
Akam et al. eLife 2022;11:e67846. DOI: https://​doi.​org/​10.​7554/​eLife.​67846 � 1 of 25

Open-source, Python-based, hardware
and software for controlling behavioural
neuroscience experiments
Thomas Akam1,2*, Andy Lustig3, James M Rowland4, Sampath KT Kapanaiah5,
Joan Esteve-Agraz6, Mariangela Panniello4,7, Cristina Márquez6, Michael M Kohl4,7,
Dennis Kätzel5, Rui M Costa2,8†, Mark E Walton1,9†

1Department of Experimental Psychology, University of Oxford, Oxford, United
Kingdom; 2Champalimaud Neuroscience Program, Champalimaud Centre for the
Unknown, Lisbon, Portugal; 3Janelia Research Campus, Howard Hughes Medical
Institute, Ashburn, United States; 4Department of Physiology Anatomy & Genetics,
University of Oxford, Oxford, United Kingdom; 5Institute of Applied Physiology,
Ulm University, Ulm, Germany; 6Instituto de Neurociencias (Universidad Miguel
Hernández-Consejo Superior de Investigaciones Científicas), Sant Joan d’Alacant,
Spain; 7Institute of Neuroscience and Psychology, University of Glasgow, Glasgow,
United Kingdom; 8Department of Neuroscience and Neurology, Zuckerman Mind
Brain Behavior Institute, Columbia University, New York, United States; 9Wellcome
Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom

Abstract Laboratory behavioural tasks are an essential research tool. As questions asked of
behaviour and brain activity become more sophisticated, the ability to specify and run richly struc-
tured tasks becomes more important. An increasing focus on reproducibility also necessitates accu-
rate communication of task logic to other researchers. To these ends, we developed pyControl, a
system of open-source hardware and software for controlling behavioural experiments comprising a
simple yet flexible Python-based syntax for specifying tasks as extended state machines, hardware
modules for building behavioural setups, and a graphical user interface designed for efficiently
running high-throughput experiments on many setups in parallel, all with extensive online docu-
mentation. These tools make it quicker, easier, and cheaper to implement rich behavioural tasks
at scale. As important, pyControl facilitates communication and reproducibility of behavioural
experiments through a highly readable task definition syntax and self-documenting features. Here,
we outline the system’s design and rationale, present validation experiments characterising system
performance, and demonstrate example applications in freely moving and head-fixed mouse
behaviour.

Editor's evaluation
The importance of carefully-considered animal behavior to systems neuroscience cannot be over-
stated. Despite this, flexible tools for carefully monitoring and controlling behavioral apparatuses
have often required significant new development by individual laboratories. The open source
pyControl software and hardware toolbox is an excellent exemplar of a robust and reliable plat-
form for experiments, with a simple interface, good performance, excellent documentation, and a
growing an engaged user community. This work benchmarks and documents pyControl and hope-
fully will serve as a useful introduction to an even broader community.

RESEARCH ARTICLE

*For correspondence:
thomas.akam@psy.ox.ac.uk
†These authors contributed
equally to this work

Competing interest: See page
22

Funding: See page 22

Preprinted: 23 February 2021
Received: 24 February 2021
Accepted: 03 January 2022
Published: 19 January 2022

Reviewing Editor: Caleb
Kemere, Rice University, United
States

‍ ‍ Copyright Akam et al. This
article is distributed under the
terms of the Creative Commons
Attribution License, which
permits unrestricted use and
redistribution provided that the
original author and source are
credited.

https://en.wikipedia.org/wiki/Open_access
https://creativecommons.org/
https://elifesciences.org/
https://doi.org/10.7554/eLife.67846
mailto:thomas.akam@psy.ox.ac.uk
https://doi.org/10.1101/2021.02.22.432227
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Akam et al. eLife 2022;11:e67846. DOI: https://​doi.​org/​10.​7554/​eLife.​67846 � 2 of 25

Introduction
Animal behaviour is of fundamental scientific interest, both in its own right and in relation to brain func-
tion (Krakauer et al., 2017). Though understanding natural behaviour is the ultimate goal, the tight
control offered by laboratory tasks remains an essential tool in characterising learning mechanisms.
To serve the needs of contemporary neuroscience, hardware and software for controlling behavioural
experiments should be both flexible and easy to use. Additionally, an increasing focus on reproduc-
ibility (Baker, 2016; International Brain Laboratory et al., 2021) necessitates that behaviour control
systems facilitate communication and replication of behavioural paradigms across labs.

Available commercial solutions often fall short of these desiderata. Proprietary closed-source hard-
ware and software make it difficult to extend or adapt functionality beyond explicitly implemented use
cases. Additionally, programming behavioural tasks on commercial systems can be surprisingly non-
user-friendly, perhaps due to limitations of underlying legacy hardware. Commercial hardware is also
typically very expensive considering the level of technology it represents, disadvantaging researchers
outside well-funded institutions (Marder, 2013; Maia Chagas, 2018), and constraining the ability to
scale behavioural assays for high throughput.

For these reasons, many groups implement their own behavioural hardware either using low-
cost microcontrollers such as Arduinos or raspberry PI, or generic laboratory control software such
as Labview (Devarakonda et al., 2016; O’Leary et al., 2018; Gurley, 2019; Bhagat et al., 2020;
Buscher et al., 2020). Though highly flexible, building behavioural control systems from scratch has
some disadvantages. It results in much duplication of effort as a lot of the required functionality is
generic across experiments. Additionally, unless custom systems are well documented, it is hard for
users to meaningfully share experimental protocols. This is important because scientific publications
do not consistently contain sufficient information to constrain the details of the task used, yet such
details are often crucial for reproducing the behaviour. Making task code public is therefore key to
reproducibility, but this is only effective if it is readable and documented, as well as functional.

To address these limitations, we developed pyControl; a system of open-source hardware and soft-
ware for controlling behavioural experiments. We report the design and rationale of system compo-
nents, validation experiments characterising system performance, and behavioural data illustrating
applications in three widely used, contrasting behavioural paradigms: the 5-choice serial reaction
time task (5-CSRTT) in operant chambers, sensory discrimination in head-fixed animals, and a social
decision-making task in a maze apparatus.

Results
System overview
pyControl consists of three components, the pyControl framework, hardware, and graphical user inter-
face (GUI). The framework implements the syntax used to program behavioural tasks. User-created
task definition files, written in Python, run directly on microcontroller hardware, supported by frame-
work code that determines when user-defined functions are called. This takes advantage of Micro-
Python, a recently developed port of the popular high-level language Python to microcontrollers.
The framework handles functionality that is common across tasks, such as monitoring inputs, setting
and checking timers, and streaming data back to the computer. This minimises boilerplate code in
task files, while ensuring that common functionality is implemented reliably and efficiently. Combined
with Python’s highly readable syntax, this results in task files that are quick and straightforward to
write, but also easy to read and understand (Figure 1), promoting replicability and communication of
behavioural experiments.

pyControl hardware consists of a breakout board which interfaces a pyboard microcontroller
with ports and connectors, and a set of devices such as nose-pokes, audio boards, LED drivers,
rotary encoders, and stepper motor controllers that are connected to the breakout board to create
behavioural setups. Breakout boards connect to the computer via USB. Multiple breakout boards can
be connected to a single computer, each controlling a separate behavioural setup. pyControl imple-
ments a simple but robust mechanism for synchronising data with other systems such as cameras or
physiology hardware. All hardware is fully open source, and assembled hardware is available at low
cost from the Open Ephys store and LabMaker.

https://doi.org/10.7554/eLife.67846
https://micropython.org/
https://micropython.org/
http://www.open-ephys.org/pycontrol
https://www.labmaker.org/collections/neuroscience

 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Akam et al. eLife 2022;11:e67846. DOI: https://​doi.​org/​10.​7554/​eLife.​67846 � 3 of 25

The GUI provides a graphical interface for setting up and running experiments, visualising
behaviour, and configuring setups, and is designed to facilitate high-throughput behavioural testing
on many setups in parallel. To promote replicability, the GUI implements self-documenting features
which ensure that all task files used to generate data are stored with the data itself, and that any
changes to task parameters from default values are recorded in the data files.

Task definition syntax
Here, we give an overview of the task definition syntax and how this contributes to the flexibility of
the system. Detailed information about task programming is provided in the documentation and set
of example tasks is included with the GUI, including probabilistic reversal learning and random ratio
instrumental conditioning.

pyControl tasks are implemented as state machines, the basic elements of which are states and
events. At any given time, the task is in one of the states, and the current state determines how the
task responds to events. Events may be generated externally, for example, by the subject’s actions,
or internally by timers.

Figure 1 shows the complete task definition code and the corresponding state diagram for a
simple task in which pressing a button three times turns on an LED for 1 s. The code first defines the

LED off state

LED on state
entry: turn LED on
 set timer
 press_n = 0

exit : turn LED off

button press
press_n = press_n + 1

timer

if press_n == 3

else

from pyControl.utility import *
from devices import *

Define hardware

button = Digital_input('X1', rising_event='button_press')
LED = Digital_output('X2')

States and events.

states = ['LED_on',
 'LED_off']

events = ['button_press']

initial_state = 'LED_off'

Variables

v.press_n = 0

State behaviour functions.

def LED_off(event):
 if event == 'button_press':
 v.press_n = v.press_n + 1
 print('Press number {}'.format(v.press_n))
 if v.press_n == 3:
 goto_state('LED_on')

def LED_on(event):
 if event == 'entry':
 LED.on()
 timed_goto_state('LED_off', 1*second)
 v.press_n = 0
 elif event == 'exit':
 LED.off()

Figure 1. Example task. Complete task definition code (left panel) and corresponding state diagram (right panel) for a simple task that turns an LED on
for 1 s when a button is pressed three times. Detailed information about the task definition syntax is provided in the Programming Tasks documentation.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Example data file.

https://doi.org/10.7554/eLife.67846
https://pycontrol.readthedocs.io/en/latest/user-guide/programming-tasks/

 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Akam et al. eLife 2022;11:e67846. DOI: https://​doi.​org/​10.​7554/​eLife.​67846 � 4 of 25

hardware that will be used, lists the task’s state and event names, specifies the initial state, and initia-
lises task variables.

The code then specifies task behaviour by defining a state behaviour function for each state. When-
ever an event occurs, the state behaviour function for the current state is called with the event name
as an argument. Special events called entry and exit occur when a state is entered and exited allowing
actions to be performed on state transitions. State behaviour functions typically comprise a set of if
and else if statements that determine what happens when different events occur in that state. Any
valid MicroPython code can be placed in a state behaviour function, the only constraint being that it
must execute fast as it will block further state machine behaviour while executing. Users can define
additional functions and classes in the task definition file that can be called from state behaviour func-
tions. For example, code implementing a reversal learning task’s block structure might be separated
from the state machine code in a separate function, improving readability and maintainability.

As should be clear from the above, while pyControl makes it easy to specify state machines, tasks
are not strict finite state machines, in which the response to an event depends only on the current
state, but rather extended state machines in which variables and arbitrary code can also determine
behaviour.

We think this represents a good compromise between enforcing a specific structure on task code,
which promotes readability and reliability and allows generic functionality to be efficiently imple-
mented by the framework, while allowing users enough flexibility to compactly define a diverse range
of complex tasks.

A key framework component is the ability to set timers to trigger state transitions or events. The
timed_goto_state function, used in the example, triggers a transition to a specified state after a spec-
ified delay. Other functions allow timers to trigger a specified event after a specified delay, or to
cancel, pause and un-pause timers that have already been set.

To make things happen in parallel with the main state set of the task, the user can define an
all_states function which is called, with the event name as an argument, whenever an event occurs
irrespective of the state the task is in. This can be used in combination with timers and variables to
implement task behaviour that occurs independently from or interacts with the main state set. For
example to make something happen after a specified duration, irrespective of the current state, the
user can set a timer to trigger an event after the required duration and use the all_states function to
perform the required action whenever the event occurs.

pyControl provides a set of functions for generating random variables, and maths functions are
available via the MicroPython maths module. Though MicroPython implements a large subset of the
core Python language (see the MicroPython docs), it is not possible to use packages such as NumPy
or SciPy as they are too large to fit on a microcontroller.

Framework update priority:

1. Process hardware interrupts

2. Process events in event queue

3. Check for elapsed timers

4. Check for input from computer

5. Output data to computer

Event Queue

Data output queue

Timers

Hardware
inputs

State machine

external
events

timer
events

Hardware
outputs

analog data

events

set timers

Pyboard microcontroller

Graphical
user

interface

Computer

data

set variables

control
outputs

state
transitions

Figure 2. Framework diagram. Diagram showing the flow of information between different components of the framework and the graphical user
interface (GUI) while a task is running. Right panel shows the priority with which processes occur in the framework update loop.

https://doi.org/10.7554/eLife.67846
https://docs.micropython.org/en/latest/library/index.html

 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Akam et al. eLife 2022;11:e67846. DOI: https://​doi.​org/​10.​7554/​eLife.​67846 � 5 of 25

Framework implementation
The pyControl framework consists of approximately 1000 lines of Python code. Figure 2 shows a
simplified diagram of information flow between system components. Hardware inputs and elapsing
timers place events in a queue where they await processing by the state machine. When events are
processed, they are placed in a data output queue along with any state transitions and user print
statements that they generate. This design allows different framework update processes to be prior-
itised by urgency, rather than by the order in which they become necessary, ensuring the framework
responds at low latency even under heavy load (see validation experiments below). Top priority is
given to processing hardware interrupts, secondary priority to passing events from the event queue
to the state machine and processing their consequences, lowest priority to sending and receiving data
from the computer.

Digital inputs are detected by hardware interrupts and can be configured to generate separate frame-
work events on rising and/or falling edges. Analog inputs can stream continuous data to the computer
and trigger framework events when the signal goes above and/or below a specified threshold.

Hardware
A typical pyControl hardware setup consists of a computer running the GUI, connected via USB to one
or more breakout boards, each of which controls a single behavioural setup (Figure 3A). As task code
runs on the microcontroller, the computer does not need to be powerful. We typically use standard
office desktops running Windows. We have not systematically tested the maximum number of setups
that can be controlled from one computer but have run 24 in parallel without issue.

The breakout board interfaces a pyboard microcontroller (an Arm Cortex M4 running at 168 MHz
with 192 KB RAM) with a set of behaviour ports used to connect devices that make up behavioural
setups, and BNC connectors, indicator LEDs, and user pushbuttons (Figure 3B). Each behaviour port
is an RJ45 connector (compatible with standard network cables) with power lines (ground, 5 V, 12 V),
two digital inputs/output (DIO) lines that are directly connected to microcontroller pins, and two
driver lines for switching higher current loads. The driver lines are low-side drivers (i.e. they connect
the negative side of the load to ground) that can switch currents up to 150 mA at voltages up to 12 V,
with clamp diodes to the 12 V rail to support inductive loads such as solenoids. Two ports have an
additional driver line and two have an additional DIO. Six of the behaviour port DIO lines can alterna-
tively be used as analog inputs and two as analog outputs. Three ports support UART and two support
I2C serial communication over their DIO lines. The pinout of the behaviour port is detailed in Table 1.

GUI

Breakout
board

Behavioural
setup

USB

RJ45

Breakout board front

Breakout board back

A B

Figure 3. pyControl hardware. (A) Diagram of a typical pyControl hardware setup, a single computer connects to multiple breakout boards, each of
which controls one behavioural setup. Each behavioural setup comprises devices connected to the breakout board RJ45 behaviour ports using standard
network cables. (B) Breakout board interfacing the pyboard microcontroller with a set of behaviour ports, BNC connectors, indicator LEDs, and user
buttons. See Figure 6—figure supplement 1, Figure 7—figure supplement 1, and Figure 8—figure supplement 1 for hardware configurations used
in the behavioural experiments reported in this article, along with their associated hardware definition files. For more information, see the hardware
docs.

https://doi.org/10.7554/eLife.67846
https://pycontrol.readthedocs.io/en/latest/user-guide/hardware/
https://pycontrol.readthedocs.io/en/latest/user-guide/hardware/

 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Akam et al. eLife 2022;11:e67846. DOI: https://​doi.​org/​10.​7554/​eLife.​67846 � 6 of 25

A variety of devices have been developed that connect to the ports, including nose-pokes, levers,
audio boards, rotary encoders, stepper motor drivers, lickometers, and LED drivers (Figure 6—figure
supplement 1, Figure 7—figure supplement 1, and Figure 8—figure supplement 1). Each has
its own driver file that defines a Python class for controlling the device. For detailed information
about devices, see the hardware docs. The hardware repository also contains open-source designs for
operant boxes and sound attenuating chambers.

Though it is possible to specify the hardware that will be used directly in a task file as shown in
Figure 1, it is typically done in a separate hardware definition file that is imported by the task. This
avoids redundancy when many tasks are run on the same setup. Additionally, abstracting devices used
in a task from the specific pins/ports they are connected to allows the same task to run on different
setups as long as their hardware definitions instantiate the required devices. See Figure 6—figure
supplement 1, Figure 7—figure supplement 1, and Figure 8—figure supplement 1 for hardware
definitions and corresponding hardware diagrams for the example applications detailed below.

The design choice of running tasks on a microcontroller, and the specific set of devices developed
to date, imposes some constraints on experiments supported by the hardware. The limited compu-
tational resources preclude generating complex visual stimuli, making pyControl unsuitable for most
visual physiology in its current form. The devices for playing audio are aimed at general behavioural
neuroscience applications and may not be suitable for some auditory neuroscience applications. One
uses the pyboard’s internal DAC for stimulus generation, and hence is limited to simple sounds such as
sine waves or noise. Another plays WAV files from an SD card, allowing for diverse stimuli but limited
to 44 kHz sample rate.

To extend the functionality of pyControl to application not supported by the existing hardware, it is
straightforward to interface setups with user-created or commercial devices. This requires creating an

Table 1. Behaviour port pinout.
All behaviour ports support the standard function for each pin, comprising two digital input/output
(DIO) lines connected directly to microcontroller pins, two power driver lines connected to low-
side MOSFET drivers for switching higher power loads, and +12 V, + 5 V and ground lines. Some
behaviour ports support alternate functions on some pins. On breakout board version 1.2, ports 1
and 2 have an additional power driver line (POW C) and ports 3 and 4 have an additional DIO line
(DIO C). Some DIO lines support analog input/output (ADC/DAC), serial communication (I2C, UART,
or CAN), or decoding of quadrature signals from rotary encoders (ENC).

Pinout of behaviour port RJ45 connectors

Standard function Alternate function Pin

Ground None 2

+5 V None 6

+12 V None 8

Digital input/output (DIO) A Analog input (ADC), I2C-SCL, UART-TX, CAN-RX, ENC 1

Digital input/output (DIO) B Analog input (ADC), I2C-SDA, UART-RX, CAN-TX, ENC 4

Power driver (POW) A None 3

Power driver (POW) B None 7

None DIO C, POW C, analog output (DAC), analog input (ADC) 5

Alternate functions available on each behaviour port of breakout board version 1.2

Port Alternate functions

1 POW C, UART 4, ENC 5, ADC (on DIO A and B)

2 POW C, CAN 1

3 DIO C, DAC 1, I2C 1, UART 1, ENC 4, ADC (on DIO C)

4 DIO C, DAC 2, I2C 2, UART 3, ADC (on DIO C)

5 CAN 2

6 ADC (on DIO A and B)

https://doi.org/10.7554/eLife.67846
https://pycontrol.readthedocs.io/en/latest/user-guide/hardware/

 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Akam et al. eLife 2022;11:e67846. DOI: https://​doi.​org/​10.​7554/​eLife.​67846 � 7 of 25

electrical connection between the devices and defining the inputs and outputs in the hardware defi-
nition. Triggering external hardware from pyControl, or task events from external devices, is usually
achieved by connecting the device to a BNC connector on the breakout board, and using the stan-
dard pyControl digital input or output classes. More complex interactions with external devices may
involve multiple inputs and outputs and/or serial communication. In this case, the electrical connection
is typically made to a behaviour port as these carry multiple signal lines. A port adapter board, which
breaks out an RJ45 connector to a screw terminal, simplifies connecting wires. Alternatively, if more
complex custom circuitry is required, for example, to interface with a sensor, it may make sense to
design a custom-printed circuit board with an RJ45 connector, similar to existing pyControl devices,
as this is more scalable and robust than implementing the circuit on a breadboard. To simplify instanti-
ating devices comprising multiple inputs and outputs, or controlling devices which require dedicated
code, users can define a Python class representing the device. These are typically simple classes which
instantiate the relevant pyControl input and output objects as attributes, and may have methods
containing code for controlling the device, for example, to generate serial commands. More informa-
tion is provided in the hardware docs, and the design files and associated code for existing pyControl
devices provide a useful starting point for new designs. Alla Karpova’s lab at Janelia Research Campus
has independently developed and open-sourced several pyControl-compatible devices (GitHub;
Karpova, 2021).

For neuroscience applications, straightforward and failsafe synchronisation between behavioural
data and other hardware such as cameras or physiology recordings is essential. pyControl implements
a simple but robust method for this. Sync pulses are sent from pyControl to the other systems, which
each record the pulse times in their own reference frame. The pulse train has random inter-pulse inter-
vals which ensures a unique match between pulse sequences recorded on each system, so it is always
possible to identify which pulse corresponds to which even if pulses are missing (e.g. due to forgetting
to turn a system on until after the start of a session). This also makes it unambiguous whether two
files come from the same session in the event of a file name mix-up. A Python module is provided for
converting times between different systems using the sync pulse times recorded by each. For more
information, see the synchronisation docs.

Graphical user interface
The GUI provides two ways of setting up and running tasks; the Run task and Experiments tabs, as well
as a Setups tab used to name and configure hardware setups.

The Run task tab allows the user to quickly upload and run a task on a single setup. It is typically
used for prototyping tasks and testing hardware, but can also be used to acquire data. The values of
task variables can be modified before the task is started or while the task is running. During the run,
a log of events, state entries, and user print statements is displayed, and the events, states, and any
analog signals are plotted live in scrolling plot panels.

The Experiments tab is used for running experiments on multiple setups in parallel and is designed
to facilitate high-throughput experiments where multiple users run cohorts of animals through a set of
boxes. An experiment consists of a set of subjects run in parallel on the same task. If different subjects
need to be run in parallel on different tasks, this can be achieved by opening multiple instances of
the GUI.

To configure an experiment, the user specifies which subjects will run on which setups, and the
values of any variables that will be modified before the task starts. Variables can be set to the same
value for all subjects or for individual subjects. Variables can be specified as Persistent, causing their
value to be stored on the computer at the end of the session, and subsequently set to the same value
the next time the experiment is run. Variables can be specified as Summary, causing their values to be
displayed in a table at the end of the framework run and copied to the clipboard in a format that can
be pasted directly into a spreadsheet, for example, to record the number of trials and rewards for each
subject. Experiment configurations can be saved and subsequently loaded.

When an experiment is run, the experiments tab changes from the configure experiment interface
to a run experiment interface. The session can be started and stopped individually for each subject
or simultaneously for all subjects. While each setup is running, a log of events, state entries, and user
print statements is displayed, along with the current state, most recent event, and print statement
(Figure 4). Variable values can be viewed and modified for individual subjects during the session.

https://doi.org/10.7554/eLife.67846
https://github.com/Karpova-Lab
https://pycontrol.readthedocs.io/en/latest/user-guide/synchronisation/

 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Akam et al. eLife 2022;11:e67846. DOI: https://​doi.​org/​10.​7554/​eLife.​67846 � 8 of 25

A tabbed plot window can be opened showing live scrolling plots of the events, states, and analog
signals for each subject, and individual subjects’ plots can be undocked to allow behaviour of multiple
subjects to be visualised simultaneously.

The GUI is implemented entirely in Python using the PyQt GUI framework and PyQtGraph plotting
library. The GUI is cross-platform and has been used on Windows, Mac, and Linux, though most devel-
opment and testing has been under Windows. The code is organised into modules for communication
with the pyboard, different GUI components, and data visualisation.

pyControl data
Data from pyControl sessions are saved as text files (see Figure 1—figure supplement 1 for an
example). When a session starts, information including the subject, task and experiment names, and
start data and time, are written to the data file. While the task is running, all events and state tran-
sitions are saved automatically with millisecond timestamps. The user can output additional data by
using the print function in their task file. This outputs the printed line to the computer, where it is
displayed in the log and saved to the data file, along with a timestamp. In decision-making tasks, we
typically print one line each trial indicating the trial number, the subject’s choice, and trial outcome,
along with any other relevant task variables. If an error occurs while the framework is running, a trace-
back reporting the error and line number in the task file where it occurred is displayed in the log and
written to the data file. Continuous data from analog inputs is saved in separate binary files.

In addition to data files, task definition files used to generate data are copied to the experiment’s
data folder, with a file hash appended to the file name that is also recorded in the corresponding
session’s data file. This ensures that every task file version used in an experiment is automatically saved
with the data, and it is always possible to uniquely identify the specific task file used for a particular
session. If any variables are changed from default values in the task file, this is automatically recorded

Figure 4. pyControl graphical user interface (GUI). The GUI’s Experiments tab is shown on the left running a multi-subject experiment, with the
experiment’s plot window open on the right showing the recent states and events for one subject. For images of the other GUI functionality, see the GUI
docs.

https://doi.org/10.7554/eLife.67846
https://pycontrol.readthedocs.io/en/latest/user-guide/graphical-user-interface/
https://pycontrol.readthedocs.io/en/latest/user-guide/graphical-user-interface/

 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Akam et al. eLife 2022;11:e67846. DOI: https://​doi.​org/​10.​7554/​eLife.​67846 � 9 of 25

in the session’s data file. These automatic self-documenting features are designed to promote repli-
cability of pyControl experiments. We encourage users to treat the versioned task files as part of the
experiment’s data and include them in data repositories.

Modules are provided for importing data files into Python for analysis and for visualising sessions
offline. Importing a data file creates a Session object with attributes containing the session’s informa-
tion and data. For convenience, two representations of the state and event data are generated: (1) a
dictionary whose keys are event and state names, and values are NumPy arrays with the corresponding
event or state entry times, and (2) a list of events and state entries in the order they occurred, whose
elements are named tuples with the event/state name and timestamp as attributes. For more infor-
mation, see the data docs.

Framework performance
To validate the performance of the pyControl framework, we measured the system’s response latency
and timing accuracy. Response latency was assessed using a task which set a digital output to match
the state of a digital input driven by a square wave signal. We recorded the input and output signals

500 550 600 650
Latency (μs)

0

500

1000

1500

2000

ev

en
ts

Response latency
low load

1000 2000 3000
Latency (μs)

0

100

200

300

400

500

Response latency
high load

−750 −500 −250 0 250
Timing error (μs)

0

20

40

60

80

100

Timing accuracy
low load

0 1000 2000
Timing error (μs)

0

20

40

60

80

Timing accuracy
high load

A B C D

0 5 10 15 20 25
Time (ms)

2V

Garbage collection
effect on timersE

output 1

output 2

0 20 40 60
Time (ms)

Input 3 Rising event
Input 3 Falling event

Input 1 Rising event
Input 2 Falling event

GC trigger

Input 1

Input 2

Input 3

GC trigger
timer

Garbage collection
effect on inputsF

Figure 5. Framework performance. (A) Distribution of latencies for the pyControl framework to respond to a change in a digital input by changing the
level of a digital output. (B) As (A) but under a high load condition (see main text). (C) Distribution of pulse duration errors when framework generates
a 10 ms pulse. (D) As (C) but under a high load condition. (E) Effect of MicroPython garbage collection on pyControl timers. Signals are two digital
outputs, one toggled on and off every 1 ms (blue), and one every 5 ms (orange), using pyControl timers. The 1 ms timer that that elapsed during
garbage collection (indicated by grey shading) was processed once garbage collection had finished, causing a short delay. Garbage collection had
no effect on the 5 ms timer that was running but did not elapse during garbage collection. (F) Effect of garbage collection on pyControl inputs. A
signal comprising 1 ms pulses every 10 ms was received by three pyControl digital inputs. Input 1 was configured to generated framework events on
rising edges (green), input 2 on falling edges (red), and input 3 on both rising (blue) and falling (orange) edges. Garbage collection (indicated by grey
shading) was triggered 1 ms before an input pulse. Inputs 1 and 2 both generated their event that occurred during garbage collection with the correct
timestamp. If multiple events occur on a single digital input during a single garbage collection, only the last event is generated correctly, causing the
missing rising event on input 3.

https://doi.org/10.7554/eLife.67846
https://pycontrol.readthedocs.io/en/latest/user-guide/pycontrol-data/

 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Akam et al. eLife 2022;11:e67846. DOI: https://​doi.​org/​10.​7554/​eLife.​67846 � 10 of 25

and plot the distribution of latencies between the two signals across all rising and falling edges
(Figure 5A and B). In a ‘low load’ condition where the pyboard was not processing other inputs,
response latency was 556 ± 17 μs (mean ± SD). This latency reflects the time to detect the change in
the input, trigger a state transition, and update the output during processing of the ‘entry’ event in
the new state. We also measured response latency in a ‘high load’ condition where the pyboard was
additionally monitoring two digital inputs each generating framework events in response to edges
occurring as Poisson processes with an average rate of 200 Hz, and acquiring signal from two analog
inputs at 1 kHz sample rate each. In this high load condition, the response latency was 859 ± 241 μs
(mean ± SD), the longest latency recorded was 3.3 ms with 99.6% of latencies < 2 ms.

To assess timing accuracy, we used a task which turned on a digital output for 10 ms when a rising
edge was received on a digital input. The input was driven by a 51 Hz square wave to ensure that the
timing of input edges drifted relative to the framework’s 1 ms clock ticks. We plot the distribution of
errors between the measured durations of the output pulses and the 10 ms target duration (Figure 5C
and D). In the low load condition, timing errors were approximately uniformly distributed across 1 ms
(mean error –220 μs, SD 282 μs), as expected given the 1 ms resolution of the pyControl framework
clock ticks. In the high load condition, timing variability was only slightly increased (mean –10 μs, SD
353 μs), with the largest recorded error 1.9 ms and 99.5% of errors < 1 ms. Overall, these data show
that the framework’s latency and timing accuracy are sufficient for the great majority of neuroscience
applications, even when operating under loads substantially higher than experienced in typical tasks.

Users who require very tight timing/latency performance should be aware of MicroPython’s auto-
matic garbage collection. Garbage collection is triggered when needed to free up memory and takes
a couple of milliseconds. Normal code execution is paused during garbage collection, though inter-
rupts (used to register external inputs and update the framework clock) run as normal. pyControl
timers that elapse during garbage collection are processed once it has completed (Figure 5E). Timers
that are running but do not elapse during garbage collection are unaffected. Digital inputs that occur
during garbage collection are registered with the correct timestamp (Figure 5F), but will only be
processed once garbage collection has completed. The only situation where events may be missed
due to garbage collection is if a single digital input receives multiple event-triggering edges during a
single garbage collection, in which case only the last event is processed correctly (Figure 5F). To avoid
garbage collection affecting critical processing, the user can manually trigger garbage collection at
a time when it will not cause problems (see MicroPython docs), for example, during the inter-trial
interval (ITI). In the latency and timing accuracy validation experiments (Figure 5A–D), garbage collec-
tion was triggered by the task code at a point in the task where it did not affect the measurements.

A final constraint is that as each event takes time to process, there is a maximum continuous event rate
above which the framework cannot process events as fast as they occur, causing the event queue to grow
until available memory is exhausted. This rate will depend on the processing triggered by each event,
but is approximately 960 Hz for digital inputs triggering state transitions but no additional processing.
In practice, we have never encountered this when running behavioural tasks as average event rates are
typically orders of magnitude lower and transiently higher rates are buffered by the queue.

Application examples
We illustrate how pyControl is used in practice with example applications in operant box, head-fixed,
and maze-based tasks. Task and hardware definition files for these experiments are provided in the
article’s data repository. For additional use cases, see also Korn et al., 2021; Akam et al., 2021;
Koralek and Costa, 2020; Nelson et al., 2020; Blanco-Pozo et al., 2021; van der Veen et al., 2021;
de Barros et al., 2021; Samborska et al., 2021; Kilonzo et al., 2021; Strahnen et al., 2021.

5-choice serial reaction time task (5-CSRT)
The 5-CSRT is a long-standing and widely used assay for measuring sustained visual attention and
motor impulsivity in rodents (Carli et al., 1983; Bari et al., 2008). The subject must detect a brief flash
of light presented pseudorandomly in one of five nose-poke ports and report the stimulus location by
poking the port to trigger a reward delivered to a receptacle on the opposite wall.

We developed a custom operant box for the 5-CSRT (Figure 6A and B), discussed in detail in a
separate manuscript (Kapanaiah et al., 2021). The pyControl hardware comprised a breakout board
connected to a 5-poke board, which integrates the IR beams and stimulus LEDs for the 5-choice ports

https://doi.org/10.7554/eLife.67846
https://docs.micropython.org/en/latest/library/gc.html

 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Akam et al. eLife 2022;11:e67846. DOI: https://​doi.​org/​10.​7554/​eLife.​67846 � 11 of 25

Attention challenges Impulsivity challenges

60

40

20

0
30

20

10

0

%
 o

m
is

si
on

s 60

40

20

0

%
 o

m
is

si
on

s

%
 p

re
m

at
ur

es

60

40

20

0
30

20

10

0

%
 o

m
is

si
on

s
%

 p
re

m
at

ur
es

30

20

10

0

%
 p

re
m

at
ur

es

100

90

80

70

60

Ac
cu

ra
cy

 (%
)

100

90

80

70

60

Ac
cu

ra
cy

 (%
)

100

90

80

70

60

Ac
cu

ra
cy

 (%
)

Protocol
Baseline

1 s SD 0
Atomoxetine (mg/kg)

2
Baseline

0.8 s SD

Protocol
Baseline

9 s fITI
Baseline

VITI
Baseline

Distraction

*

**

** ** *

*

*

*

EDC

N = 7 N = 8 N = 6 N = 6N = 8 N = 8

*

*

A B

Figure 6. 5-choice serial reaction time task (5-CSRTT). (A) Trapezoidal operant box with 5-choice wall (poke-holes shown illuminated) within a sound-
attenuated cubicle. (B) High-throughput training setup comprising 24 operant boxes. (C, D) Performance measures on the 5-CSRTT during protocols
challenging either sustained attention – by shortening the SD or delivering a sound distraction during the waiting time (C) or motor impulsivity – by
extending the inter-trial interval (ITI) to a fixed (fITI) or variable (vITI) length (D). Protocols used are indicated by x-axes. Note the rather selective
decrease of attentional performance (accuracy, %omissions) or impulse control (%prematures) achieved by the respective challenges. (E) Validation of
the possibility to detect cognitive enhancement in the 5-CSRTT (9s-fITI challenge) by application of atomoxetine, which increased attentional accuracy
and decreased premature responding, as predicted. Asterisks in (C–E) indicate significant within-subject comparisons relative to the baseline (2 s SD, 5 s
fITI; C, D) or the vehicle (E) condition (paired-samples t-test). *p<0.05, *p<0.01, *p<0.001. Error bars display s.e.m. Note that two mice of the full cohort
(N = 8) did not participate in all challenges as they required more training time to reach the baseline stage.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Hardware configuration for 5-choice serial reaction time task (5-CSRTT).

https://doi.org/10.7554/eLife.67846

 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Akam et al. eLife 2022;11:e67846. DOI: https://​doi.​org/​10.​7554/​eLife.​67846 � 12 of 25

on a single PCB, a single poke board for the reward receptacle, an audio board, and a stepper motor
board to control a peristaltic pump for reward delivery (Figure 6—figure supplement 1).

To validate the setup, a cohort of eight C57BL/6 mice was trained in the 5-CSRTT using a staged
training procedure (see Materials and methods). The baseline protocol reached at the end of
training used a stimulus duration (SD) of 2 s and a 5 s ITI from the end of reward consumption to
the presentation of the next stimulus. These task parameters were then manipulated to challenge
subject’s ability to either maintain sustained attention or withhold impulsive premature responses.
Attention was challenged in three conditions: by decreasing the SD to either 1 s or 0.8 s, or by an
auditory distraction of 70 dB white noise, played between 0.5 s and 4.5 s of the 5 s ITI. In all three
attention challenges, the accuracy with which subjects selected the correct port – the primary
measure of sustained attention – decreased (p<0.05; paired t-tests comparing accuracy under the
prior baseline protocol to accuracy under the challenge condition, Figure 6C). Also, as expected,
omissions (i.e. failures to poke any port in the response window) increased (p<0.05, t-test). In
the attention challenges, the rate of premature responses – the primary measure of impulsivity –
remained either unchanged (1 s SD challenge, auditory distraction; p>0.1, t-test) or changed to
a comparatively small extent (0.8 s SD challenge, p<0.01, t-test). Similarly, when impulsivity was
challenged by extending the ITI, to either a 9 s fixed ITI (fITI) or to a pseudo-randomly varied ITI
length (vITI), premature responses increased strongly (p<0.05, t-test), while attentional accuracy
and omissions did not (Figure 6D). This specificity of effects of the challenges was as good – if not
better – than that achieved by us previously in a commercial set-up (Med Associates, Inc; Grimm
et al., 2018).

We further validated the task implementation by replicating effects of a pharmacological treatment
– atomoxetine – that has been shown to reduce impulsivity in the 5-CSRTT (Navarra et al., 2008;
Paterson et al., 2011). Using the 9 s fITI impulsivity challenge, we found that 2 mg/kg atomoxetine
could reliably reduce premature responding and increase attentional accuracy (p<0.05, paired t-test
comparing performance under vehicle vs. atomoxetine; Figure 6E), consistent with its previously
described effect in this rodent task (Navarra et al., 2008; Paterson et al., 2011; Pillidge et al., 2014;
Fitzpatrick and Andreasen, 2019).

Vibrissae-based object localisation task
We illustrate pyControl’s utility for head-fixed behaviours with a version of the vibrissae-based object
localisation task (O’Connor et al., 2010). Head-fixed mice used their vibrissae (whiskers) to discrim-
inate the position of a pole moved into the whisker field at one of two different anterior-posterior
locations (Figure 7A). The anterior ‘Go’ location indicated that licking in a response window after
stimulus presentation would deliver a water reward, while the posterior ‘NoGo’ location indicated that
licking in the response window would trigger a timeout (Figure 7B). Unlike in the original task, mice
were positioned on a treadmill allowing them to run. Although running was not required to perform
the task, we observed 10–20 s running bouts alternated with longer stationary periods (Figure 7C),
in line with previous reports (Ayaz et al., 2019). pyControl hardware used to implement the setup
comprised a breakout board, a stepper motor driver to control the anterior-posterior position of the
stimulus, a lickometer, and a rotary encoder to measure running speed (Figure 7—figure supplement
1).

Mice were first familiarised with the experimental setup by head-fixing them on the treadmill for
increasingly long periods of time (5–20 min) over 3 days. From the fourth day, mice underwent a
‘detection training’, during which the pole was only presented in the Go position, and water auto-
matically delivered after each stimulus presentation. We then progressively introduced NoGo trials
and made water delivery contingent on the detection of one or more licks in the response window.
Subjects reached 75% correct performance within 5–9 days from the first training session, at which
point, they were trained for at least three further days to make sure that they had reliably learned the
task (Figure 7D). Early in training, mice frequently licked prior to and during stimulus presentation,
as well as during the response window, on both Go and NoGo trials (Figure 7E). Following learning,
licking prior to and during stimulus presentation was greatly reduced, and mice licked robustly during
the response window on Go trials and withheld licking on NoGo trials, performing a high percentage
of hit and correct rejection trials (Figure 7F).

https://doi.org/10.7554/eLife.67846

 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Akam et al. eLife 2022;11:e67846. DOI: https://​doi.​org/​10.​7554/​eLife.​67846 � 13 of 25

Social decision-making task
Our final application example is a maze-based social decision-making task for mice, adapted from that
developed for rats by Márquez et al., 2015. In this task, a ‘focal’ animal’s choices determine reward
delivery for a ‘recipient’ animal, allowing preference for ‘prosocial’ vs. ‘selfish’ choices to be examined.
The behavioural apparatus comprised an automated double T-maze (Figure 8—figure supplement
1). Each T-maze consisted of a central corridor with nose-poke ports on each side (choice area) and
two side arms each with a food receptacle connected to a pellet dispenser at the end (Figure 8A and
B). Access from the central choice area to the side arms was controlled by pneumatic doors.

The task comprised two separate stages: (1) individual training, where animals learn to open doors
by poking the ports in the central arms and retrieve pellets in the side arms; and (2) social testing,

stepper
motor

linear motor

lick
detector

rotary
encoder

Go trial

NoGo trial

stepper
(0.3 s)

linear
(0.6 s)

stimulus
(1 s)

hold
(0.3 s)

lick window
(2.5 s)

lick

no lick

water delivered
(HIT)

go to next trial
(MISS)

start time out
(FA)

go to next trial
(CR)

A B

10
 c

m
/s

2 s

stepper
(0.3 s)

linear
(0.6 s)

stimulus
(1 s)

hold
(0.3 s)

withold window
(2.5 s)

lick

no lick

C

co
rre

ct
 tr

ia
ls

 (%
)

20

40

60

80

100

0 2 4 6 8 10
training session

correct trials = 47.9%
H

IT
 tr

ia
ls

C
R

 tr
ia

ls
FA

 tr
ia

ls
M

IS
S

baseline
(1 s)

stim
(1 s)

lick/withold window
(2.5 s)

correct trials = 89.3%

H
IT

 tr
ia

ls
C

R
 tr

ia
ls

FA
M

IS
S

baseline
(1 s)

stim
(1 s)

lick/withold window
(2.5 s)

D E F

mouse 1
mouse 2
mouse 3

Figure 7. Vibrissae-based object localisation task. (A) Diagram of the behavioural setup. Head-fixed mice were positioned on a treadmill with their
running speed monitored by a rotary encoder. A pole was moved into the whisker field by a linear motor, with the anterior-posterior location controlled
using a stepper motor. Water rewards were delivered via a spout positioned in front of the animal and licks to the spout were detected using an
electrical lickometer. (B) Trial structure: before stimulus presentation, the stepper motor moved into the trial position (anterior or posterior). Next,
the linear motor translated the stepper motor and the attached pole close to the mouse’s whisker pad, starting the stimulation period. A lick window
(during Go trials) or withhold window (during NoGo trials) started after the pole was withdrawn. FA, false alarm; CR, correct rejection. (C) pyControl
simultaneously recorded running speed (top trace) and licks (black dots) of the animals, as well as controlling stimulus presentation (blue and red bars
for Go and NoGo stimuli) and solenoid opening (black crosses). (D) Percentage of correct trials for three mice over the training period. Mice were
considered expert on the task after reaching 75% correct trials (dotted line) and maintaining such performance for three consecutive days. (E) Detected
licks before, during, and after tactile stimulation, during an early session before the mouse has learned the task, sorted by trial type: hit trials (blue),
correct rejection trials (green), false alarm trials (red), and miss trials (black). Each row is a trial, each dot is a detected lick. Correct trials for this session
were 47.9% of total trials. (F) As (E) but for data from the same mouse after reaching the learning threshold (correct trials = 89.3% of total trials).

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Hardware configuration for vibrissae-based object localisation task.

https://doi.org/10.7554/eLife.67846

 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Akam et al. eLife 2022;11:e67846. DOI: https://​doi.​org/​10.​7554/​eLife.​67846 � 14 of 25

1.0

0.8

C

A B

FOCAL RECIPIENT

Session

tri
al

s
/ m

in

FR2 FR3 FR4

D

E
SOCIAL DECISION-MAKING TASK

RECIPIENT INDIVIDUAL TRAINING

F

FOCAL INDIVIDUAL TRAINING

Prosocial choice
port

Selfish choice
port

FOCAL RECIPIENT

0 20 40 60

0

5

10

15

20

25

Seconds

Tr
ia

ls

Nose
pokes

Food receptacles

IR position
detectors

Pn
eu

m
at

ic
do

or
s Choice

Area

Reward
Area

Reward
Area

Session Session Session

1.0

0.8

0.6

0.4

0.2

0.0
1 3 5 7 1 3 5 7

Si
de

 b
ia

s
(%

) 80

100

60

40

20

0

1.0

0.8

tri
al

s
/ m

in
0.8

0.6

0.4

0.2

0.0

Si
de

 b
ia

s
(%

) 80

100

60

40

20

0
1 3 5 7 9 11 13 1 3 5 7 9 11 13

FR2 FR3 FR4

Figure 8. Social decision-making task. (A) Top view of double T-maze apparatus showing two animals interacting during social decision-making. (B)
Setup diagram; in each T-maze, nose-pokes are positioned on either side of the central choice area. Sliding pneumatic doors give access to the side
arms of each maze (top and bottom in diagram) where pellet dispensers deliver food rewards. Six IR beams (depicted as grey and red circles connected
by a dotted red line) detect the position of the animals to safely close the doors once access to an arm is secured. (C) Focal animal individual training

Figure 8 continued on next page

https://doi.org/10.7554/eLife.67846

 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Akam et al. eLife 2022;11:e67846. DOI: https://​doi.​org/​10.​7554/​eLife.​67846 � 15 of 25

where the decisions of the focal animal control the doors in both mazes, and hence determine rewards
for both itself and the recipient animal in the other maze.

The individual training protocols were different for the focal and recipient animals. During indi-
vidual training for the focal animal, a single poke in either port in the central arm opened the corre-
sponding door, allowing access to a side arm. Accessing either side arm was rewarded with a pellet
at the food receptacle in the arm. Under this schedule, subjects increased their rate of completing
trials over seven training days (Figure 8C, repeated measures ANOVA F(6,42) = 12.566, p=0.000004)
without developing a bias for either side of the maze (p>0.27 for all animals, t-test). During individual
training for the recipient animal, only one of the nose-poke ports in the central arm was active, and
the number of pokes required to open the corresponding door increased over 13 days of training,
with four pokes eventually required to access the side arm to obtain a pellet in the food receptacle.
Under this schedule, the recipient animals developed a strong preference for the active poke over the
course of training (Figure 8D, right panel, repeated measures ANOVA F(12,24) = 3.908, p=0.002),
with approximately 95% of pokes directed to the active side by the end of training.

During social testing, the two animals were placed in the double T-maze, one in each T, separated
by a transparent perforated partition that allowed the animals to interact using all sensory modalities.
The doors in the recipient animal’s maze were no longer controlled by the recipient animal’s pokes,
but were rather yoked to the doors of the focal animal, such that a single poke to either port in the
focal animals choice area opened the doors in both mazes on the corresponding side. As in indi-
vidual training, the focal animal was rewarded for accessing either side, while the recipient animal was
rewarded only when it accessed one side of the maze. The choice made by the focal animal therefore
determined whether the recipient animal received reward, so the focal animal could either make ‘pro-
social’ choices which rewarded both it and the recipient, or ‘selfish’ choices which rewarded only the
focal animal. As a proof of concept, we show nose-pokes and reward deliveries from a pair of inter-
acting mice from one social session (Figure 8F). A full analysis of the social behaviour in this task will
be published separately (Esteve-Agraz and Marquez, in preparation).

Discussion
pyControl is an open-source system for running behavioural experiments, whose principal strengths
are (1) a flexible and intuitive Python-based syntax for programming tasks; (2) inexpensive, simple, and
extensible behavioural hardware that can be purchased commercially or assembled by the user; (3) a
GUI designed for efficiently running high-throughput experiments on many setups in parallel from a
single computer; and (4) extensive online documentation and user support.

pyControl can contribute to behavioural neuroscience in two important ways: first, it makes it
quicker, easier, and cheaper to implement a wide range of behavioural tasks and run them at scale.
Second, it facilitates communication and reproducibility of behavioural experiments, both because

showing the number of trials completed per minute (left panel) and side bias (right panel) across days of training. (D) As (C) but for the recipient animal.
(E) Social decision-making task. The trial starts with both animals in the central arm. The recipient animal has learnt in previous individual training to
poke the port on the upper side of the diagram to give access to a food pellet in the corresponding reward area. During the social task, the recipient
animal’s ports no longer control the doors but the animal can display food-seeking behaviour by repeatedly poking the previously trained port. The
focal animal has previously learned in individual training to collect food from the reward areas on both sides (top and bottom of diagram) by poking the
corresponding port in the central choice area to activate the doors. During social decision-making, the focal animal can either choose the ‘prosocial’
port, giving both animals access to the side (upper on diagram) of their respective mazes where both receive reward, or can choose the ‘selfish’ port,
giving both animals access to the other side (lower on diagram) where only the focal animal receives reward. (F) Raster plot showing behaviour of a
pair of animals over one session during early social testing. Nose-pokes are represented by vertical lines, and colour coded according to the role of
each mouse and choice type (grey, recipient’s pokes, which are always directed towards the prosocial side; blue, focal’s pokes in the prosocial choice
port; red, focal’s pokes in selfish port). Note that latency for focal choice varies depending on the trial, allowing the recipient to display its food-seeking
behaviour or not. Circles indicate the moment where each animal visits the food-receptacle in their reward arm. Focal animals are always rewarded, and
the colour of the filled circle indicates the type of trial after decision (blue, prosocial choice; red, selfish choice). Grey circles indicate time of receptacle
visit for recipients, where filled circles correspond to prosocial trials, where recipient is also rewarded, and open circles to selfish trials, where no pellet is
delivered.

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. Hardware configuration for social decision-making task.

Figure 8 continued

https://doi.org/10.7554/eLife.67846

 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Akam et al. eLife 2022;11:e67846. DOI: https://​doi.​org/​10.​7554/​eLife.​67846 � 16 of 25

the task definition syntax is highly readable and because self-documenting features ensure that the
exact task version and parameters used to generate data are automatically stored with the data
itself.

pyControl’s strengths and limitations stem from underlying design choices. We will discuss these
primarily in relation to two widely used open-source systems for experiment control in neurosci-
ence Bpod (Josh Sanders) and Bonsai (Lopes et al., 2015). Bpod is a useful point of comparison as
it is probably the most similar project to pyControl in terms of functionality and implementation,
Bonsai because it represents a very different but powerful formalism for controlling experiments
that is often complementary. Space constraints preclude detailed comparison with other projects,
but see Devarakonda et al., 2016; O’Leary et al., 2018; Kim et al., 2019; Gurley, 2019; Saun-
ders and Wehr, 2019; Bhagat et al., 2020; Buscher et al., 2020.

Both pyControl and Bpod provide a state machine-based task definition syntax in a high-level
programming language, run the state machine on a microcontroller, have commercially available
open-source hardware, graphical interfaces for controlling experiments, and are reasonably mature
systems with a substantial user base beyond the original developers. Despite these commonalities,
there are significant differences which are useful for prospective users to understand.

The first is that in pyControl user-created task definition code runs directly on a pyboard
microcontroller, supported by framework code that determines when user-defined functions
are called. This contrasts with Bpod, where user code written in either MATLAB (Bpod) or
Python (PyBpod) is translated into instructions passed to the microcontroller, which itself runs
firmware implemented in the lower-level language C++. These two approaches offer distinct
advantages and disadvantages.

Running user Python code directly on the microcontroller avoids separating the task logic into
two conceptually distinct levels – flexible code written in a high-level language that runs on the
computer, and the more constrained set of operations supported by the microcontroller firmware.
Our understanding of how this works in Bpod is that the high-level user code implements a loop
over trials where each loop defines a finite state machine for the current trial – specifying for each
state which outputs are on and which events trigger transitions to which other states, then uploads
this information to the microcontroller, runs the state machine until it reaches an exit condition
indicating the end of the trial, and finally receives information from the microcontroller about what
happened before starting the next trial’s loop. The microcontroller firmware implements some
functionality beyond a strict finite state machine formalism, including timers and event counters
that are not tied to a particular state, but does not support arbitrary user code or variables. We
suggest readers consult the relevant documentation (pyControl, Bpod, PyBpod) and example tasks
(pyControl, Bpod, PyBpod) to compare syntaxes directly. A second advantage of running user code
directly on the microcontroller is that the user has direct access from their task code to microcon-
troller functionality such as serial communication. A third is that the pyControl framework (as well
as the GUI) is written in Python rather than C++, facilitating code maintenance, and lowering the
barrier to users extending system functionality.

The two principal disadvantages of running the task entirely on the microcontroller are (1) although
modern microcontrollers are very capable, their resources are more limited than a computer – which
constrains how computationally and memory-intensive task code can be and precludes using modules
such as NumPy. (2) Lack of access to the computer from task code, for example, to interact with
other programs or display custom plots. To address these limitations, we are currently developing an
application programming interface (API) to allow pyControl tasks running on the microcontroller to
interact with user code running on the computer. This will work via the user defining a Python class
with methods that get called at the start and end of the run for initial setup and post-run clean-up, as
well as an update method called regularly during the run with any new data received from the board
as an argument.

There are also differences in hardware design. The two most significant are (1) the pyControl
breakout board tries to make connectors (behaviour ports and BNC) as flexible as possible at the cost
of not being specialised for particular functions. Bpod tends to use a given connector for a specific
function; for example, it has separate behaviour ports and module ports, with the former designed for
controlling a nose-poke, and the latter for UART serial communication with external modules. Practi-
cally, this means that pyControl exposes microcontroller pins (which often support multiple functions)

https://doi.org/10.7554/eLife.67846
https://sites.google.com/site/bpoddocumentation/home
https://bonsai-rx.org/
https://pycontrol.readthedocs.io/en/latest/user-guide/programming-tasks/
https://sites.google.com/site/bpoddocumentation/user-guide/protocol-development
https://pybpod.readthedocs.io/en/latest/getting-started/writing-protocols.html
https://github.com/pyControl/code/tree/master/tasks/example
https://github.com/sanworks/Bpod_Gen2/tree/master/Examples/Protocols
https://github.com/pybpod/pybpod-api/tree/master/examples/state_machine_examples

 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Akam et al. eLife 2022;11:e67846. DOI: https://​doi.​org/​10.​7554/​eLife.​67846 � 17 of 25

directly on connectors whereas Bpod tends to incorporate intervening circuitry such as electrical isola-
tion for BNC connectors and serial line driver ICs on module ports. (2) Bpod uses external modules,
each with its own microcontroller and C++ firmware, for functions which pyControl implements using
the microcontroller on the breakout board, specifically analog input and output, I2C serial communi-
cation, and acquiring signal from a rotary encoder. These design choices make pyControl hardware
simpler and cheaper. Purchased commercially the Bpod state machine costs $765 compared to €250
for the pyControl breakout board, and Bpod external modules each cost hundreds of dollars. This is
not to say that pyControl necessarily represents better value; a given Bpod module may offer more
functionality (e.g. more channels, higher sample rates). But the two systems do represent different
design approaches.

Both the pyControl and PyBpod GUIs support configuring and running experiments on
multiple setups in parallel from a single computer, while the MATLAB-based Bpod GUI controls
a single setup at a time. Their user interfaces are each very different; the respective user guides
(pyControl, Bpod, PyBpod) give the best sense for the different approaches. We think it is a
strength of the pyControl GUI, reflecting the relative simplicity of the underlying code base, that
scientist users not originally involved in the development effort have made substantial contribu-
tions to its functionality (see GitHub pull requests).

Bonsai (Lopes et al., 2015) represents a very different formalism for experiment control
that is not based around state machines. Instead, the Bonsai user designs a dataflow by
arranging and connecting nodes in a graphical interface, where nodes may represent data
sources, processing steps, or outputs. Bonsai can work with a diverse range of data types
including video, audio, analog, and digital signals. Multiple data streams can be processed in
parallel and combined via a rich set of operators including arbitrary user code. Bonsai is very
powerful, and it is likely that any task implemented in pyControl could also be implemented
in Bonsai. The reverse is certainly not true as Bonsai can perform computationally demanding
real-time processing on high-dimensional data such as video, which is not supported by
pyControl.

Nonetheless, in applications where either system could be used, there are reasons why prospec-
tive users might consider pyControl: (1) pyControl’s task definition syntax may be more intui-
tive for tasks where (extended) state machines are a natural formalism. The reverse is true for
tasks requiring parallel processing of multiple complex data streams. (2) pyControl is explicitly
designed for efficiently running high-throughput experiments on many setups in parallel. Though
it is possible to control multiple hardware setups from a single Bonsai dataflow, Bonsai does not
explicitly implement the concept of a multi-setup experiment so the user must duplicate dataflow
components for each setup themselves. As task parameters and data file names are specified
across multiple nodes in the dataflow, configuring these for a cohort of subjects can be laborious
– though it is possible to automate this by calling Bonsai’s command line interface from user-
created Python scripts. (3) pyControl hardware modules can simplify the physical construction of
behavioural setups. Though Bonsai itself is software, some compatible behavioural hardware has
been developed by the Champalimaud Foundation Hardware Platform (https://www.cf-hw.org/​
harp), which offers tight timing synchronisation and close integration with Bonsai, though docu-
mentation is currently limited. In practice, we think the two systems are often complementary; for
example, we use Bonsai in our workflow for acquiring and compressing video data from sets of
pyControl operant boxes (GitHub; Akam, 2020), and we hope to integrate them more closely in
future. pyControl is under active development. We are currently prototyping a home cage training
system which integrates a pyControl operant box with a mouse home cage via an access control
module which allows socially housed animals to individually access the operant box to train them-
selves with minimal user intervention. We are also developing hardware to enable much larger-
scale behavioural setups, such as complex maze environments with up to 68 behaviour ports per
setup. As discussed above, we are finalising an API to allow pyControl tasks to interact with user
Python code running on the computer.

In summary, pyControl is a user-friendly and flexible tool addressing a commonly encountered
use case in behavioural neuroscience; defining behavioural tasks as extended state machines,
running them efficiently as high-throughput experiments, and communicating task logic to other
researchers.

https://doi.org/10.7554/eLife.67846
https://pycontrol.readthedocs.io/en/latest/user-guide/graphical-user-interface/
https://sites.google.com/site/bpoddocumentation/user-guide/general-concepts/bpod-console
https://pybpod.readthedocs.io/en/latest/getting-started/basic-usage.html
https://github.com/pyControl/code/pulls?q=is%3Apr
https://www.cf-hw.org/harp
https://www.cf-hw.org/harp
https://github.com/ThomasAkam/Point_Grey_Bonsai_multi_camera_acquisition

 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Akam et al. eLife 2022;11:e67846. DOI: https://​doi.​org/​10.​7554/​eLife.​67846 � 18 of 25

Materials and methods
Key resources table

Reagent type (species)
or resource Designation

Source or
reference Identifiers Additional information

Software,
algorithm pyControl https://github.com/pyControl/code RRID:SCR_021612

Repository containing
pyControl GUI
and framework
code

Other pyControl hardware

https://github.
com/pyControl/
hardware RRID:SCR_021612

Repository containing
pyControl
hardware designs

Other pyControl Docs

https://pycontrol.
readthedocs.io;
a PDF version of
the docs is included
in supplementary
material RRID:SCR_021612

pyControl
documentation

pyControl task files used in all experiments, and data and analysis code for the performance vali-
dation experiments, are included in the article’s data and code repository.

Framework performance validation
Framework performance was characterised using pyboards running MicroPython version 1.13 and
pyControl version 1.6. Electrical signals used to characterise response latency and timing accuracy
(Figure 5) were recorded at 50 kHz using a PicoScope 2204A USB oscilloscope.

To assess response latency (Figure 5A and B), a pyboard running the task file ​input_​follower.​py
received a 51 Hz square wave input generated by the PicoScope’s waveform generator. The task
turned an output on and off to match the state of the input signal. The latency distribution was
assessed by recording 50 s of the input and output signals and evaluating the latency between the
signals at each rising and falling edge.

To assess timing accuracy (Figure 5C and D), a pyboard running the task file ​triggered_​pulses.​py
received a 51 Hz square wave input generated by the PicoScope’s waveform generator. The task trig-
gered a 10 ms output pulse whenever a rising edge occurred in the input signal. The output signals
were recorded for 50 s, and the duration of each output pulses was measured to assess the distribu-
tion of timing errors.

In both cases, the experiments were performed separately in a low load and high load condition. In
the low load condition, the task was not monitoring any other inputs. In the high load condition, the
task was additionally acquiring data from two analog inputs at 1 kHz sample rate each, and monitoring
two digital inputs, each of which was generating framework events in response to edges occurring as
a Poisson process with average rate 200 Hz. These Poisson input signals were generated by a second
pyboard running the task ​poisson_​generator.​py.

To assess the effect of garbage collection on pyControl timers (Figure 5E), the task file ​gc_​
timer_​test.​py was run on a pyboard. This uses pyControl timers to toggle one digital output on and
off every 1 ms and another every 5 ms. The resulting signals were recorded using the PicoScope
and plotted around a garbage collection episode identified by visually inspecting the 1 ms timer
signal.

To assess the effect of garbage collection on digital input processing (Figure 5F), a signal comprising
1 ms pulses every 10 ms was generated using the PicoScope, and connected to three digital inputs
on a pyboard running the task ​gc_​inputs_​test.​py. The task configures one input to generate events
on rising edges, one on falling edges, and one on both rising and falling edges, and uses a pyControl
timer to trigger garbage collection 1ms before a subset of the input pulses. Event times recorded by
pyControl were plotted to generate the figure.

Analysis and plotting of the framework validation data was performed in Python using code
included in the data repository.

https://doi.org/10.7554/eLife.67846
https://github.com/pyControl/code
https://identifiers.org/RRID/RRID:SCR_021612
https://github.com/pyControl/hardware
https://github.com/pyControl/hardware
https://github.com/pyControl/hardware
https://identifiers.org/RRID/RRID:SCR_021612
https://pycontrol.readthedocs.io
https://pycontrol.readthedocs.io
https://identifiers.org/RRID/RRID:SCR_021612
https://github.com/pyControl/manuscript

 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Akam et al. eLife 2022;11:e67846. DOI: https://​doi.​org/​10.​7554/​eLife.​67846 � 19 of 25

Application examples
The 5-CSRTT5.

Animals
The 5-CSRTT experiment used a cohort of eight male C57BL/6 mice, aged 3–4 months at the begin-
ning of training. Animals were group-housed (2–3 mice per cage) in Type II-Long individually ventilated
cages (Greenline, Tecniplast, G), enriched with sawdust, sizzle-nest, and cardboard houses (Datesand,
UK), and subjected to a 13  hr light/11  hr dark cycle. Mice were kept under food restriction at 85–95%
of their average free-feeding weight which was measured over 3 days immediately prior to the start of
food restriction at the start of the behavioural training. Water was available ad libitum.

This experiment was performed in accordance to the German Animal Rights Law (Tierschutzgesetz)
2013 and approved by the Federal Ethical Review Committee (Regierungsprädsidium Tübingen) of
Baden-Württemberg.

Behavioural hardware
The design of the operant boxes for the 5-CSRTT setups is discussed in detail in a separate manu-
script (Kapanaiah et al., 2021). Briefly, the box had a trapezoidal floorplan with the 5-choice wall at
the wide end and reward receptacle at the narrow end of the trapezoid to minimise the floor area
and hence reduce distractions. The side walls and roof were made of transparent acrylic to allow
observation of the animal, the remaining walls were made from opaque PVC to minimise visual distrac-
tions (Figure 6A). Design files for the operant box, and peristaltic and syringe pumps for reward
delivery, are at https://github.com/KaetzelLab/Operant-Box-Design-Files; Kaetzell, 2021. Potentially
distracting features (house light, cables) were located outside of the box and largely invisible from the
inside. The pyControl hardware used and the associated hardware definition are shown in Figure 6—
figure supplement 1. The operant box was enclosed by a sound attenuating chamber, custom made
in 20 mm melamine-coated MDF, adapted from a design in the hardware repository. The pyControl
breakout boards, and other PCBs that were not integrated into the box itself, were mounted on the

Table 2. 5-choice serial reaction time task (5-CSRTT) training and challenge stages.
The parameters stimulus duration (SD) and inter-trial interval (ITI, waiting time before stimulus) are
listed for each of the five training stages (S1–5) and the subsequent challenge protocols on which
performance was tested for 1 day each (C1–5). For the training stages, performance criteria which
had to be met by an animal on two consecutive days to move to the next stage are listed on the
right. See Materials and methods for the definition of these performance parameters.

5-CSRTT training

 � Task parameters Criteria for stage transition (two consecutive days)

Stage SD (s) ITI (s) # correct % correct % accuracy %omissions

S1 20 2 ≥30 ≥40 - -

S2 8 2 ≥40 ≥50 - -

S3 8 5 ≥80 ≤50

S4 4 5 ≥80 ≤50

S5 2 5 ≥80 ≤50

Challenges

C1 2 9 Impulsivity challenge

C2 1 5 Attention challenge 1

C3 0.8 5 Attention challenge 2

C4 2 5 Distraction: 1 s white noise within 0.5–4.5 s of ITI

C5 2
7, 9, 11,
13 Variable ITI: pseudo-random, equal distribution

https://doi.org/10.7554/eLife.67846
https://github.com/KaetzelLab/Operant-Box-Design-Files
https://github.com/pyControl/hardware/tree/master/Sound_attenuating_chamber_small

 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Akam et al. eLife 2022;11:e67846. DOI: https://​doi.​org/​10.​7554/​eLife.​67846 � 20 of 25

outside of the sound attenuating chamber, and a CCTV camera was mounted on the ceiling to monitor
behaviour.

5-CSRTT training
The 5-CSRTT training protocol was similar to what we described previously (Grimm et al., 2018;
van der Veen et al., 2021). In brief, after initiation of food restriction, mice were accustomed to the
reward (strawberry milk, Müllermilch, G) in their home cage and in the operant box (2–3 exposures
each). Then, mice were trained on a simplified operant cycle in which all holes of the 5-poke wall were
illuminated for an unlimited time, and the mouse could poke into any one of them to illuminate the
reward receptacle on the opposite wall and dispense a 40 μl milk reward. Once mice attained at least
30 rewards each in two consecutive sessions, they were moved to the 5-CSRTT.

During 5-CSRTT training, mice transitioned through five stages of increasing difficulty, based on
reaching performance criteria in each stage (Table 2). The difficulty of each stage was determined by
the length of time the stimulus was presented (SD) and the length of the ITI between the end of the
previous trial and the stimulus presentation on the next trial.

The ITI was initiated when the subject exited the reward receptacle after collection of a reward
or by the end of a timeout period (see below). The ITI was followed by illumination of one hole on
the 5-choice wall for the SD determined by the training stage. A poke in the correct port during the
stimulus, or during a subsequent 2 s hold period, was counted as a correct response, illuminating the
reward receptacle and dispensing 20 μl of milk. If the subject either poked into any hole during the
ITI (premature response), poked into a non-illuminated hole during the SD or hold period (incorrect
response), or failed to poke during the trial (omission), the trial was not rewarded but instead termi-
nated with a 5 s timeout during which the house light was turned off. The relative numbers of each
response type were used as performance indicators measuring premature responding [%premature
= 100 * (number of premature responses)/(number of trials)], sustained attention [accuracy = 100 *
(number of correct responses)/(number of correct and incorrect responses)], and lack of participation
[%omissions = 100 * (number of omissions)/(number of trials)]. In all stages and tests, sessions lasted
30 min and were performed once daily at the same time of day.

Test days with behavioural challenges were interleaved with at least one training day on the base-
line stage (stage 5; see Table 2 for parameters of all stages). For pharmacological validation, atom-
oxetine (Tomoxetine hydrochloride, Tocris, UK) diluted in sterile saline (0.2 mg/ml) or saline vehicle
were injected i.p. at 10 μl/g mouse injection volume 30 min before testing started. For atomoxetine
vs. vehicle within-subject comparison, two tests were conducted separated by 1 week, whereby four
animals received atomoxetine on the first day, while the other four received vehicle and vice versa
for the second day. Effects of challenges (compared to performance on the prior day with baseline
training) and atomoxetine (compared to performance under vehicle) were assessed by paired-samples
t-tests. Behavioural data gathered in the 5-CSRTT was analysed with Excel and SPSS26.0 (IBM Inc, US).

Vibrissae-based object localisation task
Animals
Subjects were three female mice expressing the calcium-sensitive protein GCaMP6s in excitatory
neurons, derived by mating the floxed Ai94(TITL-GCaMP6s)-D line (Jackson Laboratories; stock
number 024742) with the CamKII-tta (Jackson Laboratories; stock number 003010). Animal husbandry
and experimental procedures were approved and conducted in accordance with the United Kingdom
Animals (Scientific Procedures) Act 1986 under project licence P8E8BBDAD and personal licences
from the Home Office.

Behavioural hardware
Mice were head-fixed on a treadmill fashioned from a 24 cm diameter Styrofoam cylinder covered with
1.5-mm-thick neoprene. An incremental optical encoder (Broadcom HEDS-5500#A02; RS Components)
was used in conjunction with a pyControl rotary encoder adapter to monitor mouse running speed. The
pole used for object detection was a blunt 18G needle mounted, via a 3d-printed arm, onto a stepper
motor (RS PRO Hybrid 535-0467; RS Components). The stepper motor was mounted onto a motorised
linear stage (DDSM100/M; Thorlabs) used to move the pole towards and away from the whisker pad

https://doi.org/10.7554/eLife.67846

 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Akam et al. eLife 2022;11:e67846. DOI: https://​doi.​org/​10.​7554/​eLife.​67846 � 21 of 25

(controlled by a K-Cube Brushless DC Servo Driver [KBD101; Thorlabs]). The pyControl hardware used
and the associated hardware definition are shown in Figure 7—figure supplement 1.

Surgery
6- to 10-week-old mice were anaesthetised with isoflurane (0.8–1.2% in 1 l/min oxygen) and implanted
with custom titanium headplates for head fixation and 4 mm diameter cranial windows for imaging
as described previously (Chong et al., 2019). Peri- and postoperative analgesia was used (meloxicam
5 mg/kg and buprenorphine 0.1 mg/kg), and mice were carefully monitored for 7 days post surgery.

Behavioural training
Following recovery from surgery, mice were habituated to head fixation (Chong et al., 2019) prior to
training on the vibrissa-based object localisation task as detailed in the ‘Results’ section. Data were
analysed using MATLAB (MathWorks).

Social decision-making task
Animals
12 male C57BL6/J mice (Charles River, France) were used, aged 3 months at the beginning of the
experiment. Animals were group-housed (four animals per cage) and maintained with ad libitum
access to food and water in a 12–12 hr reversed light cycle (lights off at 8 am) at the Animal Facility
of the Instituto de Neurociencias of Alicante. Short food restrictions (2 hr before the behavioural
testing) were performed in the early phases of individual training to increase motivation for food-
seeking behaviour, otherwise animals were tested with ad libitum chow available in their home cage.
All experimental procedures were performed in compliance with institutional Spanish and European
regulations, as approved by the Universidad Miguel Hernández Ethics committee.

Behavioural hardware
The social decision-making task was performed in a double maze, where two animals, the focal and
the recipient, would interact and work to obtain food rewards. The outer walls of the double maze
were of white laser-cut acrylic. Each double maze was divided by a transparent and perforated wall
creating the individual mazes for each mouse. For each individual maze, inner walls separating central
choice and side reward areas contained the mechanisms for sliding doors, 3D-printed nose-pokes,
and position detectors. These inner walls were made of transparent laser-cut acrylic in order to allow
visibility of the animal in the side arms of the maze. Walls of the central choice area were frosted to
avoid reflections that could interfere with automated pose estimation of the interacting animals in this
area.

Each double T-maze behavioural setup was positioned inside a custom-made sound isolation box,
with an infrared-sensitive camera (PointGrey Flea3-U3-13S2M CS, Canada) positioned above the
maze to track the animals’ location. The chamber was illuminated with dim white light (4 lux) and
infrared illumination located on the ceiling of the sound attenuating chamber. The pyControl hard-
ware configuration and associated hardware definition file are shown in Figure 8—figure supplement
1. Food pellet rewards were dispensed using pellet dispensers made of 3D-printed and laser-cut parts
actuated by a stepper motor (NEMA 42HB34F08AB, e-ika electrónica y robótica, Spain) controlled by
a pyControl stepper driver board, placed outside the sound isolation box and delivering the pellets
to the 3D-printed food receptacles through a silicon tube. Design files for the pellet dispenser and
receptacles are at https://github.com/MarquezLab/Hardware; Marquez, 2021. The sliding doors that
control access to the side arms were actuated by pneumatic cylinders (Cilindro ISO 6432, Vestonn
Pneumatic, Spain) placed below the base of the maze, providing silent and smooth horizontal move-
ment of the doors. These were in turn controlled via solenoid valves (8112005201, Vestonn Pneumatic)
interfaced with pyControl using an optocoupled relay board (Cebek-T1, Fadisel, Spain). The speed of
the opening/closing of the doors could be independently regulated by adjusting the pressure of the
compressed air to the solenoid valves.

Behavioural training
Individual training and social decision-making protocols are described in the ‘Results’ section. All
behavioural experiments were performed during the first half of the dark phase of the cycle. Data were

https://doi.org/10.7554/eLife.67846
https://github.com/MarquezLab/Hardware

 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Akam et al. eLife 2022;11:e67846. DOI: https://​doi.​org/​10.​7554/​eLife.​67846 � 22 of 25

analysed with Python (Python Software Foundation, v3.6.5), and statistical analysis was performed
with IBM SPSS Statistics (version 26).

Acknowledgements
TA thanks current and former members of the Champalimaud hardware and software platforms; Jose
Cruz, Ricardo Ribeiro, Carlos Mão de Ferro, and Matthieu Pasquet for discussions and technical assis-
tance, and Filipe Carvalho and Lídia Fortunato of Open Ephys Production Site for hardware assembly
and distribution. CM thanks Victor Rodriguez for assistance in developing the social decision-making
apparatus. MP and MK thank Dr Ana Carolina Bottura de Barros and Dr Severin Limal for assistance
with the Vibrissae-based object localisation task.

Additional information

Competing interests
Thomas Akam: Consulting contract with Open Ephys Production Site. The other authors declare that
no competing interests exist.

Funding

Funder Grant reference number Author

Wellcome Trust WT096193AIA Thomas Akam

Wellcome Trust 214314/Z/18/Z Thomas Akam
Mark E Walton

Wellcome Trust 202831/Z/16/Z Mark E Walton

Ministerio de Ciencia e
Innovación

RTI2018-097843-B-100 and
RYC-2014-16450

Cristina Márquez

Ministerio de Ciencia e
Innovación

SEV-2017-0723 Cristina Márquez

Generalitat Valenciana and
European Union

ACIF/2019/017 Joan Esteve-Agraz

Else-Kroner-Fresenius-
Foundation/German-
Scholars-Organization

GSO/EKFS 12 Dennis Kätzel

Deutsche
Forschungsgemeinschaft

KA 4594/2-1 Dennis Kätzel

Wellcome Trust 109908/Z/15/Z Mariangela Panniello

Human Frontiers Science
Programme

RGY0073/2015 Michael M Kohl

National Institutes of
Health

5U19NS104649 Rui M Costa

H2020 European Research
Council

617142 Rui M Costa

The funders had no role in study design, data collection and interpretation, or the
decision to submit the work for publication.

Author contributions
Thomas Akam, Conceptualization, Formal analysis, Funding acquisition, Investigation, Software,
Writing - original draft; Andy Lustig, James M Rowland, Software, Writing – review and editing;
Sampath KT Kapanaiah, Joan Esteve-Agraz, Mariangela Panniello, Investigation, Writing – review and
editing; Cristina Márquez, Dennis Kätzel, Conceptualization, Resources, Supervision, Writing – review
and editing; Michael M Kohl, Mark E Walton, Conceptualization, Funding acquisition, Resources,

https://doi.org/10.7554/eLife.67846

 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Akam et al. eLife 2022;11:e67846. DOI: https://​doi.​org/​10.​7554/​eLife.​67846 � 23 of 25

Supervision, Writing – review and editing; Rui M Costa, Conceptualization, Funding acquisition,
Supervision, Writing – review and editing

Author ORCIDs
Thomas Akam ‍ ‍ http://orcid.org/0000-0002-1810-0494
Andy Lustig ‍ ‍ http://orcid.org/0000-0002-1358-8363
James M Rowland ‍ ‍ http://orcid.org/0000-0001-9140-8260
Cristina Márquez ‍ ‍ http://orcid.org/0000-0003-1948-2727
Michael M Kohl ‍ ‍ http://orcid.org/0000-0002-2566-5426
Rui M Costa ‍ ‍ http://orcid.org/0000-0003-1707-1051
Mark E Walton ‍ ‍ http://orcid.org/0000-0003-0117-2894

Ethics
The 5-CSRTT experiment was performed in accordance to the German Animal Rights Law (Tier-
schutzgesetz) 2013 and approved by the Federal Ethical Review Committee (Regierungsprädsidium
Tübingen) of Baden-Württemberg. The Vibrissae-based object localisation experiment was conducted
in accordance with the United Kingdom Animals (Scientific Procedures) Act 1986 under project license
P8E8BBDAD and personal licenses from the Home Office. The Social decision making experiment
was performed in compliance with institutional Spanish and European regulations, as approved by the
Universidad Miguel Hernández Ethics committee.

Decision letter and Author response
Decision letter https://doi.org/10.7554/eLife.67846.sa1
Author response https://doi.org/10.7554/eLife.67846.sa2

Additional files
Supplementary files
•  Transparent reporting form

Data availability
pyControl task files for all experiments, and data and analysis code for the performance validation
experiments (Figure 5), are included in the manuscript's data repository (https://github.com/pyCon-
trol/manuscript; copy archived at swh:1:rev:6be55c29ec0520a61099d25e944b30c9a3bede9b).

References
Akam T. 2020. Point_Grey_Bonsai_multi_camera_acquisition. c83b4a5. GitHub. https://github.com/​

ThomasAkam/Point_Grey_Bonsai_multi_camera_acquisition
Akam T. 2021. pyControl / manuscript. 6be55c2. GitHub. https://github.com/pyControl/manuscript
Akam T, Rodrigues-Vaz I, Marcelo I, Zhang X, Pereira M, Oliveira RF, Dayan P, Costa RM. 2021. The Anterior

Cingulate Cortex Predicts Future States to Mediate Model-Based Action Selection. Neuron 109:149–163. DOI:
https://doi.org/10.1016/j.neuron.2020.10.013, PMID: 33152266

Ayaz A, Stäuble A, Hamada M, Wulf MA, Saleem AB, Helmchen F. 2019. Layer-specific integration of locomotion
and sensory information in mouse barrel cortex. Nature Communications 10:2585. DOI: https://doi.org/10.​
1038/s41467-019-10564-8, PMID: 31197148

Baker M. 2016. 1,500 scientists lift the lid on reproducibility. Nature 533:452–454. DOI: https://doi.org/10.1038/​
533452a, PMID: 27225100

Bari A, Dalley JW, Robbins TW. 2008. The application of the 5-choice serial reaction time task for the assessment
of visual attentional processes and impulse control in rats. Nature Protocols 3:759–767. DOI: https://doi.org/​
10.1038/nprot.2008.41, PMID: 18451784

Bhagat J, Wells MJ, Harris KD, Carandini M, Burgess CP. 2020. Rigbox: An Open-Source Toolbox for Probing
Neurons and Behavior. ENeuro 7:ENEURO.0406-19.2020. DOI: https://doi.org/10.1523/ENEURO.0406-19.​
2020, PMID: 32493756

Blanco-Pozo M, Akam T, Walton M. 2021. Dopamine Reports Reward Prediction Errors, but Does Not Update
Policy, during Inference-Guided Choice. bioRxiv. DOI: https://doi.org/10.1101/2021.06.25.449995

Buscher N, Ojeda A, Francoeur M, Hulyalkar S, Claros C, Tang T, Terry A, Gupta A, Fakhraei L, Ramanathan DS.
2020. Open-source raspberry Pi-based operant box for translational behavioral testing in rodents. Journal of
Neuroscience Methods 342:108761. DOI: https://doi.org/10.1016/j.jneumeth.2020.108761, PMID: 32479970

Carli M, Robbins TW, Evenden JL, Everitt BJ. 1983. Effects of lesions to ascending noradrenergic neurones on
performance of a 5-choice serial reaction task in rats; implications for theories of dorsal noradrenergic bundle

https://doi.org/10.7554/eLife.67846
http://orcid.org/0000-0002-1810-0494
http://orcid.org/0000-0002-1358-8363
http://orcid.org/0000-0001-9140-8260
http://orcid.org/0000-0003-1948-2727
http://orcid.org/0000-0002-2566-5426
http://orcid.org/0000-0003-1707-1051
http://orcid.org/0000-0003-0117-2894
https://doi.org/10.7554/eLife.67846.sa1
https://doi.org/10.7554/eLife.67846.sa2
https://github.com/pyControl/manuscript
https://github.com/pyControl/manuscript
https://archive.softwareheritage.org/swh:1:dir:781f5f12bd1e8f8214a171b74ea98408be4f0f6e;origin=https://github.com/pyControl/manuscript;visit=swh:1:snp:546190bca556c98edbd6bc85849fcf75d154f884;anchor=swh:1:rev:6be55c29ec0520a61099d25e944b30c9a3bede9b
https://github.com/ThomasAkam/Point_Grey_Bonsai_multi_camera_acquisition
https://github.com/ThomasAkam/Point_Grey_Bonsai_multi_camera_acquisition
https://github.com/pyControl/manuscript
https://doi.org/10.1016/j.neuron.2020.10.013
http://www.ncbi.nlm.nih.gov/pubmed/33152266
https://doi.org/10.1038/s41467-019-10564-8
https://doi.org/10.1038/s41467-019-10564-8
http://www.ncbi.nlm.nih.gov/pubmed/31197148
https://doi.org/10.1038/533452a
https://doi.org/10.1038/533452a
http://www.ncbi.nlm.nih.gov/pubmed/27225100
https://doi.org/10.1038/nprot.2008.41
https://doi.org/10.1038/nprot.2008.41
http://www.ncbi.nlm.nih.gov/pubmed/18451784
https://doi.org/10.1523/ENEURO.0406-19.2020
https://doi.org/10.1523/ENEURO.0406-19.2020
http://www.ncbi.nlm.nih.gov/pubmed/32493756
https://doi.org/10.1101/2021.06.25.449995
https://doi.org/10.1016/j.jneumeth.2020.108761
http://www.ncbi.nlm.nih.gov/pubmed/32479970

 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Akam et al. eLife 2022;11:e67846. DOI: https://​doi.​org/​10.​7554/​eLife.​67846 � 24 of 25

function based on selective attention and arousal. Behavioural Brain Research 9:361–380. DOI: https://doi.org/​
10.1016/0166-4328(83)90138-9, PMID: 6639741

Chong EZ, Panniello M, Barreiros I, Kohl MM, Booth MJ. 2019. Quasi-simultaneous multiplane calcium imaging
of neuronal circuits. Biomedical Optics Express 10:267–282. DOI: https://doi.org/10.1364/BOE.10.000267,
PMID: 30775099

de Barros ACB, Baruchin LJ, Panayi MC, Nyberg N, Samborska V, Mealing MT, Akam T, Kwag J, Bannerman DM,
Kohl MM. 2021. Retrosplenial Cortex Is Necessary for Spatial and Non-Spatial Latent Learning in Mice. bioRxiv.
DOI: https://doi.org/10.1101/2021.07.21.453258

Devarakonda K, Nguyen KP, Kravitz AV. 2016. ROBucket: A low cost operant chamber based on the Arduino
microcontroller. Behavior Research Methods 48:503–509. DOI: https://doi.org/10.3758/s13428-015-0603-2,
PMID: 26019006

Fitzpatrick CM, Andreasen JT. 2019. Differential effects of ADHD medications on impulsive action in the mouse
5-choice serial reaction time task. European Journal of Pharmacology 847:123–129. DOI: https://doi.org/10.​
1016/j.ejphar.2019.01.038, PMID: 30690006

Grimm CM, Aksamaz S, Schulz S, Teutsch J, Sicinski P, Liss B, Kätzel D. 2018. Schizophrenia-related cognitive
dysfunction in the Cyclin-D2 knockout mouse model of ventral hippocampal hyperactivity. Translational
Psychiatry 8:1–16. DOI: https://doi.org/10.1038/s41398-018-0268-6, PMID: 30301879

Gurley K. 2019. Two open source designs for a low-cost operant chamber using Raspberry Pi. Journal of the
Experimental Analysis of Behavior 111:508–518. DOI: https://doi.org/10.1002/jeab.520, PMID: 31038195

International Brain Laboratory, Aguillon-Rodriguez V, Angelaki D, Bayer H, Bonacchi N, Carandini M,
Cazettes F, Chapuis G, Churchland AK, Dan Y, Dewitt E, Faulkner M, Forrest H, Haetzel L, Häusser M, Hofer SB,
Hu F, Khanal A, Krasniak C, Laranjeira I, et al. 2021. Standardized and reproducible measurement of decision-
making in mice. eLife 10:e63711. DOI: https://doi.org/10.7554/eLife.63711, PMID: 34011433

Kaetzell D. 2021. Operant-Box-Design-Files. 673cb71. GitHub. https://github.com/KaetzelLab/Operant-Box-​
Design-Files

Kapanaiah SKT, van der Veen B, Strahnen D, Akam T, Kätzel D. 2021. A low-cost open-source 5-choice operant
box system optimized for electrophysiology and optophysiology in mice. Scientific Reports 11:22279. DOI:
https://doi.org/10.1038/s41598-021-01717-1, PMID: 34782697

Karpova A. 2021. Karpova-Lab. Github. https://github.com/Karpova-Lab
Kilonzo K, van der Veen B, Teutsch J, Schulz S, Kapanaiah SKT, Liss B, Kätzel D. 2021. Delayed-matching-to-

position working memory in mice relies on NMDA-receptors in prefrontal pyramidal cells. Scientific Reports
11:8788. DOI: https://doi.org/10.1038/s41598-021-88200-z, PMID: 33888809

Kim B, Kenchappa SC, Sunkara A, Chang TY, Thompson L, Doudlah R, Rosenberg A. 2019. Real-time
experimental control using network-based parallel processing. eLife 8:e40231. DOI: https://doi.org/10.7554/​
eLife.40231, PMID: 30730290

Koralek AC, Costa RM. 2020. Sustained Dopaminergic Plateaus and Noradrenergic Depressions Mediate
Dissociable Aspects of Exploitative States. bioRxiv. DOI: https://doi.org/10.1101/822650

Korn C, Akam T, Jensen KHR, Vagnoni C, Huber A, Tunbridge EM, Walton ME. 2021. Distinct roles for dopamine
clearance mechanisms in regulating behavioral flexibility. Molecular Psychiatry 8:01194. DOI: https://doi.org/​
10.1038/s41380-021-01194-y, PMID: 34193974

Krakauer JW, Ghazanfar AA, Gomez-Marin A, MacIver MA, Poeppel D. 2017. Neuroscience Needs Behavior:
Correcting a Reductionist Bias. Neuron 93:480–490. DOI: https://doi.org/10.1016/j.neuron.2016.12.041, PMID:
28182904

Lopes G, Bonacchi N, Frazão J, Neto JP, Atallah BV, Soares S, Moreira L, Matias S, Itskov PM, Correia PA,
Medina RE, Calcaterra L, Dreosti E, Paton JJ, Kampff AR. 2015. Bonsai: an event-based framework for
processing and controlling data streams. Frontiers in Neuroinformatics 9:7. DOI: https://doi.org/10.3389/fninf.​
2015.00007, PMID: 25904861

Maia Chagas A. 2018. Haves and have nots must find a better way: The case for open scientific hardware. PLOS
Biology 16:e3000014. DOI: https://doi.org/10.1371/journal.pbio.3000014, PMID: 30260950

Marder E. 2013. The haves and the have nots. eLife 2:e01515. DOI: https://doi.org/10.7554/eLife.01515, PMID:
24252880

Márquez C, Rennie SM, Costa DF, Moita MA. 2015. Prosocial Choice in Rats Depends on Food-Seeking Behavior
Displayed by Recipients. Current Biology 25:1736–1745. DOI: https://doi.org/10.1016/j.cub.2015.05.018,
PMID: 26051895

Marquez C. 2021. MarquezLab / Hardware. e1928bf. Github. https://github.com/MarquezLab/Hardware
Navarra R, Graf R, Huang Y, Logue S, Comery T, Hughes Z, Day M. 2008. Effects of atomoxetine and

methylphenidate on attention and impulsivity in the 5-choice serial reaction time test. Progress in Neuro-
Psychopharmacology & Biological Psychiatry 32:34–41. DOI: https://doi.org/10.1016/j.pnpbp.2007.06.017,
PMID: 17714843

Nelson A, Abdelmesih B, Costa RM. 2020. Corticospinal Neurons Encode Complex Motor Signals That Are
Broadcast to Dichotomous Striatal Circuits. bioRxiv. DOI: https://doi.org/10.1101/2020.08.31.275180

O’Connor DH, Clack NG, Huber D, Komiyama T, Myers EW, Svoboda K. 2010. Vibrissa-based object localization
in head-fixed mice. The Journal of Neuroscience 30:1947–1967. DOI: https://doi.org/10.1523/JNEUROSCI.​
3762-09.2010, PMID: 20130203

O’Leary JD, Leary OF, Cryan JF, Nolan YM. 2018. A low-cost touchscreen operant chamber using a Raspberry Pi.
Behavior Research Methods 50:2523–2530. DOI: https://doi.org/10.3758/s13428-018-1030-y, PMID: 29520633

https://doi.org/10.7554/eLife.67846
https://doi.org/10.1016/0166-4328(83)90138-9
https://doi.org/10.1016/0166-4328(83)90138-9
http://www.ncbi.nlm.nih.gov/pubmed/6639741
https://doi.org/10.1364/BOE.10.000267
http://www.ncbi.nlm.nih.gov/pubmed/30775099
https://doi.org/10.1101/2021.07.21.453258
https://doi.org/10.3758/s13428-015-0603-2
http://www.ncbi.nlm.nih.gov/pubmed/26019006
https://doi.org/10.1016/j.ejphar.2019.01.038
https://doi.org/10.1016/j.ejphar.2019.01.038
http://www.ncbi.nlm.nih.gov/pubmed/30690006
https://doi.org/10.1038/s41398-018-0268-6
http://www.ncbi.nlm.nih.gov/pubmed/30301879
https://doi.org/10.1002/jeab.520
http://www.ncbi.nlm.nih.gov/pubmed/31038195
https://doi.org/10.7554/eLife.63711
http://www.ncbi.nlm.nih.gov/pubmed/34011433
https://github.com/KaetzelLab/Operant-Box-Design-Files
https://github.com/KaetzelLab/Operant-Box-Design-Files
https://doi.org/10.1038/s41598-021-01717-1
http://www.ncbi.nlm.nih.gov/pubmed/34782697
https://github.com/Karpova-Lab
https://doi.org/10.1038/s41598-021-88200-z
http://www.ncbi.nlm.nih.gov/pubmed/33888809
https://doi.org/10.7554/eLife.40231
https://doi.org/10.7554/eLife.40231
http://www.ncbi.nlm.nih.gov/pubmed/30730290
https://doi.org/10.1101/822650
https://doi.org/10.1038/s41380-021-01194-y
https://doi.org/10.1038/s41380-021-01194-y
http://www.ncbi.nlm.nih.gov/pubmed/34193974
https://doi.org/10.1016/j.neuron.2016.12.041
http://www.ncbi.nlm.nih.gov/pubmed/28182904
https://doi.org/10.3389/fninf.2015.00007
https://doi.org/10.3389/fninf.2015.00007
http://www.ncbi.nlm.nih.gov/pubmed/25904861
https://doi.org/10.1371/journal.pbio.3000014
http://www.ncbi.nlm.nih.gov/pubmed/30260950
https://doi.org/10.7554/eLife.01515
http://www.ncbi.nlm.nih.gov/pubmed/24252880
https://doi.org/10.1016/j.cub.2015.05.018
http://www.ncbi.nlm.nih.gov/pubmed/26051895
https://github.com/MarquezLab/Hardware
https://doi.org/10.1016/j.pnpbp.2007.06.017
http://www.ncbi.nlm.nih.gov/pubmed/17714843
https://doi.org/10.1101/2020.08.31.275180
https://doi.org/10.1523/JNEUROSCI.3762-09.2010
https://doi.org/10.1523/JNEUROSCI.3762-09.2010
http://www.ncbi.nlm.nih.gov/pubmed/20130203
https://doi.org/10.3758/s13428-018-1030-y
http://www.ncbi.nlm.nih.gov/pubmed/29520633

 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Akam et al. eLife 2022;11:e67846. DOI: https://​doi.​org/​10.​7554/​eLife.​67846 � 25 of 25

Paterson NE, Ricciardi J, Wetzler C, Hanania T. 2011. Sub-optimal performance in the 5-choice serial reaction
time task in rats was sensitive to methylphenidate, atomoxetine and d-amphetamine, but unaffected by the
COMT inhibitor tolcapone. Neuroscience Research 69:41–50. DOI: https://doi.org/10.1016/j.neures.2010.10.​
001, PMID: 20934466

Pillidge K, Porter AJ, Vasili T, Heal DJ, Stanford SC. 2014. Atomoxetine reduces hyperactive/impulsive
behaviours in neurokinin-1 receptor “knockout” mice. Pharmacology, Biochemistry, and Behavior 127:56–61.
DOI: https://doi.org/10.1016/j.pbb.2014.10.008, PMID: 25450119

Samborska V, Butler JL, Walton ME, Behrens TE, Akam T. 2021. Complementary Task Representations in
Hippocampus and Prefrontal Cortex for Generalising the Structure of Problems. bioRxiv. DOI: https://doi.org/​
10.1101/2021.03.05.433967

Saunders JL, Wehr M. 2019. Autopilot: Automating Behavioral Experiments with Lots of Raspberry Pis. bioRxiv.
DOI: https://doi.org/10.1101/807693

Strahnen D, Kapanaiah SKT, Bygrave AM, Liss B, Bannerman DM, Akam T, Grewe BF, Johnson EL, Kätzel D.
2021. Highly Task-Specific and Distributed Neural Connectivity in Working Memory Revealed by Single-Trial
Decoding in Mice and Humans. bioRxiv. DOI: https://doi.org/10.1101/2021.04.20.440621

van der Veen B, Kapanaiah SKT, Kilonzo K, Steele-Perkins P, Jendryka MM, Schulz S, Tasic B, Yao Z, Zeng H,
Akam T, Nicholson JR, Liss B, Nissen W, Pekcec A, Kätzel D. 2021. Control of impulsivity by Gi-protein
signalling in layer-5 pyramidal neurons of the anterior cingulate cortex Communications Biology 4:662. DOI:
https://doi.org/10.1038/s42003-021-02188-w, PMID: 34079054

https://doi.org/10.7554/eLife.67846
https://doi.org/10.1016/j.neures.2010.10.001
https://doi.org/10.1016/j.neures.2010.10.001
http://www.ncbi.nlm.nih.gov/pubmed/20934466
https://doi.org/10.1016/j.pbb.2014.10.008
http://www.ncbi.nlm.nih.gov/pubmed/25450119
https://doi.org/10.1101/2021.03.05.433967
https://doi.org/10.1101/2021.03.05.433967
https://doi.org/10.1101/807693
https://doi.org/10.1101/2021.04.20.440621
https://doi.org/10.1038/s42003-021-02188-w
http://www.ncbi.nlm.nih.gov/pubmed/34079054

	Open-­source, Python-­based, hardware and software for controlling behavioural neuroscience experiments
	Editor's evaluation
	Introduction
	Results
	System overview
	Task definition syntax
	Framework implementation
	Hardware
	Graphical user interface
	pyControl data
	Framework performance
	Application examples
	5-choice serial reaction time task (5-CSRT)
	Vibrissae-based object localisation task
	Social decision-making task

	Discussion
	Materials and methods
	Framework performance validation
	Application examples
	Animals
	Behavioural hardware
	5-CSRTT training
	Vibrissae-based object localisation task
	Animals

	Behavioural hardware
	Surgery
	Behavioural training
	Social decision-making task
	Animals

	Behavioural hardware
	Behavioural training

	Acknowledgements
	Additional information
	﻿Competing interests
	﻿Funding
	Author contributions
	Author ORCIDs
	Ethics
	Decision letter and Author response

	Additional files
	Supplementary files

	References

