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Background: Ovarian cancer causes high mortality rate worldwide, and despite numer-
ous attempts, the outcome for patients with ovarian cancer are still not well improved.
Microarray-based gene expressional analysis provides with valuable information for dis-
criminating functional genes in ovarian cancer development and progression. However, due
to the differences in experimental design, the results varied significantly across individual
datasets.
Methods: In the present study, the data of gene expression in ovarian cancer were
downloaded from Gene Expression Omnibus (GEO) and 16 studies were included. A
meta-analysis based gene expression analysis was performed to identify differentially ex-
pressed genes (DEGs). The most differentially expressed genes in our meta-analysis were
selected for gene expression and gene function validation.
Results: A total of 972 DEGs with P-value < 0.001 were identified in ovarian cancer, in-
cluding 541 up-regulated genes and 431 down-regulated genes, among which 92 addi-
tional DEGs were found as gained DEGs. Top five up- and down-regulated genes were
selected for the validation of gene expression profiling. Among these genes, up-regulated
CD24 molecule (CD24), SRY (sex determining region Y)-box transcription factor 17 (SOX17),
WFDC2, epithelial cell adhesion molecule (EPCAM), innate immunity activator (INAVA), and
down-regulated aldehyde oxidase 1 (AOX1) were revealed to be with consistent expressional
patterns in clinical patient samples of ovarian cancer. Gene functional analysis demonstrated
that up-regulated WFDC2 and INAVA promoted ovarian cancer cell migration, WFDC2 en-
hanced cell proliferation, while down-regulated AOX1 was functional in inducing cell apop-
tosis of ovarian cancer.
Conclusion: Our study shed light on the molecular mechanisms underlying the development
of ovarian cancer, and facilitated the understanding of novel diagnostic and therapeutic
targets in ovarian cancer.

Background
Ovarian cancer is the second most encountered gynecologic cancer worldwide with high mortality and
low rate of 5-year survival due to the difficulty in early diagnosis and high rates of recurrence and metas-
tasis [1]. If ovarian cancer could be diagnosed at an early stage, 90% patients could survive for more than
5 years with appropriate treatment [2]. Despite numerous attempts, the common molecular events for
early diagnosis of ovarian cancer remain to be established. Gene expression profile analysis is a powerful
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research strategy, which integrates data in genetics, molecular transcription, and functional genomics to reveal dysreg-
ulated genes between patients and healthy donors. Microarray provides increasing body of gene-wide transcriptional
data regarding ovarian cancer. For example, Moreno et al. proposed that cellular proliferation, cell cycle, DNA dam-
age, and apoptosis were up-regulated in ovarian cancer by using microarrays [3]. Bowen et al. identified alterations in
expression levels of gene products functioning in several signaling pathways including Wnt, Notch, TGFβ/BMP, and
canonical cell cycle in ovarian cancer by microarray analysis [4]. However, results vary between studies due to the
diversity in cohort selection, specimen source, and experimental designs. Combining different microarray datasets is
advantageous to enhance statistical power to detect the dysregulated genes that might be functional in ovarian cancer
development and progression.

Microarray data integration-based meta-analyses depend on efficient in silico tools. With the advances of
ever-growing theories and bioinformatics tools, we can now employ in silico tools to efficiently combine multiple
microarray datasets ignoring different populations, experimental designs, and different specimen sources [5–7]. Net-
workAnalyst is a useful web-based tool, which functions in many aspects such as preliminary data processing, sample
annotation, batch effect adjustment, dataset integration, and results visualization [8–12]. To maximally overcome the
impact caused by the differences in study design and platform usage among different datasets, ‘Combining Effect Size
(ES)’ analysis and Random Effect Modeling (REM) were applied to achieve more consistent and accurate results by
taking into consideration both direction and magnitude of gene expression changes. In the present study, 16 eligible
microarray datasets for ovarian cancer were selected from publicly available dataset repositories. Totally, 972 differ-
entially expressed genes (DEGs) with P-value < 0.001 were identified, including 541 up- and 431 down-regulated
genes, respectively. Interestingly, by comparing the list of meta-based DEGs to that of individual microarray dataset,
92 additional DEGs were demonstrated as gained DEGs. Expression profiles for the CD24 molecule (CD24), SRY
(sex determining region Y)-box transcription factor 17 (SOX17), WAP four-disulfide core domain 2 (WFDC2), the
epithelial cell adhesion molecule (EPCAM), innate immunity activator (INAVA), and aldehyde oxidase 1 (AOX1)
were validated in clinical cancer samples of ovarian cancer, which were among top five dysregulated DEGs revealed
by our meta-analysis. Functional analysis uncovered that WFDC2, INAVA, and AOX1 affect cell proliferation, mi-
gration, and apoptosis, respectively. Our results provided with novel molecular mechanisms for the development and
progression of ovarian cancer and propose potential targets for the prevention and treatment for clinics [13].

Methods
Materials identification and selection of eligible gene expression
datasets for meta-analysis
Microarray-based gene expression profiling studies for ovarian cancer were identified in the PubMed database
(http://www.pubmed.gov), Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/gds/) and ArrayExpress
dataset of the European Molecular Biology Laboratory-European Bioinformatics Institute (http://www.ebi.ac.uk/
arrayexpress/). The following keywords were used: (‘Ovarian neoplasms’ [Mesh]) and (microarray or gene profile
or gene profiling). Eligible studies and datasets should follow these inclusive criteria: (1) case and control studies of
human; (2) analysis of gene expression profiling; (3) comparable experimental conditions and untreated; (4) available
complete raw and processed microarray data. Studies were excluded if they were: (1) letters, abstracts, meta-analysis,
review articles, and human case reports; (2) cell lines used in experimental design; (3) RT-PCR only for profiling stud-
ies; (4) studies without healthy controls. All the datasets and references, which conformed to the above-mentioned
criteria, were manually screened. The complete workflow is shown in Figure 1 for eligible dataset selection. The latest
search was performed on 15 March 2019.

Data extraction and processing
Full text and supplementary materials of selected articles were extracted from each identified study: GEO series acces-
sion number, number of patients and healthy donors, specimen sources, platform of microarray and references. The
series matrix files were downloaded from GEO datasets for all studies, and common Entrez IDs were used to substi-
tute all the gene probes in accordance with the corresponding microarray platforms, with the exception of GSE17308,
in which the gene probe was substituted by Genbank ID. Before integrative meta-analysis, individual dataset was
normalized by R-mediated mean, log2 transformation and quantile normalization. Expression data of patients with
ovarian cancer and healthy donors were defined as class 2 and class 1, respectively, according to the guidelines of
NetworkAnalyst [6].
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Figure 1. Flowcharts for microarray datasets selection and meta-analysis

(A) Selection process of microarray datasets for meta-analysis of gene expressional signature in ovarian cancer. (B) Process of

meta-analysis based data exploration.

Batch effect adjustment and individual data analysis
Batch effect correction option in NetworkAnalyst was used to reduce potential study-specific batch effects, by which
the normalized individual datasets were subjected to the well-established ComBat procedures [11]. Emperical Bayes
methods were used to stabilize the expression ratios for genes with very high or very low ratios, stabilize gene variances
by shrinking variances across all other genes, and protect their inference from artifacts in the data. To compare the
sample clustering patterns with and without applying the ComBat procedures, the results were visually examined
using the principal component analysis (PCA).

Meta-analysis
We conducted the meta-analysis using NetworkAnalyst, a web interface for integrative statistical analysis and visual-
ization. In the option of ‘multiple gene expression data’, all the datasets were uploaded to the ‘multiple gene expression
data’ input area and analyzed in a streamlined manner, including data processing for Entrez ID/Genbank ID, anno-
tation check, and PCA plot examining, confirmation of data normalization, individual DEG analysis and data sum-
mary. For NetworkAnalyst-based DEGs discrimination, the cutoff of P-value was adjusted to 0.001. Furthermore,
all datasets were subjected to integrity check to ensure that the merged data could be carried out by ES combina-
tion, which would generate more biologically consistent meta-based DEGs by incorporation of both the magnitude
and direction of gene fold change. While performing Cochran’s Q test on the integration data, the random-effects
model was suggested to be used when Q values deviate significantly from a chi-squared distribution; otherwise, the
fixed-effects model was selected. The Q values deviate significantly from a chi-squared distribution of the current
study, so the present study used REM which assumes that each study contains a random effect size that could incor-
porate unknown cross-study heterogeneities, as demonstrated by Cochran’s Q tests [10,12]. ‘Define custom signature’
tool from NetworkAnalyst was used to produce the heatmap visualization for both top 25 up- and down-regulated
genes.

Patients and specimens
Thirty epithelial ovarian carcinoma samples (cancer tissues) (Supplementary Table S1) and thirty unpaired normal
ovary samples (paracancer tissues) were collected at the Shandong Cancer Hospital and Institute, Shandong First
Medical University and Shandong Academy of Medical Sciences. No local or systemic neo-adjuvant radiotherapy
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and/or chemotherapy and targeted therapy had been received. Written informed consent was obtained from each pa-
tient. Our study was approved by the Ethics Committee of Shandong First Medical University and Shandong Academy
of Medical Sciences.

Cell culture and siRNA transfection
OVCAR-3 cell line was obtained from Procell Life Science & Technology Co., Ltd (Wuhan, China). HOSEpiC, and
CAOV-3 cell was purchased from BeNa culture collection (Beijing, China). CAOV-3 cells were maintained in Dul-
becco’s Modified Eagle’s Medium (DMEM) (Bioind, Kibbuiz, Israel). OVCAR-3 cells were cultured in Roswell Park
Memorial Institute (RPMI) 1640 Medium (Bioind, Kibbuiz, Israel). All culture media were supplemented with 10%
Fetal Bovine Serum (FBS) (Bioind, Kibbuiz, Israel) and 1% penicillin/streptomycin. Cells were cultured in a humid-
ified incubator at 37◦C and 5% CO2. siRNAs for CD24, SOX17, WFDC2, EPCAM, INAVA, basonuclin 1 (BNC1),
AOX1, gasdermin E (GSDME), receptor accessory protein 1 (REEP1), and heart and neural crest derivatives ex-
pressed 2 (HAND2) were transfected into OVCAR-3 and CAOV-3 cells by HiperFect at the concentration of 50 nM
according to the manufacturer’s instructions. The sequences of siRNAs used for CD24, SOX17, WFDC2, EPCAM,
INAVA, and AOX1 knockdown are listed in Supplementary Table S2. The sequences of primers used for CD24,
SOX17, WFDC2, EPCAM, INAVA, BNC1, AOX1, GSDME, REEP1, and HAND2 are listed in Supplementary Ta-
ble S3.

Real-time quantitative RT-PCR
Total RNA was extracted by using TRIzol reagent (Invitrogen, Carlsbad, U.S.A.) according to the manufacturer’s in-
structions. RNA was reverse transcribed with the mRNA First-Strand cDNA Synthesis Kit (Vazyme, Nanjing, China)
for mRNA. Quantitative RT-PCR (qRT-PCR) assay was performed on an Applied Biosystems 7500 instrument (Ap-
plied Biosystems, Foster, U.S.A.) by using SYBR Green (Invitrogen, Carlsbad, U.S.A.). Relative RNA quantification
was calculated via the comparative 2−��Ct method. The relative expression of indicated genes was normalized to that
of GAPDH in each sample.

Cell apoptosis assay
For apoptosis assay, cells were seeded into 12-well plates and allowed to adhere overnight. Then, the cells were digested
with EDTA-free trypsin and left to dissociate into single cells. After being washed with PBS, the harvested cells were
resuspended at a density of 1 × 106 cells/ml in 1× binding buffer and double stained with FITC Annexin V and
Propidium Iodide using FITC Annexin V Apoptosis Detection Kit I (BD Biosciences, U.S.A.). A minimum of 1 ×
104 single-cell events were acquired by flow cytometry (BD FACSVerse, U.S.A.), and cell apoptosis was analyzed by
using FlowJo software.

Cell proliferation assay
OVCAR-3 and CAOV-3 cells were seeded at 2000 cells per well in 96-well plates after transfection. Cell Counting
Kit-8 (CCK8) assay was used to measure cell number and viability, and the absorbance was determined using a spec-
trophotometric plate reader at 450 nm (SPECTRAMAX 190, U.S.A.). The data were represented as mean +− SD. Each
experiment was repeated three times.

Cell migration assays
Cell migration was assessed by transwell experiments. For cell migration assay, indicated cells were trypsinized,
re-suspended in serum-free DMEM, and placed in the upper chamber (4 × 104 cells/well). Then, DMEM supple-
mented with 10% FBS was added to the lower chamber. The plates were incubated for 48 h. Cells in the upper chamber
were completely removed with a cotton swab. Cells migrating into the lower chamber were washed with PBS, fixed
in 4% paraformaldehyde, and stained with 0.5% Crystal Violet. Finally, the cells were counted under a microscope in
five random fields.

Statistical analysis
The web-server NetworkAnalyst analyzed the data and performed meta-analysis by REM-based combined ES statis-
tics. The present study adjusted P-value < 0.001 to discriminate the DEGs. All experiments were performed at least
three independent times, unless otherwise stated. Values are presented as the mean +− SD. The two-tailed Student’s
t test was used for comparisons between two groups. GraphPad 8.0 was used for statistical analysis of data and data
plotting. P-value ≤0.05 was considered significant.
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Table 1 Characteristics of each selected microarray dataset for the meta- analysis

GEO accession number Sample (Ctl/Pt) Sample source Platform Reference

GSE26712 n=195 (10/185) Ovarian tissue Affymetrix Human Genome
U133A Array

[19]

GSE40595 n=77 (14/63 Ovarian tissue Affymetrix Human Genome
U133 Plus 2.0 Array

[14]

GSE66957 n=69 (12/57 Ovarian tissue Rosetta/Merck Human RSTA
Custom Affymetrix 2.0
microarray

Unavailable

GSE18520 n=63 (10/53) Ovarian tissue Affymetrix Human Genome
U133 Plus 2.0 Array

[15]

GSE27651 n=49 (6/43) Ovarian tissue Affymetrix Human Genome
U133 Plus 2.0 Array

[16]

GSE6008 n=103 (4/99) Ovarian tissue Affymetrix Human Genome
U133A Array

[20]

GSE38666 n=45 (20/25) Ovarian tissue Affymetrix Human Genome
U133 Plus 2.0 Array

[1]

GSE17308 n=32 (4/28) Ovarian tissue PC Human Operon 21k v2 [17]

GSE14407 n=24 (12/12) Ovarian tissue Affymetrix Human Genome
U133 Plus 2.0 Array

[4]

GSE14001 n=23 (3/20) Ovarian tissue Affymetrix Human Genome
U133 Plus 2.0 Array

[21]

GSE29220 n=22 (11/11) Cell-free saliva Affymetrix Human Genome
U133 Plus 2.0 Array

[18]

GSE29450 n=20 (10/10) Ovarian tissue Affymetrix Human Genome
U133 Plus 2.0 Array

[22]

GSE52037 n=20 (10/10) Ovarian tissue Affymetrix Human Genome
U133 Plus 2.0 Array

[23]

GSE15578 n=17 (6/11) Ovarian tissue Affymetrix Human Genome
U133 Plus 2.0 Array

Unavailable

GSE36668 n=12 (4/8) Ovarian tissue Affymetrix Human Genome
U133 Plus 2.0 Array

[24]

GSE23391 n=4 (1/3 ) Ovarian tissue Affymetrix Human Genome
U133 Plus 2.0 Array

[25]

The table lists the datasets of 16 GEO samples used in the present study, the samples are mainly from ovarian tissue and cell-free saliva. A total of 505
patient samples and 135 controls are obtained. The platforms used mainly include Affymetrix Human Genome U133A Array, Affymetrix Human Genome
U133 Plus 2.0 Array, Rosetta/Merck Human RSTA Custom Affymetrix 2.0 Microarray, and PC Human Operon 21K V2, and the corresponding references
are also listed in the table.

Results
Selection of eligible microarray datasets
A total of eligible 16 microarray datasets were selected for ovarian cancer (GSE26712, GSE40595, GSE66957,
GSE18520, GSE27651, GSE6008, GSE38666, GSE17308, GSE14407, GSE14001, GSE29220, GSE29450, GSE52037,
GSR15578, GSE36668 and GSE23391) [1,4,14–25], respectively, as described in ‘Methods’ section (Figure 1A). All
the 16 datasets were screened according to the inclusion and exclusion criteria. A total of 135/505 (healthy con-
trols/patients) samples were included in the present study. Four microarray platforms were applied in the selected
datasets, including Affymetrix Human Genome U133 Plus 2.0 Array, Affymetrix Human Genome U133A Array,
Rosetta/Merck Human RSTA Custom Affymetrix 2.0 microarray, and PC Human Operon 21k v2. In addition, vari-
ous tissues, such as stroma, epithelium, mucinous, clear cell, and cell-free saliva, were used for the microarray analysis.
In the process of data integration, patient samples from different sources were not distinguished, for the purpose to
reveal the common gene signature in ovarian cancer. Table 1 presents the detailed information for each dataset, in-
cluding GEO accession number, sample composition, sample source, and the corresponding references.

Identification of common DEGs in ovarian cancer
The workflow for meta-analysis in the present study was illustrated in Figure 1B. To identify the transcriptional sig-
nature between healthy donors and patients, a total of 16 datasets were simultaneously analyzed by NetworkAn-
alyst. The 16 datasets were uploaded in succession, and each dataset was processed by gene ID matching, sample
(control/patient) annotation, and individual DEGs identification. To remove batch effects among different datasets,
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Table 2 Top 20 DEGs identified by meta-analysis across different datasets

EntrezID Gene symbol Gene name Combined ES Adjusted P-value

Top 10 overexpressed genes

100133941 CD24 CD24 molecule 2.8049 7.02E-08

64321 SOX17 SRY (sex determining region
Y)-box transcription factor 17

2.6537 5.12E-06

4072 EPCAM epithelial cell adhesion molecule 2.5631 4.70E-07

10406 WFDC2 WAP four-disulfide core domain
2

2.4890 1.08E-06

55765 INAVA innate immunity activator 2.3726 9.61E-07

54845 ESRP1 epithelial splicing regulatory
protein 1

2.2399 6.31E-06

2122 MECOM MDS1 and EVI1 complex locus 2.2230 7.31E-07

1999 ELF3 E74-like ETS transcription factor
3

2.2060 7.98E-08

1356 CP ceruloplasmin 2.0245 5.12E-06

4582 MUC1 mucin 1, cell surface associated 1.8852 1.33E-05

Top 10 underexpressed genes

646 BNC1 basonuclin 1 −3.3816 1.37E-04

316 AOX1 aldehyde oxidase 1 −3.1022 3.44E-05

1687 GSDME gasdermin E −2.9762 6.78E-05

65055 REEP1 receptor accessory protein 1 −2.6894 6.83 E-04

79804 HAND2 heart and neural crest derivatives
expressed 2

−2.5998 1.37E-04

10332 CLEC4M C-type lectin domain family 4
member M

−2.5927 2.50E-04

56245 C21orf62 chromosome 21 open reading
frame 62

−2.5673 4.02E-05

80310 PDGFD platelet derived growth factor D −2.5513 6.75E-07

54810 GIPC2 GIPC PDZ domain containing
family member 2

−2.5123 3.15E-09

8622 PDE8B phosphodiesterase 8B −2.5070 3.50E-04

The table listed the ten genes that were significantly up- and down-regulated according to ES after meta-analysis with P < 0.05.

‘ComBat’-based batch effects adjustment were performed [26], and the results with and without the adjustment were
visualized by PCA plots, respectively (Figure 2A,B). All the 16 gene expressional microarray data were then inte-
grated and merged. Meta-analysis was conducted following the Cochran’s Q test REM and ES statistical methods,
which facilitated to reveal the DEGs between healthy donors and patients across different microarray datasets by
permitting variable true effect size and integrating unknown cross-study heterogeneities. We found a total of 972
DEGs, including 541 up- and 431 down-regulated genes across the 16 datasets with significance threshold of adjusted
P-value < 0.001. Besides, by taking the advantage of meta-analysis, there were 92 gained genes with consistent ex-
pressional profiles and 12638 lost genes with inconsistent expressional changes across datasets acquired by comparing
meta-based DEGs with that of individual gene expression analysis (Figure 2C). Expression profile of the top 25 up-
and down-regulated genes among the 972 identified DEGs was visualized by heatmap (Figure 2D). CD24, SOX17,
and EPCAM were among the most significantly up-regulated genes, while BNC1, AOX1, and GSDME were among
the most significantly down-regulated genes (Table 2).

Gene expressional confirmation by clinical epithelial ovarian cancer
samples
In order to validate the results of DEGs for our meta-analysis, we collected 30 ovarian cancer samples and unpaired 30
normal ovarian tissues for control. RNA was extracted for each sample and the mRNA levels of each gene were quanti-
fied by real-time PCR analysis. The top five up- and down-regulated genes in ovarian cancers compared with normal
control were selected for the analysis, including CD24, SOX17, INAVA, WFDC2, EPCAM, AOX1, REEP1, BNC1,
HAND2, and GSDME. It has been revealed by our results that the expressional profile for the top five up-regulated
genes of CD24, SOX17, INAVA, WFDC2, and EPCAM were validated to be consistent in the clinical samples with
our meta-analysis (Figure 3A–E). However, only AOX1 of top five down-regulated genes was verified to be decreased
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Figure 2. DEGs identified by meta-analysis

(A) PCA-3D plot for sample clustering of microarray datasets without batch effect adjustment. (B) PCA-3D plot for sample clus-

tering of microarray datasets after batch effect adjustment. (C) Venn diagram of DEGs by meta-analysis (Meta-DE) and individual

microarray dataset analysis (Individual-DE). (D) Heat-map visualization of expressional profiles for top 25 up- and down-regulated

DEGs identified by meta-analysis. Genes were ranked by combined ES value, and the representative heat-map was generated by

‘Define Custom Signatures’ tool of NetworkAnalyst. Class of red: healthy donor; class of green: patient.
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Figure 3. Gene expressional validation for top five up- and down-regulated genes

Relative genes levels of ovarian cancer and normal tissues measured by qPCR were shown using waterfall plot. (A–F) Represent the

expression of CD24, SOX17, INAVA, WFDC2, EPCAM, AOX1 respectively. The fold change of relative genes expression (log2[T/N])

> 1 or < −1 was defined as significant. N, normal control; T, tumor of ovarian cancer.

in expression for expanding sample of ovarian cancers (Figure 3F), with that of REEP1, BNC1, HAND2, and GSDME
unchanged (Supplementary Figure S1A–D). The results indicated that although there are some artificial effects for
the results of our meta-analysis, the assay is still of high reliability providing with genes that are potentially functional
in ovarian cancer development and progress.

WFDC2 knockdown inhibited proliferation of ovarian cancer cells
Then, we tried to figure out whether these verified DEGs participated in the pathogenesis of ovarian cancer. Two
ovarian cancer cell lines of OVCAR-3 and CAOV-3 were selected for the functional analysis. siRNAs targeting each
gene were designed and synthesized by GenePharma. The knockdown efficiency for each gene was confirmed by
qPCR analysis in both cells (Supplementary Figure S2A,B). So we transfected the cells with siRNAs targeting CD24,
SOX17, WFDC2, EPCAM, INAVA, and AOX1, and detected cell proliferation changes by CCK8 analysis. The results
showed that WFDC2 knockdown inhibited cell proliferation in both OVCAR-3 and CAOV-3 cells (Figure 4A,B),
while knockdown of CD24, EPCAM, INAVA, and AOX1 leave cell proliferation largely unchanged. However, SOX17
knockdown slightly inhibited cell proliferation of CAOV-3 cells (Supplementary Figure S3). Collectively, our data
demonstrated that WFCD2 promoted cell proliferation of ovarian cancer cells; SOX17 might play marginal role in
cell proliferation and the function is likely dependent on cellular context; CD24, EPCAM, INAVA, and AOX1 had
no effect on ovarian cancer proliferation.

AOX1 knockdown decreases cell death ratio for ovarian cancer cells
Deregulated cell death is an essential characteristic of cancer cells, including ovarian cancer. Screening for genes
functional in cell death regulation is always a prospective way to find targets for cancer treatment. With the hypothesis
that these validated DEGs might modulate cell death of ovarian cancer cells, we detected the ratio of apoptotic cell
by flow cytometry analysis. OVCAR-3 and CAOV-3 cells were transfected with siRNAs specific for these six genes,
and only when AOX1 expression was decreased, the cell death ratio will be lowered for both early (Annexin V+/PI−)
and late (Annexin V+/PI+) apoptotic cells compared with NC transfected cells (Figure 5A,B). The data of cell death
affected by CD24, SOX17, WFDC2, EPCAM, and INAVA knockdown were provided in Supplementary Figure S4.
Collectively, these data suggested a role for AOX1 in modulating cell death of ovarian cancer.

INAVA and WFDC2 promote cell migration for ovarian cancer cells
In addition to cell proliferation and cell death, the property of cancer cell metastasis is the most important reason for
cancer recurrence and low survival rate. Cell migration assay is designed to detect whether certain genes are functional

8 © 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 4. WFDC2 knockdown inhibits proliferation of ovarian cancer cells

(A,B) Growth curve of OVCAR-3 and CAOV-3 cells upon transfection with NC and si-WFDC2. Transfected cells were counted and

plated in 96-well plates. ***P<0.001, ****P<0.0001.

Figure 5. AOX1 knockdown inhibits apoptosis of ovarian cancer cells

(A,B) Flow cytometry analysis for apoptotic cells affected by si-AOX1 transfection in OVCAR-3 and CAOV-3 cells. Annexin V was

labeled by FITC conjugated antibodies, and the DNA was stained by Propidium Iodide. *P<0.05, **P<0.01, ***P<0.001.

in cancer metastasis and provided with potential targets for cancer intervention. We knockdown the validated six
genes in OVCAR-3 and CAOV-3 cells, and check whether cell migration ability was affected. According to our results,
WFDC2 and INAVA knockdown dramatically inhibited cell migration for both cell lines (Figure 6), while knockdown
of CD24, EPCAM, SOX17, AOX1 did not affected cell migration (Supplementary Figure S5). These data suggested
that WFDC2 and INAVA promote cell migration and might be valuable targets for cancer therapy and worth further
study for the functional mechanism.

Discussion
Despite advances in surgical and medical therapy, the overall survival rate for patients with ovarian cancer remains
largely unchanged over the past decades. The lethality of ovarian cancer is mainly due to the difficulties in diagnosis
at early stage and the lack of effective treatments for patients with an advanced status [27]. Since different ovarian
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Figure 6. INAVA and WFDC2 knockdown inhibit migration of ovarian cancer cells

Down-regulation of INAVA and WFDC2 in OVCAR-3 and CAOV-3 exhibited inhibition of migration (magnification, ×100). Scale bar

= 100 μm. The results are representative of three separate experiments.

cancer cells are biologically, genetically, and molecularly similar, identification of common molecular markers may
contribute to reveal the appropriate risk factors, as well as make preventive, diagnostic, and therapeutic decisions for
these patients. Recently, microarray technology has been developing rapidly and widely used to uncover the general
genetic alterations in progression of diseases, which enables the identification of targets for diagnosis, therapeutic,
and prognosis of tumors [28]. Despite significant amounts of studies using microarray-based technology to identify
molecular markers in different ovarian cancer cells, contradictory results have been reported due to the diversity in
patient selection, tissue source, and study designs [29]. Therefore, in order to recognize the common gene signa-
tures underlying ovarian cancer, we performed meta-analysis by using 16 publicly available microarray datasets. In
the present study, 972 DEGs were found at with P-value < 0.001, including 541 up- and 431 down-regulated, respec-
tively. Interestingly, by comparing the list of meta-based DEGs and that of individual microarray dataset, 92 additional
DEGs were found as gained DEGs, which means our meta-based analysis lead to discovery of new DEGs compared
with individual dataset. By uncovering shared gene expressional profiles, the present study highlighted potential di-
agnostic and therapeutic biomarkers in ovarian cancer, and might aid in understanding the molecular mechanisms
of its development and progression.

Among the up-regulated DEGs, the expression for top five genes were further validated in clinical samples, in-
cluding CD24, EPCAM, SOX17, WFDC2, and INAVA. The protein encoded by CD24 is a small, heavily glyco-
sylated mucin-like cell surface protein [30]. Accumulating evidences had demonstrated that CD24 was involved in
epithelial–mesenchymal transition (EMT) and its increased expression was correlated with poor prognosis in patients
of epithelial ovarian cancer [31,32]. EPCAM, an epithelia cell localized type I transmembrane glycoprotein, was ini-
tially identified as a highly expressed tumor-associated antigen in ovarian cancer [33,34]. Collectively, these reported
data proved the accuracy for our meta-analysis based DEGs. SOX17, an important member of SOX family, which
encodes an antagonist of Wnt signaling pathway, was found to be frequently methylated in high-grade serous ovarian
cancer [35,36]. It is well known that promoter methylation typically represses gene expression. Contradictory, SOX17
expression was revealed to be up-regulated in our meta-analysis and clinical samples. So the expressional profiles and
relevance of SOX17 in ovarian cancer remains to be further validated. WFDC2 is located on human chromosome
20q12-13.1, the protein product for which is also called human epididymis protein 4 (HE4). It has been reported that
WFDC2 is involved in epithelial–mesenchymal transformation, and this gene is highly expressed in epithelial ovarian
cancer than in normal epithelial cells [37,38]. Besides, our functional study on WFDC2 effects on cell proliferation
consolidated the previous discovery that WFDC2 gene overexpression could promote ovarian tumor growth [39].
Thus, targeted screening for WFDC2 protein inhibition might benefits for the treatment of ovarian cancer. INAVA
gene, also called C1orf106, has been recently reported essential for optimal MAPK and NF-κB activation in primary
human cells by recruiting 14-3-3τ [40,41]. And inflammatory bowel disease (IBD)-associated polymorphisms in IN-
AVA is revealed to play important roles in intestinal immune homeostasis by regulating pattern recognition receptor
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(PRR)-mediated signaling transduction and bacterial clearance. In our analysis, INAVA was found to promote mi-
gration of ovarian cancer cells, which unmask a novel role for INAVA in ovarian cancer progression and pointed
potential implication for INAVA in targeted ovarian cancer treatment.

For the down-regulated DEGs, expressional confirmation was also performed in the clinical samples for the top five
dysregulated genes of AOX1, REEP1, BNC1, HAND2, and GSDME. However, only AOX1 was verified with con-
sistent expressional profile with the result of our meta-analysis, which implied that artificial effects for meta-analysis
existed and could be eliminated by further validation. AOX1 is a xenobiotic enzyme, which is a family member of
xanthine oxidase of cytosolic molybdoenzymes [42]. The enzyme catalyzes the oxidation of aldehydes and aromatic
N-heterocycles [43]. Recently, AOX1 has been uncovered to participate in the development and progression of a
series of cancers. For example, loss of AOX1 expression by epigenetic regulation could promote bladder cancer via
metabolic deregulations; the SNP rs73055188 of AOX1 locus is related to prostate cancer survival time, and AOX1
gene expression level is correlated with recurrence of prostate cancer [44]. However, the roles for AOX1 in ovarian
cancer have not been addressed [45]. In this study, we found that knockdown of AOX1 in ovarian cancer cells in-
hibited cell apoptosis. Although the mechanism underlying which AOX1 functions in ovarian cancer has not been
elucidated, the therapeutic value for AOX1 is still worth further exploration.

Conclusions
In our study, several DEGs, including WFDC2, INAVA, and AOX1, in ovarian cancer revealed by our meta-analysis
have been validated to potentially participate in ovarian cancer development and progression. Importantly, our study
will shed light on the novel molecular mechanisms underlying the pathogenesis of ovarian cancer, and facilitate the
understanding of novel diagnostic and therapeutic targets in ovarian cancer.
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