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Abstract Laboratory behavioural tasks are an essential research tool. As questions asked of 
behaviour and brain activity become more sophisticated, the ability to specify and run richly struc-
tured tasks becomes more important. An increasing focus on reproducibility also necessitates accu-
rate communication of task logic to other researchers. To these ends, we developed pyControl, a 
system of open-source hardware and software for controlling behavioural experiments comprising a 
simple yet flexible Python-based syntax for specifying tasks as extended state machines, hardware 
modules for building behavioural setups, and a graphical user interface designed for efficiently 
running high-throughput experiments on many setups in parallel, all with extensive online docu-
mentation. These tools make it quicker, easier, and cheaper to implement rich behavioural tasks 
at scale. As important, pyControl facilitates communication and reproducibility of behavioural 
experiments through a highly readable task definition syntax and self-documenting features. Here, 
we outline the system’s design and rationale, present validation experiments characterising system 
performance, and demonstrate example applications in freely moving and head-fixed mouse 
behaviour.

Editor's evaluation
The importance of carefully-considered animal behavior to systems neuroscience cannot be over-
stated. Despite this, flexible tools for carefully monitoring and controlling behavioral apparatuses 
have often required significant new development by individual laboratories. The open source 
pyControl software and hardware toolbox is an excellent exemplar of a robust and reliable plat-
form for experiments, with a simple interface, good performance, excellent documentation, and a 
growing an engaged user community. This work benchmarks and documents pyControl and hope-
fully will serve as a useful introduction to an even broader community.
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Introduction
Animal behaviour is of fundamental scientific interest, both in its own right and in relation to brain func-
tion (Krakauer et al., 2017). Though understanding natural behaviour is the ultimate goal, the tight 
control offered by laboratory tasks remains an essential tool in characterising learning mechanisms. 
To serve the needs of contemporary neuroscience, hardware and software for controlling behavioural 
experiments should be both flexible and easy to use. Additionally, an increasing focus on reproduc-
ibility (Baker, 2016; International Brain Laboratory et al., 2021) necessitates that behaviour control 
systems facilitate communication and replication of behavioural paradigms across labs.

Available commercial solutions often fall short of these desiderata. Proprietary closed-source hard-
ware and software make it difficult to extend or adapt functionality beyond explicitly implemented use 
cases. Additionally, programming behavioural tasks on commercial systems can be surprisingly non-
user-friendly, perhaps due to limitations of underlying legacy hardware. Commercial hardware is also 
typically very expensive considering the level of technology it represents, disadvantaging researchers 
outside well-funded institutions (Marder, 2013; Maia Chagas, 2018), and constraining the ability to 
scale behavioural assays for high throughput.

For these reasons, many groups implement their own behavioural hardware either using low-
cost microcontrollers such as Arduinos or raspberry PI, or generic laboratory control software such 
as Labview (Devarakonda et al., 2016; O’Leary et al., 2018; Gurley, 2019; Bhagat et al., 2020; 
Buscher et al., 2020). Though highly flexible, building behavioural control systems from scratch has 
some disadvantages. It results in much duplication of effort as a lot of the required functionality is 
generic across experiments. Additionally, unless custom systems are well documented, it is hard for 
users to meaningfully share experimental protocols. This is important because scientific publications 
do not consistently contain sufficient information to constrain the details of the task used, yet such 
details are often crucial for reproducing the behaviour. Making task code public is therefore key to 
reproducibility, but this is only effective if it is readable and documented, as well as functional.

To address these limitations, we developed pyControl; a system of open-source hardware and soft-
ware for controlling behavioural experiments. We report the design and rationale of system compo-
nents, validation experiments characterising system performance, and behavioural data illustrating 
applications in three widely used, contrasting behavioural paradigms: the 5-choice serial reaction 
time task (5-CSRTT) in operant chambers, sensory discrimination in head-fixed animals, and a social 
decision-making task in a maze apparatus.

Results
System overview
pyControl consists of three components, the pyControl framework, hardware, and graphical user inter-
face (GUI). The framework implements the syntax used to program behavioural tasks. User-created 
task definition files, written in Python, run directly on microcontroller hardware, supported by frame-
work code that determines when user-defined functions are called. This takes advantage of Micro-
Python, a recently developed port of the popular high-level language Python to microcontrollers. 
The framework handles functionality that is common across tasks, such as monitoring inputs, setting 
and checking timers, and streaming data back to the computer. This minimises boilerplate code in 
task files, while ensuring that common functionality is implemented reliably and efficiently. Combined 
with Python’s highly readable syntax, this results in task files that are quick and straightforward to 
write, but also easy to read and understand (Figure 1), promoting replicability and communication of 
behavioural experiments.

pyControl hardware consists of a breakout board which interfaces a pyboard microcontroller 
with ports and connectors, and a set of devices such as nose-pokes, audio boards, LED drivers, 
rotary encoders, and stepper motor controllers that are connected to the breakout board to create 
behavioural setups. Breakout boards connect to the computer via USB. Multiple breakout boards can 
be connected to a single computer, each controlling a separate behavioural setup. pyControl imple-
ments a simple but robust mechanism for synchronising data with other systems such as cameras or 
physiology hardware. All hardware is fully open source, and assembled hardware is available at low 
cost from the Open Ephys store and LabMaker.

https://doi.org/10.7554/eLife.67846
https://micropython.org/
https://micropython.org/
http://www.open-ephys.org/pycontrol
https://www.labmaker.org/collections/neuroscience
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The GUI provides a graphical interface for setting up and running experiments, visualising 
behaviour, and configuring setups, and is designed to facilitate high-throughput behavioural testing 
on many setups in parallel. To promote replicability, the GUI implements self-documenting features 
which ensure that all task files used to generate data are stored with the data itself, and that any 
changes to task parameters from default values are recorded in the data files.

Task definition syntax
Here, we give an overview of the task definition syntax and how this contributes to the flexibility of 
the system. Detailed information about task programming is provided in the documentation and set 
of example tasks is included with the GUI, including probabilistic reversal learning and random ratio 
instrumental conditioning.

pyControl tasks are implemented as state machines, the basic elements of which are states and 
events. At any given time, the task is in one of the states, and the current state determines how the 
task responds to events. Events may be generated externally, for example, by the subject’s actions, 
or internally by timers.

Figure  1 shows the complete task definition code and the corresponding state diagram for a 
simple task in which pressing a button three times turns on an LED for 1 s. The code first defines the 

LED off state

LED on state
entry:  turn LED on
           set timer
           press_n = 0

exit  :  turn LED off  

button press
press_n = press_n + 1

timer

if press_n == 3

else

from pyControl.utility import *  
from devices import *  
   
# Define hardware  
   
button = Digital_input('X1', rising_event='button_press')  
LED    = Digital_output('X2')  
   
# States and events.  
   
states = ['LED_on',  
          'LED_off']  
   
events = ['button_press']  
   
initial_state = 'LED_off'  
   
# Variables  
   
v.press_n = 0  
   
# State behaviour functions.  
   
def LED_off(event):  
    if event == 'button_press':  
        v.press_n = v.press_n + 1 
        print('Press number {}'.format(v.press_n)) 
        if v.press_n == 3:  
            goto_state('LED_on')  
   
def LED_on(event):  
    if event == 'entry':  
        LED.on()  
        timed_goto_state('LED_off', 1*second)  
        v.press_n = 0  
    elif event == 'exit':  
        LED.off()  
 

Figure 1. Example task. Complete task definition code (left panel) and corresponding state diagram (right panel) for a simple task that turns an LED on 
for 1 s when a button is pressed three times. Detailed information about the task definition syntax is provided in the Programming Tasks documentation.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Example data file.

https://doi.org/10.7554/eLife.67846
https://pycontrol.readthedocs.io/en/latest/user-guide/programming-tasks/
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hardware that will be used, lists the task’s state and event names, specifies the initial state, and initia-
lises task variables.

The code then specifies task behaviour by defining a state behaviour function for each state. When-
ever an event occurs, the state behaviour function for the current state is called with the event name 
as an argument. Special events called entry and exit occur when a state is entered and exited allowing 
actions to be performed on state transitions. State behaviour functions typically comprise a set of if 
and else if statements that determine what happens when different events occur in that state. Any 
valid MicroPython code can be placed in a state behaviour function, the only constraint being that it 
must execute fast as it will block further state machine behaviour while executing. Users can define 
additional functions and classes in the task definition file that can be called from state behaviour func-
tions. For example, code implementing a reversal learning task’s block structure might be separated 
from the state machine code in a separate function, improving readability and maintainability.

As should be clear from the above, while pyControl makes it easy to specify state machines, tasks 
are not strict finite state machines, in which the response to an event depends only on the current 
state, but rather extended state machines in which variables and arbitrary code can also determine 
behaviour.

We think this represents a good compromise between enforcing a specific structure on task code, 
which promotes readability and reliability and allows generic functionality to be efficiently imple-
mented by the framework, while allowing users enough flexibility to compactly define a diverse range 
of complex tasks.

A key framework component is the ability to set timers to trigger state transitions or events. The 
timed_goto_state function, used in the example, triggers a transition to a specified state after a spec-
ified delay. Other functions allow timers to trigger a specified event after a specified delay, or to 
cancel, pause and un-pause timers that have already been set.

To make things happen in parallel with the main state set of the task, the user can define an 
all_states function which is called, with the event name as an argument, whenever an event occurs 
irrespective of the state the task is in. This can be used in combination with timers and variables to 
implement task behaviour that occurs independently from or interacts with the main state set. For 
example to make something happen after a specified duration, irrespective of the current state, the 
user can set a timer to trigger an event after the required duration and use the all_states function to 
perform the required action whenever the event occurs.

pyControl provides a set of functions for generating random variables, and maths functions are 
available via the MicroPython maths module. Though MicroPython implements a large subset of the 
core Python language (see the MicroPython docs), it is not possible to use packages such as NumPy 
or SciPy as they are too large to fit on a microcontroller.

Framework update priority:

1. Process hardware interrupts

2. Process events in event queue

3. Check for elapsed timers

4. Check for input from computer

5. Output data to computer

Event Queue 

Data output queue 

Timers

Hardware
inputs

State machine

external
events

timer
events

Hardware
outputs

analog data

events

set timers

Pyboard microcontroller

Graphical 
user 

interface

Computer

data

set variables

control
outputs

state
transitions

Figure 2. Framework diagram. Diagram showing the flow of information between different components of the framework and the graphical user 
interface (GUI) while a task is running. Right panel shows the priority with which processes occur in the framework update loop.

https://doi.org/10.7554/eLife.67846
https://docs.micropython.org/en/latest/library/index.html
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Framework implementation
The pyControl framework consists of approximately 1000 lines of Python code. Figure 2 shows a 
simplified diagram of information flow between system components. Hardware inputs and elapsing 
timers place events in a queue where they await processing by the state machine. When events are 
processed, they are placed in a data output queue along with any state transitions and user print 
statements that they generate. This design allows different framework update processes to be prior-
itised by urgency, rather than by the order in which they become necessary, ensuring the framework 
responds at low latency even under heavy load (see validation experiments below). Top priority is 
given to processing hardware interrupts, secondary priority to passing events from the event queue 
to the state machine and processing their consequences, lowest priority to sending and receiving data 
from the computer.

Digital inputs are detected by hardware interrupts and can be configured to generate separate frame-
work events on rising and/or falling edges. Analog inputs can stream continuous data to the computer 
and trigger framework events when the signal goes above and/or below a specified threshold.

Hardware
A typical pyControl hardware setup consists of a computer running the GUI, connected via USB to one 
or more breakout boards, each of which controls a single behavioural setup (Figure 3A). As task code 
runs on the microcontroller, the computer does not need to be powerful. We typically use standard 
office desktops running Windows. We have not systematically tested the maximum number of setups 
that can be controlled from one computer but have run 24 in parallel without issue.

The breakout board interfaces a pyboard microcontroller (an Arm Cortex M4 running at 168 MHz 
with 192 KB RAM) with a set of behaviour ports used to connect devices that make up behavioural 
setups, and BNC connectors, indicator LEDs, and user pushbuttons (Figure 3B). Each behaviour port 
is an RJ45 connector (compatible with standard network cables) with power lines (ground, 5 V, 12 V), 
two digital inputs/output (DIO) lines that are directly connected to microcontroller pins, and two 
driver lines for switching higher current loads. The driver lines are low-side drivers (i.e. they connect 
the negative side of the load to ground) that can switch currents up to 150 mA at voltages up to 12 V, 
with clamp diodes to the 12 V rail to support inductive loads such as solenoids. Two ports have an 
additional driver line and two have an additional DIO. Six of the behaviour port DIO lines can alterna-
tively be used as analog inputs and two as analog outputs. Three ports support UART and two support 
I2C serial communication over their DIO lines. The pinout of the behaviour port is detailed in Table 1.

GUI

Breakout 
board

Behavioural
setup

USB

RJ45

Breakout board front

Breakout board back

A B

Figure 3. pyControl hardware. (A) Diagram of a typical pyControl hardware setup, a single computer connects to multiple breakout boards, each of 
which controls one behavioural setup. Each behavioural setup comprises devices connected to the breakout board RJ45 behaviour ports using standard 
network cables. (B) Breakout board interfacing the pyboard microcontroller with a set of behaviour ports, BNC connectors, indicator LEDs, and user 
buttons. See Figure 6—figure supplement 1, Figure 7—figure supplement 1, and Figure 8—figure supplement 1 for hardware configurations used 
in the behavioural experiments reported in this article, along with their associated hardware definition files. For more information, see the hardware 
docs.

https://doi.org/10.7554/eLife.67846
https://pycontrol.readthedocs.io/en/latest/user-guide/hardware/
https://pycontrol.readthedocs.io/en/latest/user-guide/hardware/
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A variety of devices have been developed that connect to the ports, including nose-pokes, levers, 
audio boards, rotary encoders, stepper motor drivers, lickometers, and LED drivers (Figure 6—figure 
supplement 1, Figure  7—figure supplement 1, and Figure  8—figure supplement 1). Each has 
its own driver file that defines a Python class for controlling the device. For detailed information 
about devices, see the hardware docs. The hardware repository also contains open-source designs for 
operant boxes and sound attenuating chambers.

Though it is possible to specify the hardware that will be used directly in a task file as shown in 
Figure 1, it is typically done in a separate hardware definition file that is imported by the task. This 
avoids redundancy when many tasks are run on the same setup. Additionally, abstracting devices used 
in a task from the specific pins/ports they are connected to allows the same task to run on different 
setups as long as their hardware definitions instantiate the required devices. See Figure 6—figure 
supplement 1, Figure 7—figure supplement 1, and Figure 8—figure supplement 1 for hardware 
definitions and corresponding hardware diagrams for the example applications detailed below.

The design choice of running tasks on a microcontroller, and the specific set of devices developed 
to date, imposes some constraints on experiments supported by the hardware. The limited compu-
tational resources preclude generating complex visual stimuli, making pyControl unsuitable for most 
visual physiology in its current form. The devices for playing audio are aimed at general behavioural 
neuroscience applications and may not be suitable for some auditory neuroscience applications. One 
uses the pyboard’s internal DAC for stimulus generation, and hence is limited to simple sounds such as 
sine waves or noise. Another plays WAV files from an SD card, allowing for diverse stimuli but limited 
to 44 kHz sample rate.

To extend the functionality of pyControl to application not supported by the existing hardware, it is 
straightforward to interface setups with user-created or commercial devices. This requires creating an 

Table 1. Behaviour port pinout.
All behaviour ports support the standard function for each pin, comprising two digital input/output 
(DIO) lines connected directly to microcontroller pins, two power driver lines connected to low-
side MOSFET drivers for switching higher power loads, and +12 V, + 5 V and ground lines. Some 
behaviour ports support alternate functions on some pins. On breakout board version 1.2, ports 1 
and 2 have an additional power driver line (POW C) and ports 3 and 4 have an additional DIO line 
(DIO C). Some DIO lines support analog input/output (ADC/DAC), serial communication (I2C, UART, 
or CAN), or decoding of quadrature signals from rotary encoders (ENC).

Pinout of behaviour port RJ45 connectors

Standard function Alternate function Pin

Ground None 2

+5 V None 6

+12 V None 8

Digital input/output (DIO) A Analog input (ADC), I2C-SCL, UART-TX, CAN-RX, ENC 1

Digital input/output (DIO) B Analog input (ADC), I2C-SDA, UART-RX, CAN-TX, ENC 4

Power driver (POW) A None 3

Power driver (POW) B None 7

None DIO C, POW C, analog output (DAC), analog input (ADC) 5

Alternate functions available on each behaviour port of breakout board version 1.2

Port Alternate functions

1 POW C, UART 4, ENC 5, ADC (on DIO A and B)

2 POW C, CAN 1

3 DIO C, DAC 1, I2C 1, UART 1, ENC 4, ADC (on DIO C)

4 DIO C, DAC 2, I2C 2, UART 3, ADC (on DIO C)

5 CAN 2

6 ADC (on DIO A and B)

https://doi.org/10.7554/eLife.67846
https://pycontrol.readthedocs.io/en/latest/user-guide/hardware/
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electrical connection between the devices and defining the inputs and outputs in the hardware defi-
nition. Triggering external hardware from pyControl, or task events from external devices, is usually 
achieved by connecting the device to a BNC connector on the breakout board, and using the stan-
dard pyControl digital input or output classes. More complex interactions with external devices may 
involve multiple inputs and outputs and/or serial communication. In this case, the electrical connection 
is typically made to a behaviour port as these carry multiple signal lines. A port adapter board, which 
breaks out an RJ45 connector to a screw terminal, simplifies connecting wires. Alternatively, if more 
complex custom circuitry is required, for example, to interface with a sensor, it may make sense to 
design a custom-printed circuit board with an RJ45 connector, similar to existing pyControl devices, 
as this is more scalable and robust than implementing the circuit on a breadboard. To simplify instanti-
ating devices comprising multiple inputs and outputs, or controlling devices which require dedicated 
code, users can define a Python class representing the device. These are typically simple classes which 
instantiate the relevant pyControl input and output objects as attributes, and may have methods 
containing code for controlling the device, for example, to generate serial commands. More informa-
tion is provided in the hardware docs, and the design files and associated code for existing pyControl 
devices provide a useful starting point for new designs. Alla Karpova’s lab at Janelia Research Campus 
has independently developed and open-sourced several pyControl-compatible devices (GitHub; 
Karpova, 2021).

For neuroscience applications, straightforward and failsafe synchronisation between behavioural 
data and other hardware such as cameras or physiology recordings is essential. pyControl implements 
a simple but robust method for this. Sync pulses are sent from pyControl to the other systems, which 
each record the pulse times in their own reference frame. The pulse train has random inter-pulse inter-
vals which ensures a unique match between pulse sequences recorded on each system, so it is always 
possible to identify which pulse corresponds to which even if pulses are missing (e.g. due to forgetting 
to turn a system on until after the start of a session). This also makes it unambiguous whether two 
files come from the same session in the event of a file name mix-up. A Python module is provided for 
converting times between different systems using the sync pulse times recorded by each. For more 
information, see the synchronisation docs.

Graphical user interface
The GUI provides two ways of setting up and running tasks; the Run task and Experiments tabs, as well 
as a Setups tab used to name and configure hardware setups.

The Run task tab allows the user to quickly upload and run a task on a single setup. It is typically 
used for prototyping tasks and testing hardware, but can also be used to acquire data. The values of 
task variables can be modified before the task is started or while the task is running. During the run, 
a log of events, state entries, and user print statements is displayed, and the events, states, and any 
analog signals are plotted live in scrolling plot panels.

The Experiments tab is used for running experiments on multiple setups in parallel and is designed 
to facilitate high-throughput experiments where multiple users run cohorts of animals through a set of 
boxes. An experiment consists of a set of subjects run in parallel on the same task. If different subjects 
need to be run in parallel on different tasks, this can be achieved by opening multiple instances of 
the GUI.

To configure an experiment, the user specifies which subjects will run on which setups, and the 
values of any variables that will be modified before the task starts. Variables can be set to the same 
value for all subjects or for individual subjects. Variables can be specified as Persistent, causing their 
value to be stored on the computer at the end of the session, and subsequently set to the same value 
the next time the experiment is run. Variables can be specified as Summary, causing their values to be 
displayed in a table at the end of the framework run and copied to the clipboard in a format that can 
be pasted directly into a spreadsheet, for example, to record the number of trials and rewards for each 
subject. Experiment configurations can be saved and subsequently loaded.

When an experiment is run, the experiments tab changes from the configure experiment interface 
to a run experiment interface. The session can be started and stopped individually for each subject 
or simultaneously for all subjects. While each setup is running, a log of events, state entries, and user 
print statements is displayed, along with the current state, most recent event, and print statement 
(Figure 4). Variable values can be viewed and modified for individual subjects during the session. 

https://doi.org/10.7554/eLife.67846
https://github.com/Karpova-Lab
https://pycontrol.readthedocs.io/en/latest/user-guide/synchronisation/
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A tabbed plot window can be opened showing live scrolling plots of the events, states, and analog 
signals for each subject, and individual subjects’ plots can be undocked to allow behaviour of multiple 
subjects to be visualised simultaneously.

The GUI is implemented entirely in Python using the PyQt GUI framework and PyQtGraph plotting 
library. The GUI is cross-platform and has been used on Windows, Mac, and Linux, though most devel-
opment and testing has been under Windows. The code is organised into modules for communication 
with the pyboard, different GUI components, and data visualisation.

pyControl data
Data from pyControl sessions are saved as text files (see Figure  1—figure supplement 1 for an 
example). When a session starts, information including the subject, task and experiment names, and 
start data and time, are written to the data file. While the task is running, all events and state tran-
sitions are saved automatically with millisecond timestamps. The user can output additional data by 
using the print function in their task file. This outputs the printed line to the computer, where it is 
displayed in the log and saved to the data file, along with a timestamp. In decision-making tasks, we 
typically print one line each trial indicating the trial number, the subject’s choice, and trial outcome, 
along with any other relevant task variables. If an error occurs while the framework is running, a trace-
back reporting the error and line number in the task file where it occurred is displayed in the log and 
written to the data file. Continuous data from analog inputs is saved in separate binary files.

In addition to data files, task definition files used to generate data are copied to the experiment’s 
data folder, with a file hash appended to the file name that is also recorded in the corresponding 
session’s data file. This ensures that every task file version used in an experiment is automatically saved 
with the data, and it is always possible to uniquely identify the specific task file used for a particular 
session. If any variables are changed from default values in the task file, this is automatically recorded 

Figure 4. pyControl graphical user interface (GUI). The GUI’s Experiments tab is shown on the left running a multi-subject experiment, with the 
experiment’s plot window open on the right showing the recent states and events for one subject. For images of the other GUI functionality, see the GUI 
docs.

https://doi.org/10.7554/eLife.67846
https://pycontrol.readthedocs.io/en/latest/user-guide/graphical-user-interface/
https://pycontrol.readthedocs.io/en/latest/user-guide/graphical-user-interface/
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in the session’s data file. These automatic self-documenting features are designed to promote repli-
cability of pyControl experiments. We encourage users to treat the versioned task files as part of the 
experiment’s data and include them in data repositories.

Modules are provided for importing data files into Python for analysis and for visualising sessions 
offline. Importing a data file creates a Session object with attributes containing the session’s informa-
tion and data. For convenience, two representations of the state and event data are generated: (1) a 
dictionary whose keys are event and state names, and values are NumPy arrays with the corresponding 
event or state entry times, and (2) a list of events and state entries in the order they occurred, whose 
elements are named tuples with the event/state name and timestamp as attributes. For more infor-
mation, see the data docs.

Framework performance
To validate the performance of the pyControl framework, we measured the system’s response latency 
and timing accuracy. Response latency was assessed using a task which set a digital output to match 
the state of a digital input driven by a square wave signal. We recorded the input and output signals 
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https://doi.org/10.7554/eLife.67846
https://pycontrol.readthedocs.io/en/latest/user-guide/pycontrol-data/
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and plot the distribution of latencies between the two signals across all rising and falling edges 
(Figure 5A and B). In a ‘low load’ condition where the pyboard was not processing other inputs, 
response latency was 556 ± 17 μs (mean ± SD). This latency reflects the time to detect the change in 
the input, trigger a state transition, and update the output during processing of the ‘entry’ event in 
the new state. We also measured response latency in a ‘high load’ condition where the pyboard was 
additionally monitoring two digital inputs each generating framework events in response to edges 
occurring as Poisson processes with an average rate of 200 Hz, and acquiring signal from two analog 
inputs at 1 kHz sample rate each. In this high load condition, the response latency was 859 ± 241 μs 
(mean ± SD), the longest latency recorded was 3.3 ms with 99.6% of latencies < 2 ms.

To assess timing accuracy, we used a task which turned on a digital output for 10 ms when a rising 
edge was received on a digital input. The input was driven by a 51 Hz square wave to ensure that the 
timing of input edges drifted relative to the framework’s 1 ms clock ticks. We plot the distribution of 
errors between the measured durations of the output pulses and the 10 ms target duration (Figure 5C 
and D). In the low load condition, timing errors were approximately uniformly distributed across 1 ms 
(mean error –220 μs, SD 282 μs), as expected given the 1 ms resolution of the pyControl framework 
clock ticks. In the high load condition, timing variability was only slightly increased (mean –10 μs, SD 
353 μs), with the largest recorded error 1.9 ms and 99.5% of errors < 1 ms. Overall, these data show 
that the framework’s latency and timing accuracy are sufficient for the great majority of neuroscience 
applications, even when operating under loads substantially higher than experienced in typical tasks.

Users who require very tight timing/latency performance should be aware of MicroPython’s auto-
matic garbage collection. Garbage collection is triggered when needed to free up memory and takes 
a couple of milliseconds. Normal code execution is paused during garbage collection, though inter-
rupts (used to register external inputs and update the framework clock) run as normal. pyControl 
timers that elapse during garbage collection are processed once it has completed (Figure 5E). Timers 
that are running but do not elapse during garbage collection are unaffected. Digital inputs that occur 
during garbage collection are registered with the correct timestamp (Figure 5F), but will only be 
processed once garbage collection has completed. The only situation where events may be missed 
due to garbage collection is if a single digital input receives multiple event-triggering edges during a 
single garbage collection, in which case only the last event is processed correctly (Figure 5F). To avoid 
garbage collection affecting critical processing, the user can manually trigger garbage collection at 
a time when it will not cause problems (see MicroPython docs), for example, during the inter-trial 
interval (ITI). In the latency and timing accuracy validation experiments (Figure 5A–D), garbage collec-
tion was triggered by the task code at a point in the task where it did not affect the measurements.

A final constraint is that as each event takes time to process, there is a maximum continuous event rate 
above which the framework cannot process events as fast as they occur, causing the event queue to grow 
until available memory is exhausted. This rate will depend on the processing triggered by each event, 
but is approximately 960 Hz for digital inputs triggering state transitions but no additional processing. 
In practice, we have never encountered this when running behavioural tasks as average event rates are 
typically orders of magnitude lower and transiently higher rates are buffered by the queue.

Application examples
We illustrate how pyControl is used in practice with example applications in operant box, head-fixed, 
and maze-based tasks. Task and hardware definition files for these experiments are provided in the 
article’s data repository. For additional use cases, see also Korn et al., 2021; Akam et al., 2021; 
Koralek and Costa, 2020; Nelson et al., 2020; Blanco-Pozo et al., 2021; van der Veen et al., 2021; 
de Barros et al., 2021; Samborska et al., 2021; Kilonzo et al., 2021; Strahnen et al., 2021.

5-choice serial reaction time task (5-CSRT)
The 5-CSRT is a long-standing and widely used assay for measuring sustained visual attention and 
motor impulsivity in rodents (Carli et al., 1983; Bari et al., 2008). The subject must detect a brief flash 
of light presented pseudorandomly in one of five nose-poke ports and report the stimulus location by 
poking the port to trigger a reward delivered to a receptacle on the opposite wall.

We developed a custom operant box for the 5-CSRT (Figure 6A and B), discussed in detail in a 
separate manuscript (Kapanaiah et al., 2021). The pyControl hardware comprised a breakout board 
connected to a 5-poke board, which integrates the IR beams and stimulus LEDs for the 5-choice ports 

https://doi.org/10.7554/eLife.67846
https://docs.micropython.org/en/latest/library/gc.html
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Figure 6. 5-choice serial reaction time task (5-CSRTT). (A) Trapezoidal operant box with 5-choice wall (poke-holes shown illuminated) within a sound-
attenuated cubicle. (B) High-throughput training setup comprising 24 operant boxes. (C, D) Performance measures on the 5-CSRTT during protocols 
challenging either sustained attention – by shortening the SD or delivering a sound distraction during the waiting time (C) or motor impulsivity – by 
extending the inter-trial interval (ITI) to a fixed (fITI) or variable (vITI) length (D). Protocols used are indicated by x-axes. Note the rather selective 
decrease of attentional performance (accuracy, %omissions) or impulse control (%prematures) achieved by the respective challenges. (E) Validation of 
the possibility to detect cognitive enhancement in the 5-CSRTT (9s-fITI challenge) by application of atomoxetine, which increased attentional accuracy 
and decreased premature responding, as predicted. Asterisks in (C–E) indicate significant within-subject comparisons relative to the baseline (2 s SD, 5 s 
fITI; C, D) or the vehicle (E) condition (paired-samples t-test). *p<0.05, *p<0.01, *p<0.001. Error bars display s.e.m. Note that two mice of the full cohort 
(N = 8) did not participate in all challenges as they required more training time to reach the baseline stage.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Hardware configuration for 5-choice serial reaction time task (5-CSRTT).

https://doi.org/10.7554/eLife.67846
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on a single PCB, a single poke board for the reward receptacle, an audio board, and a stepper motor 
board to control a peristaltic pump for reward delivery (Figure 6—figure supplement 1).

To validate the setup, a cohort of eight C57BL/6 mice was trained in the 5-CSRTT using a staged 
training procedure (see Materials and methods). The baseline protocol reached at the end of 
training used a stimulus duration (SD) of 2 s and a 5 s ITI from the end of reward consumption to 
the presentation of the next stimulus. These task parameters were then manipulated to challenge 
subject’s ability to either maintain sustained attention or withhold impulsive premature responses. 
Attention was challenged in three conditions: by decreasing the SD to either 1 s or 0.8 s, or by an 
auditory distraction of 70 dB white noise, played between 0.5 s and 4.5 s of the 5 s ITI. In all three 
attention challenges, the accuracy with which subjects selected the correct port – the primary 
measure of sustained attention – decreased (p<0.05; paired t-tests comparing accuracy under the 
prior baseline protocol to accuracy under the challenge condition, Figure 6C). Also, as expected, 
omissions (i.e. failures to poke any port in the response window) increased (p<0.05, t-test). In 
the attention challenges, the rate of premature responses – the primary measure of impulsivity – 
remained either unchanged (1 s SD challenge, auditory distraction; p>0.1, t-test) or changed to 
a comparatively small extent (0.8 s SD challenge, p<0.01, t-test). Similarly, when impulsivity was 
challenged by extending the ITI, to either a 9 s fixed ITI (fITI) or to a pseudo-randomly varied ITI 
length (vITI), premature responses increased strongly (p<0.05, t-test), while attentional accuracy 
and omissions did not (Figure 6D). This specificity of effects of the challenges was as good – if not 
better – than that achieved by us previously in a commercial set-up (Med Associates, Inc; Grimm 
et al., 2018).

We further validated the task implementation by replicating effects of a pharmacological treatment 
– atomoxetine – that has been shown to reduce impulsivity in the 5-CSRTT (Navarra et al., 2008; 
Paterson et al., 2011). Using the 9 s fITI impulsivity challenge, we found that 2 mg/kg atomoxetine 
could reliably reduce premature responding and increase attentional accuracy (p<0.05, paired t-test 
comparing performance under vehicle vs. atomoxetine; Figure  6E), consistent with its previously 
described effect in this rodent task (Navarra et al., 2008; Paterson et al., 2011; Pillidge et al., 2014; 
Fitzpatrick and Andreasen, 2019).

Vibrissae-based object localisation task
We illustrate pyControl’s utility for head-fixed behaviours with a version of the vibrissae-based object 
localisation task (O’Connor et al., 2010). Head-fixed mice used their vibrissae (whiskers) to discrim-
inate the position of a pole moved into the whisker field at one of two different anterior-posterior 
locations (Figure 7A). The anterior ‘Go’ location indicated that licking in a response window after 
stimulus presentation would deliver a water reward, while the posterior ‘NoGo’ location indicated that 
licking in the response window would trigger a timeout (Figure 7B). Unlike in the original task, mice 
were positioned on a treadmill allowing them to run. Although running was not required to perform 
the task, we observed 10–20 s running bouts alternated with longer stationary periods (Figure 7C), 
in line with previous reports (Ayaz et al., 2019). pyControl hardware used to implement the setup 
comprised a breakout board, a stepper motor driver to control the anterior-posterior position of the 
stimulus, a lickometer, and a rotary encoder to measure running speed (Figure 7—figure supplement 
1).

Mice were first familiarised with the experimental setup by head-fixing them on the treadmill for 
increasingly long periods of time (5–20 min) over 3 days. From the fourth day, mice underwent a 
‘detection training’, during which the pole was only presented in the Go position, and water auto-
matically delivered after each stimulus presentation. We then progressively introduced NoGo trials 
and made water delivery contingent on the detection of one or more licks in the response window. 
Subjects reached 75% correct performance within 5–9 days from the first training session, at which 
point, they were trained for at least three further days to make sure that they had reliably learned the 
task (Figure 7D). Early in training, mice frequently licked prior to and during stimulus presentation, 
as well as during the response window, on both Go and NoGo trials (Figure 7E). Following learning, 
licking prior to and during stimulus presentation was greatly reduced, and mice licked robustly during 
the response window on Go trials and withheld licking on NoGo trials, performing a high percentage 
of hit and correct rejection trials (Figure 7F).

https://doi.org/10.7554/eLife.67846
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Social decision-making task
Our final application example is a maze-based social decision-making task for mice, adapted from that 
developed for rats by Márquez et al., 2015. In this task, a ‘focal’ animal’s choices determine reward 
delivery for a ‘recipient’ animal, allowing preference for ‘prosocial’ vs. ‘selfish’ choices to be examined. 
The behavioural apparatus comprised an automated double T-maze (Figure 8—figure supplement 
1). Each T-maze consisted of a central corridor with nose-poke ports on each side (choice area) and 
two side arms each with a food receptacle connected to a pellet dispenser at the end (Figure 8A and 
B). Access from the central choice area to the side arms was controlled by pneumatic doors.

The task comprised two separate stages: (1) individual training, where animals learn to open doors 
by poking the ports in the central arms and retrieve pellets in the side arms; and (2) social testing, 
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Figure 7. Vibrissae-based object localisation task. (A) Diagram of the behavioural setup. Head-fixed mice were positioned on a treadmill with their 
running speed monitored by a rotary encoder. A pole was moved into the whisker field by a linear motor, with the anterior-posterior location controlled 
using a stepper motor. Water rewards were delivered via a spout positioned in front of the animal and licks to the spout were detected using an 
electrical lickometer. (B) Trial structure: before stimulus presentation, the stepper motor moved into the trial position (anterior or posterior). Next, 
the linear motor translated the stepper motor and the attached pole close to the mouse’s whisker pad, starting the stimulation period. A lick window 
(during Go trials) or withhold window (during NoGo trials) started after the pole was withdrawn. FA, false alarm; CR, correct rejection. (C) pyControl 
simultaneously recorded running speed (top trace) and licks (black dots) of the animals, as well as controlling stimulus presentation (blue and red bars 
for Go and NoGo stimuli) and solenoid opening (black crosses). (D) Percentage of correct trials for three mice over the training period. Mice were 
considered expert on the task after reaching 75% correct trials (dotted line) and maintaining such performance for three consecutive days. (E) Detected 
licks before, during, and after tactile stimulation, during an early session before the mouse has learned the task, sorted by trial type: hit trials (blue), 
correct rejection trials (green), false alarm trials (red), and miss trials (black). Each row is a trial, each dot is a detected lick. Correct trials for this session 
were 47.9% of total trials. (F) As (E) but for data from the same mouse after reaching the learning threshold (correct trials = 89.3% of total trials).

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Hardware configuration for vibrissae-based object localisation task.

https://doi.org/10.7554/eLife.67846
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Figure 8. Social decision-making task. (A) Top view of double T-maze apparatus showing two animals interacting during social decision-making. (B) 
Setup diagram; in each T-maze, nose-pokes are positioned on either side of the central choice area. Sliding pneumatic doors give access to the side 
arms of each maze (top and bottom in diagram) where pellet dispensers deliver food rewards. Six IR beams (depicted as grey and red circles connected 
by a dotted red line) detect the position of the animals to safely close the doors once access to an arm is secured. (C) Focal animal individual training 

Figure 8 continued on next page
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where the decisions of the focal animal control the doors in both mazes, and hence determine rewards 
for both itself and the recipient animal in the other maze.

The individual training protocols were different for the focal and recipient animals. During indi-
vidual training for the focal animal, a single poke in either port in the central arm opened the corre-
sponding door, allowing access to a side arm. Accessing either side arm was rewarded with a pellet 
at the food receptacle in the arm. Under this schedule, subjects increased their rate of completing 
trials over seven training days (Figure 8C, repeated measures ANOVA F(6,42) = 12.566, p=0.000004) 
without developing a bias for either side of the maze (p>0.27 for all animals, t-test). During individual 
training for the recipient animal, only one of the nose-poke ports in the central arm was active, and 
the number of pokes required to open the corresponding door increased over 13 days of training, 
with four pokes eventually required to access the side arm to obtain a pellet in the food receptacle. 
Under this schedule, the recipient animals developed a strong preference for the active poke over the 
course of training (Figure 8D, right panel, repeated measures ANOVA F(12,24) = 3.908, p=0.002), 
with approximately 95% of pokes directed to the active side by the end of training.

During social testing, the two animals were placed in the double T-maze, one in each T, separated 
by a transparent perforated partition that allowed the animals to interact using all sensory modalities. 
The doors in the recipient animal’s maze were no longer controlled by the recipient animal’s pokes, 
but were rather yoked to the doors of the focal animal, such that a single poke to either port in the 
focal animals choice area opened the doors in both mazes on the corresponding side. As in indi-
vidual training, the focal animal was rewarded for accessing either side, while the recipient animal was 
rewarded only when it accessed one side of the maze. The choice made by the focal animal therefore 
determined whether the recipient animal received reward, so the focal animal could either make ‘pro-
social’ choices which rewarded both it and the recipient, or ‘selfish’ choices which rewarded only the 
focal animal. As a proof of concept, we show nose-pokes and reward deliveries from a pair of inter-
acting mice from one social session (Figure 8F). A full analysis of the social behaviour in this task will 
be published separately (Esteve-Agraz and Marquez, in preparation).

Discussion
pyControl is an open-source system for running behavioural experiments, whose principal strengths 
are (1) a flexible and intuitive Python-based syntax for programming tasks; (2) inexpensive, simple, and 
extensible behavioural hardware that can be purchased commercially or assembled by the user; (3) a 
GUI designed for efficiently running high-throughput experiments on many setups in parallel from a 
single computer; and (4) extensive online documentation and user support.

pyControl can contribute to behavioural neuroscience in two important ways: first, it makes it 
quicker, easier, and cheaper to implement a wide range of behavioural tasks and run them at scale. 
Second, it facilitates communication and reproducibility of behavioural experiments, both because 

showing the number of trials completed per minute (left panel) and side bias (right panel) across days of training. (D) As (C) but for the recipient animal. 
(E) Social decision-making task. The trial starts with both animals in the central arm. The recipient animal has learnt in previous individual training to 
poke the port on the upper side of the diagram to give access to a food pellet in the corresponding reward area. During the social task, the recipient 
animal’s ports no longer control the doors but the animal can display food-seeking behaviour by repeatedly poking the previously trained port. The 
focal animal has previously learned in individual training to collect food from the reward areas on both sides (top and bottom of diagram) by poking the 
corresponding port in the central choice area to activate the doors. During social decision-making, the focal animal can either choose the ‘prosocial’ 
port, giving both animals access to the side (upper on diagram) of their respective mazes where both receive reward, or can choose the ‘selfish’ port, 
giving both animals access to the other side (lower on diagram) where only the focal animal receives reward. (F) Raster plot showing behaviour of a 
pair of animals over one session during early social testing. Nose-pokes are represented by vertical lines, and colour coded according to the role of 
each mouse and choice type (grey, recipient’s pokes, which are always directed towards the prosocial side; blue, focal’s pokes in the prosocial choice 
port; red, focal’s pokes in selfish port). Note that latency for focal choice varies depending on the trial, allowing the recipient to display its food-seeking 
behaviour or not. Circles indicate the moment where each animal visits the food-receptacle in their reward arm. Focal animals are always rewarded, and 
the colour of the filled circle indicates the type of trial after decision (blue, prosocial choice; red, selfish choice). Grey circles indicate time of receptacle 
visit for recipients, where filled circles correspond to prosocial trials, where recipient is also rewarded, and open circles to selfish trials, where no pellet is 
delivered.

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. Hardware configuration for social decision-making task.

Figure 8 continued
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the task definition syntax is highly readable and because self-documenting features ensure that the 
exact task version and parameters used to generate data are automatically stored with the data 
itself.

pyControl’s strengths and limitations stem from underlying design choices. We will discuss these 
primarily in relation to two widely used open-source systems for experiment control in neurosci-
ence Bpod (Josh Sanders) and Bonsai (Lopes et al., 2015). Bpod is a useful point of comparison as 
it is probably the most similar project to pyControl in terms of functionality and implementation, 
Bonsai because it represents a very different but powerful formalism for controlling experiments 
that is often complementary. Space constraints preclude detailed comparison with other projects, 
but see Devarakonda et al., 2016; O’Leary et al., 2018; Kim et al., 2019; Gurley, 2019; Saun-
ders and Wehr, 2019; Bhagat et al., 2020; Buscher et al., 2020.

Both pyControl and Bpod provide a state machine-based task definition syntax in a high-level 
programming language, run the state machine on a microcontroller, have commercially available 
open-source hardware, graphical interfaces for controlling experiments, and are reasonably mature 
systems with a substantial user base beyond the original developers. Despite these commonalities, 
there are significant differences which are useful for prospective users to understand.

The first is that in pyControl user-created task definition code runs directly on a pyboard 
microcontroller, supported by framework code that determines when user-defined functions 
are called. This contrasts with Bpod, where user code written in either MATLAB (Bpod) or 
Python (PyBpod) is translated into instructions passed to the microcontroller, which itself runs 
firmware implemented in the lower-level language C++. These two approaches offer distinct 
advantages and disadvantages.

Running user Python code directly on the microcontroller avoids separating the task logic into 
two conceptually distinct levels – flexible code written in a high-level language that runs on the 
computer, and the more constrained set of operations supported by the microcontroller firmware. 
Our understanding of how this works in Bpod is that the high-level user code implements a loop 
over trials where each loop defines a finite state machine for the current trial – specifying for each 
state which outputs are on and which events trigger transitions to which other states, then uploads 
this information to the microcontroller, runs the state machine until it reaches an exit condition 
indicating the end of the trial, and finally receives information from the microcontroller about what 
happened before starting the next trial’s loop. The microcontroller firmware implements some 
functionality beyond a strict finite state machine formalism, including timers and event counters 
that are not tied to a particular state, but does not support arbitrary user code or variables. We 
suggest readers consult the relevant documentation (pyControl, Bpod, PyBpod) and example tasks 
(pyControl, Bpod, PyBpod) to compare syntaxes directly. A second advantage of running user code 
directly on the microcontroller is that the user has direct access from their task code to microcon-
troller functionality such as serial communication. A third is that the pyControl framework (as well 
as the GUI) is written in Python rather than C++, facilitating code maintenance, and lowering the 
barrier to users extending system functionality.

The two principal disadvantages of running the task entirely on the microcontroller are (1) although 
modern microcontrollers are very capable, their resources are more limited than a computer – which 
constrains how computationally and memory-intensive task code can be and precludes using modules 
such as NumPy. (2) Lack of access to the computer from task code, for example, to interact with 
other programs or display custom plots. To address these limitations, we are currently developing an 
application programming interface (API) to allow pyControl tasks running on the microcontroller to 
interact with user code running on the computer. This will work via the user defining a Python class 
with methods that get called at the start and end of the run for initial setup and post-run clean-up, as 
well as an update method called regularly during the run with any new data received from the board 
as an argument.

There are also differences in hardware design. The two most significant are (1) the pyControl 
breakout board tries to make connectors (behaviour ports and BNC) as flexible as possible at the cost 
of not being specialised for particular functions. Bpod tends to use a given connector for a specific 
function; for example, it has separate behaviour ports and module ports, with the former designed for 
controlling a nose-poke, and the latter for UART serial communication with external modules. Practi-
cally, this means that pyControl exposes microcontroller pins (which often support multiple functions) 

https://doi.org/10.7554/eLife.67846
https://sites.google.com/site/bpoddocumentation/home
https://bonsai-rx.org/
https://pycontrol.readthedocs.io/en/latest/user-guide/programming-tasks/
https://sites.google.com/site/bpoddocumentation/user-guide/protocol-development
https://pybpod.readthedocs.io/en/latest/getting-started/writing-protocols.html
https://github.com/pyControl/code/tree/master/tasks/example
https://github.com/sanworks/Bpod_Gen2/tree/master/Examples/Protocols
https://github.com/pybpod/pybpod-api/tree/master/examples/state_machine_examples
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directly on connectors whereas Bpod tends to incorporate intervening circuitry such as electrical isola-
tion for BNC connectors and serial line driver ICs on module ports. (2) Bpod uses external modules, 
each with its own microcontroller and C++ firmware, for functions which pyControl implements using 
the microcontroller on the breakout board, specifically analog input and output, I2C serial communi-
cation, and acquiring signal from a rotary encoder. These design choices make pyControl hardware 
simpler and cheaper. Purchased commercially the Bpod state machine costs $765 compared to €250 
for the pyControl breakout board, and Bpod external modules each cost hundreds of dollars. This is 
not to say that pyControl necessarily represents better value; a given Bpod module may offer more 
functionality (e.g. more channels, higher sample rates). But the two systems do represent different 
design approaches.

Both the pyControl and PyBpod GUIs support configuring and running experiments on 
multiple setups in parallel from a single computer, while the MATLAB-based Bpod GUI controls 
a single setup at a time. Their user interfaces are each very different; the respective user guides 
(pyControl, Bpod, PyBpod) give the best sense for the different approaches. We think it is a 
strength of the pyControl GUI, reflecting the relative simplicity of the underlying code base, that 
scientist users not originally involved in the development effort have made substantial contribu-
tions to its functionality (see GitHub pull requests).

Bonsai (Lopes et al., 2015) represents a very different formalism for experiment control 
that is not based around state machines. Instead, the Bonsai user designs a dataflow by 
arranging and connecting nodes in a graphical interface, where nodes may represent data 
sources, processing steps, or outputs. Bonsai can work with a diverse range of data types 
including video, audio, analog, and digital signals. Multiple data streams can be processed in 
parallel and combined via a rich set of operators including arbitrary user code. Bonsai is very 
powerful, and it is likely that any task implemented in pyControl could also be implemented 
in Bonsai. The reverse is certainly not true as Bonsai can perform computationally demanding 
real-time processing on high-dimensional data such as video, which is not supported by 
pyControl.

Nonetheless, in applications where either system could be used, there are reasons why prospec-
tive users might consider pyControl: (1) pyControl’s task definition syntax may be more intui-
tive for tasks where (extended) state machines are a natural formalism. The reverse is true for 
tasks requiring parallel processing of multiple complex data streams. (2) pyControl is explicitly 
designed for efficiently running high-throughput experiments on many setups in parallel. Though 
it is possible to control multiple hardware setups from a single Bonsai dataflow, Bonsai does not 
explicitly implement the concept of a multi-setup experiment so the user must duplicate dataflow 
components for each setup themselves. As task parameters and data file names are specified 
across multiple nodes in the dataflow, configuring these for a cohort of subjects can be laborious 
– though it is possible to automate this by calling Bonsai’s command line interface from user-
created Python scripts. (3) pyControl hardware modules can simplify the physical construction of 
behavioural setups. Though Bonsai itself is software, some compatible behavioural hardware has 
been developed by the Champalimaud Foundation Hardware Platform (https://www.cf-hw.org/​
harp), which offers tight timing synchronisation and close integration with Bonsai, though docu-
mentation is currently limited. In practice, we think the two systems are often complementary; for 
example, we use Bonsai in our workflow for acquiring and compressing video data from sets of 
pyControl operant boxes (GitHub; Akam, 2020), and we hope to integrate them more closely in 
future. pyControl is under active development. We are currently prototyping a home cage training 
system which integrates a pyControl operant box with a mouse home cage via an access control 
module which allows socially housed animals to individually access the operant box to train them-
selves with minimal user intervention. We are also developing hardware to enable much larger-
scale behavioural setups, such as complex maze environments with up to 68 behaviour ports per 
setup. As discussed above, we are finalising an API to allow pyControl tasks to interact with user 
Python code running on the computer.

In summary, pyControl is a user-friendly and flexible tool addressing a commonly encountered 
use case in behavioural neuroscience; defining behavioural tasks as extended state machines, 
running them efficiently as high-throughput experiments, and communicating task logic to other 
researchers.

https://doi.org/10.7554/eLife.67846
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https://github.com/pyControl/code/pulls?q=is%3Apr
https://www.cf-hw.org/harp
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Materials and methods
Key resources table 

Reagent type (species) 
or resource Designation

Source or  
reference Identifiers Additional information

Software,  
algorithm pyControl https://github.com/pyControl/code RRID:SCR_021612

Repository containing  
pyControl GUI  
and framework  
code

Other pyControl hardware

https://github. 
com/pyControl/ 
hardware RRID:SCR_021612

Repository containing  
pyControl  
hardware designs

Other pyControl Docs

https://pycontrol. 
readthedocs.io;
a PDF version of  
the docs is included  
in supplementary  
material RRID:SCR_021612

pyControl  
documentation

pyControl task files used in all experiments, and data and analysis code for the performance vali-
dation experiments, are included in the article’s data and code repository.

Framework performance validation
Framework performance was characterised using pyboards running MicroPython version 1.13 and 
pyControl version 1.6. Electrical signals used to characterise response latency and timing accuracy 
(Figure 5) were recorded at 50 kHz using a PicoScope 2204A USB oscilloscope.

To assess response latency (Figure 5A and B), a pyboard running the task file ​input_​follower.​py 
received a 51  Hz square wave input generated by the PicoScope’s waveform generator. The task 
turned an output on and off to match the state of the input signal. The latency distribution was 
assessed by recording 50 s of the input and output signals and evaluating the latency between the 
signals at each rising and falling edge.

To assess timing accuracy (Figure 5C and D), a pyboard running the task file ​triggered_​pulses.​py 
received a 51 Hz square wave input generated by the PicoScope’s waveform generator. The task trig-
gered a 10 ms output pulse whenever a rising edge occurred in the input signal. The output signals 
were recorded for 50 s, and the duration of each output pulses was measured to assess the distribu-
tion of timing errors.

In both cases, the experiments were performed separately in a low load and high load condition. In 
the low load condition, the task was not monitoring any other inputs. In the high load condition, the 
task was additionally acquiring data from two analog inputs at 1 kHz sample rate each, and monitoring 
two digital inputs, each of which was generating framework events in response to edges occurring as 
a Poisson process with average rate 200 Hz. These Poisson input signals were generated by a second 
pyboard running the task ​poisson_​generator.​py.

To assess the effect of garbage collection on pyControl timers (Figure 5E), the task file ​gc_​
timer_​test.​py was run on a pyboard. This uses pyControl timers to toggle one digital output on and 
off every 1 ms and another every 5 ms. The resulting signals were recorded using the PicoScope 
and plotted around a garbage collection episode identified by visually inspecting the 1 ms timer 
signal.

To assess the effect of garbage collection on digital input processing (Figure 5F), a signal comprising 
1 ms pulses every 10 ms was generated using the PicoScope, and connected to three digital inputs 
on a pyboard running the task ​gc_​inputs_​test.​py. The task configures one input to generate events 
on rising edges, one on falling edges, and one on both rising and falling edges, and uses a pyControl 
timer to trigger garbage collection 1ms before a subset of the input pulses. Event times recorded by 
pyControl were plotted to generate the figure.

Analysis and plotting of the framework validation data was performed in Python using code 
included in the data repository.

https://doi.org/10.7554/eLife.67846
https://github.com/pyControl/code
https://identifiers.org/RRID/RRID:SCR_021612
https://github.com/pyControl/hardware
https://github.com/pyControl/hardware
https://github.com/pyControl/hardware
https://identifiers.org/RRID/RRID:SCR_021612
https://pycontrol.readthedocs.io
https://pycontrol.readthedocs.io
https://identifiers.org/RRID/RRID:SCR_021612
https://github.com/pyControl/manuscript
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Application examples
The 5-CSRTT5.

Animals
The 5-CSRTT experiment used a cohort of eight male C57BL/6 mice, aged 3–4 months at the begin-
ning of training. Animals were group-housed (2–3 mice per cage) in Type II-Long individually ventilated 
cages (Greenline, Tecniplast, G), enriched with sawdust, sizzle-nest, and cardboard houses (Datesand, 
UK), and subjected to a 13  hr light/11  hr dark cycle. Mice were kept under food restriction at 85–95% 
of their average free-feeding weight which was measured over 3 days immediately prior to the start of 
food restriction at the start of the behavioural training. Water was available ad libitum.

This experiment was performed in accordance to the German Animal Rights Law (Tierschutzgesetz) 
2013 and approved by the Federal Ethical Review Committee (Regierungsprädsidium Tübingen) of 
Baden-Württemberg.

Behavioural hardware
The design of the operant boxes for the 5-CSRTT setups is discussed in detail in a separate manu-
script (Kapanaiah et al., 2021). Briefly, the box had a trapezoidal floorplan with the 5-choice wall at 
the wide end and reward receptacle at the narrow end of the trapezoid to minimise the floor area 
and hence reduce distractions. The side walls and roof were made of transparent acrylic to allow 
observation of the animal, the remaining walls were made from opaque PVC to minimise visual distrac-
tions (Figure  6A). Design files for the operant box, and peristaltic and syringe pumps for reward 
delivery, are at https://github.com/KaetzelLab/Operant-Box-Design-Files; Kaetzell, 2021. Potentially 
distracting features (house light, cables) were located outside of the box and largely invisible from the 
inside. The pyControl hardware used and the associated hardware definition are shown in Figure 6—
figure supplement 1. The operant box was enclosed by a sound attenuating chamber, custom made 
in 20 mm melamine-coated MDF, adapted from a design in the hardware repository. The pyControl 
breakout boards, and other PCBs that were not integrated into the box itself, were mounted on the 

Table 2. 5-choice serial reaction time task (5-CSRTT) training and challenge stages.
The parameters stimulus duration (SD) and inter-trial interval (ITI, waiting time before stimulus) are 
listed for each of the five training stages (S1–5) and the subsequent challenge protocols on which 
performance was tested for 1 day each (C1–5). For the training stages, performance criteria which 
had to be met by an animal on two consecutive days to move to the next stage are listed on the 
right. See Materials and methods for the definition of these performance parameters.

 
5-CSRTT training

 �  Task parameters Criteria for stage transition (two consecutive days)

Stage SD (s) ITI (s) # correct % correct % accuracy %omissions

S1 20 2 ≥30 ≥40 - -

S2 8 2 ≥40 ≥50 - -

S3 8 5 ≥80 ≤50

S4 4 5 ≥80 ≤50

S5 2 5 ≥80 ≤50

Challenges

C1 2 9 Impulsivity challenge

C2 1 5 Attention challenge 1

C3 0.8 5 Attention challenge 2

C4 2 5 Distraction: 1 s white noise within 0.5–4.5 s of ITI

C5 2
7, 9, 11, 
13 Variable ITI: pseudo-random, equal distribution

https://doi.org/10.7554/eLife.67846
https://github.com/KaetzelLab/Operant-Box-Design-Files
https://github.com/pyControl/hardware/tree/master/Sound_attenuating_chamber_small
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outside of the sound attenuating chamber, and a CCTV camera was mounted on the ceiling to monitor 
behaviour.

5-CSRTT training
The 5-CSRTT training protocol was similar to what we described previously (Grimm et  al., 2018; 
van der Veen et al., 2021). In brief, after initiation of food restriction, mice were accustomed to the 
reward (strawberry milk, Müllermilch, G) in their home cage and in the operant box (2–3 exposures 
each). Then, mice were trained on a simplified operant cycle in which all holes of the 5-poke wall were 
illuminated for an unlimited time, and the mouse could poke into any one of them to illuminate the 
reward receptacle on the opposite wall and dispense a 40 μl milk reward. Once mice attained at least 
30 rewards each in two consecutive sessions, they were moved to the 5-CSRTT.

During 5-CSRTT training, mice transitioned through five stages of increasing difficulty, based on 
reaching performance criteria in each stage (Table 2). The difficulty of each stage was determined by 
the length of time the stimulus was presented (SD) and the length of the ITI between the end of the 
previous trial and the stimulus presentation on the next trial.

The ITI was initiated when the subject exited the reward receptacle after collection of a reward 
or by the end of a timeout period (see below). The ITI was followed by illumination of one hole on 
the 5-choice wall for the SD determined by the training stage. A poke in the correct port during the 
stimulus, or during a subsequent 2 s hold period, was counted as a correct response, illuminating the 
reward receptacle and dispensing 20 μl of milk. If the subject either poked into any hole during the 
ITI (premature response), poked into a non-illuminated hole during the SD or hold period (incorrect 
response), or failed to poke during the trial (omission), the trial was not rewarded but instead termi-
nated with a 5 s timeout during which the house light was turned off. The relative numbers of each 
response type were used as performance indicators measuring premature responding [%premature 
= 100 * (number of premature responses)/(number of trials)], sustained attention [accuracy = 100 * 
(number of correct responses)/(number of correct and incorrect responses)], and lack of participation 
[%omissions = 100 * (number of omissions)/(number of trials)]. In all stages and tests, sessions lasted 
30 min and were performed once daily at the same time of day.

Test days with behavioural challenges were interleaved with at least one training day on the base-
line stage (stage 5; see Table 2 for parameters of all stages). For pharmacological validation, atom-
oxetine (Tomoxetine hydrochloride, Tocris, UK) diluted in sterile saline (0.2 mg/ml) or saline vehicle 
were injected i.p. at 10 μl/g mouse injection volume 30 min before testing started. For atomoxetine 
vs. vehicle within-subject comparison, two tests were conducted separated by 1 week, whereby four 
animals received atomoxetine on the first day, while the other four received vehicle and vice versa 
for the second day. Effects of challenges (compared to performance on the prior day with baseline 
training) and atomoxetine (compared to performance under vehicle) were assessed by paired-samples 
t-tests. Behavioural data gathered in the 5-CSRTT was analysed with Excel and SPSS26.0 (IBM Inc, US).

Vibrissae-based object localisation task
Animals
Subjects were three female mice expressing the calcium-sensitive protein GCaMP6s in excitatory 
neurons, derived by mating the floxed Ai94(TITL-GCaMP6s)-D line (Jackson Laboratories; stock 
number 024742) with the CamKII-tta (Jackson Laboratories; stock number 003010). Animal husbandry 
and experimental procedures were approved and conducted in accordance with the United Kingdom 
Animals (Scientific Procedures) Act 1986 under project licence P8E8BBDAD and personal licences 
from the Home Office.

Behavioural hardware
Mice were head-fixed on a treadmill fashioned from a 24 cm diameter Styrofoam cylinder covered with 
1.5-mm-thick neoprene. An incremental optical encoder (Broadcom HEDS-5500#A02; RS Components) 
was used in conjunction with a pyControl rotary encoder adapter to monitor mouse running speed. The 
pole used for object detection was a blunt 18G needle mounted, via a 3d-printed arm, onto a stepper 
motor (RS PRO Hybrid 535-0467; RS Components). The stepper motor was mounted onto a motorised 
linear stage (DDSM100/M; Thorlabs) used to move the pole towards and away from the whisker pad 

https://doi.org/10.7554/eLife.67846
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(controlled by a K-Cube Brushless DC Servo Driver [KBD101; Thorlabs]). The pyControl hardware used 
and the associated hardware definition are shown in Figure 7—figure supplement 1.

Surgery
6- to 10-week-old mice were anaesthetised with isoflurane (0.8–1.2% in 1 l/min oxygen) and implanted 
with custom titanium headplates for head fixation and 4 mm diameter cranial windows for imaging 
as described previously (Chong et al., 2019). Peri- and postoperative analgesia was used (meloxicam 
5 mg/kg and buprenorphine 0.1 mg/kg), and mice were carefully monitored for 7 days post surgery.

Behavioural training
Following recovery from surgery, mice were habituated to head fixation (Chong et al., 2019) prior to 
training on the vibrissa-based object localisation task as detailed in the ‘Results’ section. Data were 
analysed using MATLAB (MathWorks).

Social decision-making task
Animals
12 male C57BL6/J mice (Charles River, France) were used, aged 3 months at the beginning of the 
experiment. Animals were group-housed (four animals per cage) and maintained with ad libitum 
access to food and water in a 12–12 hr reversed light cycle (lights off at 8 am) at the Animal Facility 
of the Instituto de Neurociencias of Alicante. Short food restrictions (2  hr before the behavioural 
testing) were performed in the early phases of individual training to increase motivation for food-
seeking behaviour, otherwise animals were tested with ad libitum chow available in their home cage. 
All experimental procedures were performed in compliance with institutional Spanish and European 
regulations, as approved by the Universidad Miguel Hernández Ethics committee.

Behavioural hardware
The social decision-making task was performed in a double maze, where two animals, the focal and 
the recipient, would interact and work to obtain food rewards. The outer walls of the double maze 
were of white laser-cut acrylic. Each double maze was divided by a transparent and perforated wall 
creating the individual mazes for each mouse. For each individual maze, inner walls separating central 
choice and side reward areas contained the mechanisms for sliding doors, 3D-printed nose-pokes, 
and position detectors. These inner walls were made of transparent laser-cut acrylic in order to allow 
visibility of the animal in the side arms of the maze. Walls of the central choice area were frosted to 
avoid reflections that could interfere with automated pose estimation of the interacting animals in this 
area.

Each double T-maze behavioural setup was positioned inside a custom-made sound isolation box, 
with an infrared-sensitive camera (PointGrey Flea3-U3-13S2M CS, Canada) positioned above the 
maze to track the animals’ location. The chamber was illuminated with dim white light (4  lux) and 
infrared illumination located on the ceiling of the sound attenuating chamber. The pyControl hard-
ware configuration and associated hardware definition file are shown in Figure 8—figure supplement 
1. Food pellet rewards were dispensed using pellet dispensers made of 3D-printed and laser-cut parts 
actuated by a stepper motor (NEMA 42HB34F08AB, e-ika electrónica y robótica, Spain) controlled by 
a pyControl stepper driver board, placed outside the sound isolation box and delivering the pellets 
to the 3D-printed food receptacles through a silicon tube. Design files for the pellet dispenser and 
receptacles are at https://github.com/MarquezLab/Hardware; Marquez, 2021. The sliding doors that 
control access to the side arms were actuated by pneumatic cylinders (Cilindro ISO 6432, Vestonn 
Pneumatic, Spain) placed below the base of the maze, providing silent and smooth horizontal move-
ment of the doors. These were in turn controlled via solenoid valves (8112005201, Vestonn Pneumatic) 
interfaced with pyControl using an optocoupled relay board (Cebek-T1, Fadisel, Spain). The speed of 
the opening/closing of the doors could be independently regulated by adjusting the pressure of the 
compressed air to the solenoid valves.

Behavioural training
Individual training and social decision-making protocols are described in the ‘Results’ section. All 
behavioural experiments were performed during the first half of the dark phase of the cycle. Data were 

https://doi.org/10.7554/eLife.67846
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analysed with Python (Python Software Foundation, v3.6.5), and statistical analysis was performed 
with IBM SPSS Statistics (version 26).
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