybrid cells have fully diluted and the hybrid cell population
has essentially reverted to the nonhybrid originating cell population. Equation 3 describes the change in
the hybrid cell abundance at the first hybrid state (l = 1). This set of hybrid cells contain 50% of their
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own protein and 50% of proteins from the other organism. Similarly, equation 4 quantifies the change
in hybrid cell abundances at l = 2, 3, 4, and 5 hybrid states. Figure 7 depicts the dilution of nonnative
protein during cell culture growth across the five hybrid states.

Genome-scale metabolic models. GSM models of nonhybrid cells were built using the recent ge-
nome-scale reconstructions of Cac (iCAC802 [35]) and Clj (iJL680 [45]). Exchange reactions for acetoin,
acetone, 2,3-butanediol, and isopropanol, as well as secondary alcohol dehydrogenase and 2,3-butane-
diol-dehydrogenase reactions, were added to model iJL680 to account for the expression of genes sadh
and 23bdh confirmed through isopropanol and 2,3-butandeiol accumulation during fermentation and
transcriptome sequencing (RNA-seq) results (48). Note that both sadh and 23bdh are likely expressed at
a basal level in Clj monoculture but are highly overexpressed in the presence of acetone and acetoin in
coculture with Cac (48). The biomass molecular weights for each GSM model were rescaled so they were
standardized to 1.0 g mmol21 using the method developed by Chan et al. (62). The reaction content
from nonhybrid models was used in the construction of hybrid cell models of metabolism for both Cac
and Clj in proportion to their relative abundances. The iCAC802 and iJL680 reaction contents are pro-
vided in Data Set S2 in the supplemental material.

Dynamic multispecies metabolic modeling.We used the dynamic multispecies metabolic model-
ing framework (DMMM) (49, 63), which extends the concept of dynamic flux balance analysis (dFBA)
(64) to microbial communities. DMMM links the outlined growth model with the previously men-
tioned nonhybrid and hybrid state GSM models in an integrative modeling framework. Twelve GSM
models (replicates of the original two) were included in DMMM: a single nonhybrid model for each
organism and five hybrid state models per organism corresponding to the hybrid states defined in
the growth model. Rather than standard Monod growth kinetics (as was used previously [49, 63]), the
hybrid state growth model developed in this study was used to determine organism/hybrid state cell
abundances. To capture the effect of progressive nonnative protein dilution during hybrid cell
growth within our metabolic simulations, we assign hybrid state glucose uptake efficiencies to hybrid
state cells which correlate with the amount of nonnative protein contained in cells at any given
hybrid state. Table 3 lists the glucose uptake efficiency for each hybrid state under the assumption
that nonnative protein is halved after each doubling time. We assume homogeneous protein distri-
bution and that glucose uptake efficiency is directly proportional to the total amount of glucose
transporter proteins in a given hybrid state cell. Experimental glucose and fructose concentration
curves constrained total culture substrate utilization. Substrate concentration values between experi-
mental measurements were estimated using p-chip interpolation (60). The forward Euler method (65)
has been applied to solve the DMMM problem. Flux variability analysis (FVA) has also been imple-
mented at each time step within DMMM to predict maximum theoretical fermentation product titers
and identify feasible ranges for CO2 and H2 cross-feeding (evolved from Cac, consumed by Clj) across
the 33-h time span of the simulation.

FIG 7 Nonnative protein dilution during cell growth. Modeling framework assumes six discrete cell populations of each organism corresponding to cells
with various amounts of nonnative proteins. Each hybrid state corresponds to cells that have grown for 1, 2, 3, 4, or 5 doubling times since cell fusion/
protein exchange. Nonnative proteins become more dilute as hybrid state increases, and cells at each hybrid state grow into cells at the next hybrid state.
It is assumed that five doubling times are required to completely dilute all nonnative protein from cells. Thus, cells in hybrid state 5 grow into nonhybrid
cells. Green squares represent Cac-native proteins, while red triangles represent Clj-native proteins.
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Data availability. All data sets used in this study and codes for running the simulations described
in this article can be downloaded from our group’s GitHub page: https://github.com/maranasgroup/
DMMM. This includes all experimental data; metabolic reaction content; flux bounds of iCAC802,
iJL680, hybrid Cac, and hybrid Clj metabolic models; and supplemental MATLAB and GAMS codes for
running all DMMM and FVA simulations described in this article.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
DATA SET S1, XLSX file, 0.02 MB.
DATA SET S2, XLSX file, 0.4 MB.
DATA SET S3, XLSX file, 0.2 MB.
DATA SET S4, XLSX file, 0.2 MB.
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