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Abstract

Short-acting β2-agonist bronchodilators are the most common medications used in treating chronic 

obstructive pulmonary disease (COPD). Genetic variants determining bronchodilator 

responsiveness (BDR) in COPD have not been identified.

We performed a genome-wide association study (GWAS) of BDR in 5789 current or former 

smokers with COPD in one African American and four white populations. BDR was defined as 

the quantitative spirometric response to inhaled β2-agonists. We combined results in a meta-

analysis.

In the meta-analysis, SNPs in the genes KCNK1 (P=2.02×10−7) and KCNJ2 (P=1.79×10−7) were 

the top associations with BDR. Among African Americans, SNPs in CDH13 were significantly 

associated with BDR (P=5.1×10−9). A nominal association with CDH13 was identified in a gene-

based analysis in all subjects.

We identified suggestive association with BDR among COPD subjects for variants near two 

potassium channel genes (KCNK1 and KCNJ2). SNPs in CDH13 were significantly associated 

with BDR in African Americans.

Introduction

Chronic obstructive pulmonary disease (COPD) is a disorder characterized by progressive 

loss of lung function. It is currently the third leading cause of death world-wide, and the 

global burden of disease is expected to continue to rise(1). Although cigarette smoke is the 

greatest risk factor for COPD, recent studies have identified several genetic risk factors for 

this disease(2).
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Inhaled bronchodilators, including β2-agonists, play a key role in COPD management 

guidelines. These medications act on smooth muscle receptors in bronchial airways to 

produce muscle relaxation and airway dilation, resulting in improved airflow through the 

lungs (1), and have been shown to alleviate COPD symptoms(3). The response to inhaled 

bronchodilators is measured by a change in the forced expiratory volume in one second 

(FEV1) using standardized spirometry before and after the administration of β2-agonists. 

Although COPD is characterized by relatively fixed airflow limitation, up to two-thirds of 

COPD patients will exhibit a positive response to an inhaled bronchodilator at any one 

time(4).

The quantitative response to inhaled β2-agonists is a heritable trait(5), and candidate gene 

studies have identified several genes suggestive of association with quantitative measures of 

bronchodilator responsiveness (BDR)(6, 7). In addition, candidate gene(8) and genome-wide 

association studies (GWAS) have identified variants associated with BDR in subjects with 

asthma (9–11). We hypothesized that genome-wide association studies would identify 

associations with BDR in COPD.

Subjects and Methods

Study subjects

Details of the COPDGene, ECLIPSE, GenKOLS, and NETT studies, including study 

procedures, genotyping, and quality control, have been reported(12–16). COPDGene 

subjects were current and former smoking non-Hispanic white (NHW) or African American 

(AA) from the U.S. ECLIPSE subjects were Caucasian current or former smokers from 

Europe, North American and New Zealand. GenKOLS subjects were current and former 

smokers from Norway. NETT subjects were white former smokers from the U.S. All 

subjects had moderate to severe COPD (GOLD stage 2 or greater(17)). Subjects were 

excluded if they had a recent COPD exacerbation.

Spirometry

All subjects completed a respiratory questionnaire and performed standardized spirometry 

according to American Thoracic Society or European Respiratory Society guidelines. 

COPDGene, NETT, and GenKOLS subjects were tested before and approximately 20 

minutes after administration of 2 puffs (180 μg) of inhaled β2-agonist (albuterol/salbutamol). 

ECLIPSE subjects were tested before and 15 minutes after inhalation of 400 μg β2-agonist 

(albuterol/salbutamol).

BDR was measured using three quantitative metrics that have been previously reported(5). 

BDRABS, the absolute difference in pre- versus post- bronchodilator FEV1; BDRPRED, the 

absolute difference in pre- versus post-bronchodilator FEV1 as a percentage of FEV1 percent 

predicted; and BDRBASE, the absolute difference in pre versus post bronchodilator FEV1 as 

a percentage of baseline FEV1.
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Genotyping

All subjects were genotyped using Illumina platforms (Human Hap550 for ECLIPSE and 

GenKOLS, Quad610 for NETT, and Human OmniExpress for COPDGene) as previously 

described(13, 15). We included all variants and subjects that passed quality control, based on 

cluster plots (genotyped) and imputation quality (R2 ≥ 0.80) for imputed SNPs, Hardy-

Weinberg equilibrium (P-value), and missingness (% threshold). Imputation was performed 

using MaCH and minimac with 1000 Genomes phase I v 3 European reference panels for 

white subjects. Cosmopolitan reference panels were used for COPDGene AA subjects. 

Variants with a minor allele frequency (MAF) < 1% and R2 ≤ 0.80 were excluded from 

analysis. Ancestry-based principal components were generated for each study using 

EIGENSOFT2.0(18). We performed Taqman genotyping (Applied Biosystems, Foster City, 

CA) for the SNPs rs114132812 and rs115067260 among 23 and 38 African American 

COPDGene subjects respectively, who were imputed to be carriers of the minor allele.

Statistical analysis

Baseline subject demographics and outcome variables were analyzed in R (v2.15.1). We 

excluded 20 subjects with BDR variables more than six standard deviations from the mean. 

We performed linear regression analysis for the three BDR variables in PLINK(19) 

including genotyped and imputed SNPs, adjusting for age, gender, pack-years smoking 

history, and ancestry-based principal components. We combined the results from all five 

samples in a fixed-effects meta-analysis using METAL(20). We additionally performed a 

gene-based test of significance among the top 20% of all SNPs using VEGAS (a Versatile 

Gene-based test for Genome-wide Association Studies). This method performs gene-based 

association testing by assigning SNPs within 50kb of a gene in accordance with the hg18 

assembly and then uses simulation to account for linkage disequilibrium. All genes are 

tested for association with the trait of interest(21). Using the top 20% of significantly 

associated SNPs, we used VEGAS software to test 13,675 genes. Based on this number, we 

established a Bonferroni significance threshold of 3.6×10−6. We analyzed the top genes from 

our GWAS as well as the top genes identified through the VEGAS analysis using the 

functional annotation tool, DAVID(22, 23).

We tested the association of seven asthma and three COPD SNPs previously associated with 

BDR in asthma GWAS (9, 11) and COPD candidate gene studies (ADRB2, EPHX1, and 

SERPINE2) (6) with BDR in our meta-analysis results. We additionally tested the 

association of two SNPs from the β2-agonist receptor gene, ADRB2 (Arg16Gly, rs1042713 

and Gln27Glu, rs1042714). We tested our top SNPs for their association with lung function 

(FEV1/FVC and FEV1) in the four COPD populations with the broadest range of lung 

function values: COPDGene NHW and AA, GenKOLs, ECLIPSE. We examined our top 

BDR variants for their association with BDR in two asthma GWAS(9, 11).

Results

The demographic data for each study population are presented in Table 1. These outcomes 

appear to follow a normal distribution (Supplementary Figure 1). All three outcomes are 

significantly correlated in COPDGene NHW, but BDRABS and BDRPRED appear more 
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correlated (R2=0.97), compared to BDRABS and BDRBASE (R2=0.85) or BDRBASE and 

BDRPRED (R2=0.88).

The BDR outcomes were statistically different when comparing the four Caucasian 

populations (P<0.05 for ANOVA for all three BDR outcomes). However, these small 

differences are unlikely to be clinically significant. We additionally compared the NHW and 

AA subjects from COPDGene. The AA subjects demonstrated significantly lower 

bronchodilator responsiveness for all three outcomes, and these results remained significant, 

albeit small, after adjusting for age, gender, and pack-years (BDRABS: 0.10 L vs 0.07 L, P 

= 0.004; BDRPRED: 3.59% v 2.80%, P=0.02; BDRBASE: 9.24% vs 7.60%, P=0.007).

Table 2 presents the most significant SNPs from the GWAS in the non-Hispanic white 

subjects from COPDGene. The top SNP annotated to a gene is presented in this table. The 

full list of SNPs with P < 1×10−6 are presented in Supplementary Tables 1–3. SNP 

rs17575208, located upstream from the gene EPHA7 on chromosome 6, was significantly 

associated with BDRABS (β=0.11, P=8.29×10−9). This variant was also associated with 

BDRPRED (β=3.22, P=1.03×10−7) and BDRBASE (β=7.06, p=5.64×10−6), though the P-

values were not genome-wide significant.

Table 3 presents the top SNPs annotated to genes having P < 5×10−6 for the COPDGene AA 

subjects. The full list of SNPs with P < 5×10−6 are presented in Supplementary Tables 4–6. 

Variants in the gene CDH13 were significantly associated with BDRABS (rs115067260; 

β=0.17±0.03, P=5.05×10−9) and BDRPRED (rs114132812, β=7.63±1.32, P=1.19×10−8), 

and showed suggestive association with BDRBASE (rs77347308 β=−17.14±3.39, 

P=5.35×10−7). In addition, a genotyped SNP in the gene SGCD was significantly associated 

with BDRBASE (rs10056066, β=7.12±1.29, P=4.86×10−8), and several rare imputed SNPs 

in the gene GOLGA8B were associated with the outcome BDRPRED (rs76677753, 

β=9.49±1.67, P=1.9×10−8). A recent GWAS using COPD subjects from the Lung Health 

Study population identified the variants in the gene SGCD as associated with airway 

responsiveness measured by methacholine challenge test in a physiologically distinct asthma 

cohort(24). While the response to inhaled methacholine is distinct from the response to 

inhaled bronchodilators, similar mechanisms of smooth muscle activation could be involved. 

We tested the two top SGCD SNPs from that study in our AA population. The SNP 

rs456290 was associated with BDRBLINE (P=0.02), and the SNP rs2642660 approached 

replication (P=0.08). These SNPs were not associated with BDRBLINE in the NHW 

population, or in the meta-analysis.

The CDH13 SNPs were in LD (rs115067260 and rs114132812, R2=0.60, D’=1.0). These 

variants were monomorphic in the Caucasian populations. We tested additional variants 

within CDH13 in the COPDGene NHW subjects for association with BDR. Rs4783331 was 

nominally associated with BDRABS (β=0.11±0.02, P=9.39×10−5), and five additional SNPs 

in this gene had P<0.001.

We tested our model assumptions of normal distributions of the BDR traits, focusing on 

BDRABS in the African Americans. The BDR traits appeared to fit a normal distribution 

(Supplementary figure 1). We additionally examined the residuals from linear regression for 
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the BDR outcomes in the African American subjects, adjusted for age, pack-years, and 

gender, which appeared normally distributed and were consistent with our model assumption 

(Supplementary figure 2). We performed an inverse normal transformation of the BDRABS 

phenotype, and tested this trait in a GWAS. The CDH13 SNPs, rs115067260 (P=4.46×10−6) 

and rs114132812 (P=5.10×10−6), remained the top associations. Taqman genotyping verified 

the imputation accuracy of the CDH13 SNPs. 22/23 imputed carriers of the SNP 

rs114132812 were heterozygous for the minor allele, and for rs115067260, 35/37 subjects 

were verified as heterozygous and one subject homozygous for the minor allele.

We performed a meta-analysis of the results of all five study populations (Table 4, Figure 1). 

A SNP in the potassium channel, subfamily K, Member 1 gene (KCNK1) demonstrated 

suggestive association with the outcome BDRABS (β =−0.0142, P=2.02×10−7). A SNP 

upstream from the gene KCNJ2 (rs9898686) showed suggestive association with all three 

traits: BDRABS, (β =0.014, P=2.05×10−7), BDRBASE (β=1.26, P=1.83×10−7) and 

BDRPRED (β =0.44, P=1.22×10−6). Variants in the gene MC5R (melanocortin 5 receptor) 

were suggestively associated with BDRPRED (rs12956045, β= −0.45, P=4.69×10−7). 

Several other variants in the KCNJ2 region also demonstrated nominal association, and these 

variants were in linkage disequilibrium (R2>0.80). SNPs upstream from KCNJ2 were 

recently identified as associated with lung function (measured by FEV1) in a joint meta-

analysis of SNP and SNP-by-smoking effects in a population-based sample(25). We 

examined the top SNP from that analysis, rs11654749. This SNP was nominally associated 

with BDRABS in COPDGene NHW subjects, with the same effect direction (β=0.011, 

P=0.007). We performed the meta-analysis without the AA population (Supplementary 

Table1), with very similar results as that including all five study populations together.

We examined SNPs previously associated with BDR in asthma GWAS (9, 11, 26, 27) 

(Supplementary Table 9). In asthma, the SNP rs4452682 in the gene SLC22A23 was 

associated with BDR(11). This SNP was nominally associated with BDRBASE in the 

COPD meta-analysis (β =0.63, P=2.5×10−3), although the effect size was in the opposite 

direction. A rare variant in the gene SLC24A4 was also previously associated with BDR in 

an asthma study(26). Although this SNP, rs77441273, was not present in our GWAS meta-

analysis, several SNPs in this gene demonstrated nominal association with BDRABS 

(rs60243508, β=0.017, P=0.008). The gene SPATA13 was previously associated with BDR 

in a gene-based GWAS among African Americans with asthma(27). Although this gene did 

not replicate in our gene-based VEGAS analysis and the top reported SNP did not replicate 

in our meta-analysis, we tested all 464 of the genotyped and imputed SNPs available in the 

gene SPATA13 for their association with BDRABS. Twenty-eight of these SNPs were 

nominally associated with BDRABS in the COPD meta-analysis, including rs9511156 

(β=0.02, P=0.007); however these associations were not significant after correction for 

multiple testing. In addition, among the COPDGene AA population, the top SNP rs9507294 

from the asthma study showed nominal association with BDRBASE (β=1.94 , P=0.05). The 

remainder of the asthma GWAS SNPs were not significantly associated with BDR in the 

COPD analyses, and none of the asthma BDR genes were significant in the gene-based 

VEGAS analysis. The ADRB2 codon 16 and 27 SNPs (rs1042713 and rs1042714) that have 

been previously identified in asthmatic populations were not significantly associated with 

BDR in the COPD GWAS. None of the top COPD variants were associated with BDR when 

Hardin et al. Page 6

Pharmacogenomics J. Author manuscript; available in PMC 2016 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



examined in two prior asthma GWAS(9, 11). The SNPs from candidate genes previously 

associated with BDR in COPD populations (6), including EPHX1 (rs3753661), SERPINE2 
(rs6712954), and ADRB2 (rs1042717), were not associated with BDR in our analysis.

We tested the top SNPs from the BDR meta-analysis for association with lung function in 

four of the five COPD populations (COPDGene NHW and AA, GenKOLs, ECLIPSE). SNP 

rs61824320 in the gene KCNK1 was significantly associated with FEV1/FVC (β= −0.0042 , 

P=0.03) and FEV1 (β= −0.02 , P=0.04) (M. Cho and S. Lutz, personal communication). The 

remainder of top SNPs from the BDR meta-analysis were not significantly associated with 

lung function.

In the VEGAS gene-based analysis (Supplementary Tables 10–12), using the P value results 

from the meta-analysis of all five studies, KCNK1 approached genome-wide significance for 

the outcome BDRABS (P=8.4×10−5) and BDRPRED (P=3.8×10−4). The gene SH2B 

adaptor protein 3, SH2B3, was a top gene for all three traits, approaching genome wide 

significance for BDRABS (P=3.20×10−5), BDRPRED (7.0 × 10−5) and BDRBASE (1.50 × 

10−5). We examined the top genes from the GWAS in the VEGAS analysis. KCNJ2 and 

SGCD were not significant in the gene-based analysis; however, CDH13 showed nominal 

significance for all three traits. We additionally performed Gene Ontology analysis of the top 

50 genes from the GWAS and from the VEGAS analysis using the functional annotation 

software, DAVID. Among the top genes in the GWAS, there was enrichment for ion channel 

and ion transport genes, including KCNK1, FXYD1, and PKD2L1. Among the top genes 

from the VEGAS analysis, there was enrichment for chemotaxis and lipid biosynthesis.

Discussion

This is the first genome-wide association study of the response to inhaled β2-agonists among 

COPD subjects. In a meta-analysis including five COPD populations and over 5000 subjects, 

we identified several genetic variants associated with the response to inhaled β2-agonist 

bronchodilators. In the African-Americans from COPDGene, several variants in the genes 

CDH13 (Cadherin-13), SGCD (Sarcoglycan delta), and GOLGA8B (golgin A8 family, 

member B) demonstrated genome-wide significance for their association with the response 

to β2-agonists. In the non-Hispanic white COPDGene population, SNPs upstream and 

within the potassium channel genes, KCNJ2 and KCNK1 respectively, approached genome-

wide significant association with the response to inhaled bronchodilators. This association 

remained in a meta-analysis including all five COPD case populations, although not at the 

genome-wide significance level.

In the primary analysis among the COPDGene NHW population, the SNP rs17575208 on 

chromosome 6 upstream from the gene Ephrin-type A receptor 7, EPHA7, was genome-

wide significant with a P value of 7.23×10−9 for the outcome BDRABS, 8.3×10−8 for 

BDRPRED and 4.15×10−6 for BDRBASE. Although mutations in this gene have been found 

in resected non-small cell lung cancer human specimens, little is known about a potential 

role for EPHA7 in COPD, asthma, or BDR. In our meta-analysis, this SNP had a P value of 

2.32 × 10−5 for the outcome BDRABS and 1.30×10−4 for the outcome BDRPRED, however 

the association was not significant among the other populations tested (P>0.05). This is an 
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imputed SNP with minor allele frequency of 1.4% but good imputation quality (R2 = 0.82), 

and therefore may suggest a promising gene for future studies.

We identified several SNPs on chromosome 17 upstream from KCNJ2, also known as 

KIR2.1 or Potassium inwardly-rectifying channel, subfamily J, member 2, that were 

suggestively associated with BDR. Inwardly-rectifying potassium channels were initially 

described in cardiac, skeletal, and brain tissue, and especially in smooth muscle of small 

arterioles. These channels play a role in potassium-mediated constriction in response to 

hypoxemia or ischemia(28). KCNJ2 encodes Kir2.1, a strong inwardly rectifying potassium 

channel, which has been identified in small and large bronchial smooth muscle cells and 

plays a role in membrane depolarization (29) (30). Although the exact role for these 

channels in smooth muscle relaxation remains to be determined, it is possible that these 

channels play a role in the response to increased extracellular potassium, such as that 

induced by hypoxemia or acidic environments, leading to membrane hyperpolarization and 

smooth muscle relaxation(28, 30).

Genotyped and imputed SNPs within the potassium channel gene, KCNK1, located on 

chromosome 1, were also associated with BDRABS. This gene is also known as TWIK-1, 

and encodes the 2-pore protein potassium channel subfamily K member 1, or inward 

rectifying potassium channel protein TWIK-1. Two-pore potassium channels have been 

identified in a lung epithelial cell line(31). TWIK-1 transcript has been identified on the 

apical membrane of human bronchial epithelial cells, and has been suggested to play a role 

in hyperpolarization of membrane action potential(32). The top variant in this gene was 

additionally associated with measures of lung function, suggesting a potential link to COPD 

severity. Further studies will be necessary to confirm the roles of these potassium channel 

genes in BDR and COPD severity.

The identification of multiple potassium channel genes in the single SNP and gene-based 

analyses suggests a potential role for these channels in moderating the response to inhaled 

bronchodilators. Further, both the GWAS and gene-based analysis were enriched for ion 

channel genes. Cellular potassium levels play a key role in maintaining membrane potential, 

and potassium channels have been demonstrated to mediate the effects of β-agonists(2). 

Other potassium channel genes, such as the KCNQ voltage activated channels, have been 

found to ameliorate methacholine bronchoconstriction in rat lung models(33), and these 

inwardly-rectifying potassium channels may play a similar role in bronchial smooth muscle 

relaxation. The potassium channel opening medication cromakalin has been tested in animal 

and human asthma subjects(34). However, limited knowledge is available about the role of 

potassium channels in mediating smooth muscle relaxation. The identification of potassium-

channel genes suggests the importance of revisiting this class of medications for COPD and 

asthma therapeutics.

We noted a statistically significant, but clinically small, difference in the response to inhaled 

β2-agonists between the non-Hispanic white and African American subjects in COPDGene. 

To our knowledge, this is the first demonstration that NHW and AA subjects with COPD 

may respond differently to inhaled β2-agonists. Because of this difference, we examined the 

AA population alone for variants associated with BDR. In AA subjects, SNPs in the genes 
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CDH13, SGCD, and GOLGA8B were associated with bronchodilator responsiveness. 

CDH13 encodes the protein T-cadherin, which functions as an adiponectin receptor(35) and 

is expressed in mouse lungs in response to allergen stimulation with ovalbumin (36). 

Adiponectin is protective against allergen-induced inflammatory cell response in mouse 

lungs and airway hyperresponsiveness(37) and T-cadherin knock-out mice demonstrate 

reduced immune response, airway hyperresponsiveness, and mucus hyperplasia compared to 

wild-type mice (36). Elevated adiponectin levels have been associated with increased 

radiographic measures of percent emphysema and lower response to inhaled bronchodilators 

among subjects with COPD(38).

SGCD encodes the dystrophin-sarcoglycan complex protein subunit sarcoglycan-δ. This 

protein complex is expressed in skeletal and cardiac muscle and is thought to play a role in 

limb girdle muscular dystrophy(39). The delta-sarcoglycan complex has been identified in 

airway smooth muscle cells, and plays a role in mediating the transition of airway smooth 

muscle cells from contractile to proliferative phenotypes(40), suggesting a possible role in 

COPD pathogenesis. In addition, variants in the SGCD gene were recently associated with 

airway hyperresponsiveness in a GWAS among COPD subjects from the large multicenter 

Lung Health Study. These variants were also nominally associated with BDRBLINE in our 

population.

Variants in the gene GOLGA8B (Golgin A8 Family, Member B, GOLGA8B) were 

associated with BDRPRED and approached significant association with BDRABS. 

Although these were imputed SNPs with low minor allele frequency, the imputation was of 

good quality. GOLGA8B encodes a golgi system autoantigen, and this region has been 

associated with myopia in a large GWAS(41), although a potential role in bronchodilator 

responsiveness is unknown.

We examined the response to an inhaled bronchodilator as a quantitative variable using three 

measures that have been used in prior epidemiologic and genetic studies(5, 6). In a family-

based study, Palmer and colleagues demonstrated that both BDRABS and BDRPRED have 

greater than 30% heritability, while BDRBASE is less heritable(5), suggesting that all three 

outcomes were suitable phenotypes to test for genetic association. The absolute change in 

FEV1 after β2-agonist administration is the most straightforward measure, but it does not 

account for baseline lung function, which is reduced in COPD. In contrast, BDRBASE has 

been shown to correlate with baseline lung function(42). These variables were all highly 

correlated. As no single measure appears to be the most comprehensive, we analyzed all 

three traits.

Quantitative measures of the response to inhaled bronchodilators differ from the binary 

definition used by the American Thoracic Society and European Respiratory Society(1). 

Prior studies have suggested that this binary outcome does not identify a phenotypically 

distinct subset of COPD patients, since the presence or absence of a bronchodilator response 

does not predict clinical outcomes and demonstrates intra-individual variability (42, 43). In 

contrast, linkage and candidate gene studies have previously identified genetic risk factors 

for quantitative measures of bronchodilator responsiveness(5, 6). In addition to our new 

GWAS results, these genetic associations suggest that there are distinct genetic risk factors 
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that play a role in determining the quantitative response to inhaled β2-agonists. Identifying 

these markers may help to identify COPD patients who demonstrate a greater response to 

β2-agonists, or who may be unlikely to benefit and therefore should be prescribed alternative 

medications.

Several GWAS have identified SNPs and genes associated with BDR in asthma (8, 11, 26, 

27, 44). We examined the top variants from the asthma studies for association with BDR in 

the COPD populations, as well as SNPs in the ADRB2 gene that have previously been 

associated with clinical response to long-acting β2-agonist administration in COPD(44–46). 

A variant in the SLC22A23 gene was nominally associated with BDR in COPD, although 

the effect size was in the opposite direction as originally reported. A previously identified 

intergenic SNP, rs11252394, on chromosome 5 also suggested significant association with 

BDRABS. However, none of the other asthma BDR variants demonstrated significant 

association. Although ADRB2 may be a candidate gene for bronchodilator responsiveness in 

asthma, variants from this gene have not demonstrated consistent association with BDR in 

COPD (6, 47, 48).

Our study has several limitations. It is common for investigators to replicate top GWAS 

findings in a replication population. However, in order to improve our power to detect an 

association, we used all available COPD cohorts in our meta-analysis to perform the largest 

GWAS of BDR to date. Our most significant findings are in biologically plausible genes, 

and the effect sizes are similar across all included cohorts. It is encouraging that we did find 

some cross-over between our top hits and those in asthma populations for both 

bronchodilator responsiveness and airway hyperresponsiveness despite the fact that these are 

different study populations. Although we identified several variants upstream from KCNJ2 
as associated with BDRABS and BDRPRED, these results failed to meet genome-wide 

significance in the meta-analysis. An examination of each population demonstrates that 

these variants all had a similar effect size (Supplementary Figure 1, Supplementary Table 8), 

suggesting that the lack of significance may be related to sample size. In contrast, studies 

that have identified variants associated with lung function in the general population have had 

sample sizes up to ten times larger than the current study(49). This is the only genome-wide 

study of the response to inhaled bronchodilators in COPD performed to date. We were 

specifically interested in identifying genes associated with BDR in COPD populations, and 

therefore we are limited to available COPD cohorts for this analysis. Although the GWAS 

meta-analysis did not demonstrate genome-wide significance, the top SNP is upstream from 

the gene KCNJ2, and the protein-product potassium channel is relevant to the phenotype 

being studied. In addition, variants in this same region have previously been associated with 

lung function. We are additionally limited by the use of a one-time measurement of 

bronchodilator responsiveness. Although BDR as a binary trait is not necessarily stable in an 

individual COPD patient over serial measurements (43), we used quantitative outcomes in 

this analysis. Post-bronchodilator FEV1 is a stable phenotype over time(5), diminishing the 

noise in the quantitative measures. However, the presence of intra-individual variability may 

have diluted our ability to identify a significant genome-wide association. Future 

longitudinal studies in these populations that can account for intra-individual variability may 

better identify genetic risk factors for these outcomes.
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Within the COPDGene African American subjects, there were several SNPs that 

demonstrated genome-wide significance, but were of low minor allele frequency, including 

imputed SNPs in CDH13. However, all SNPs had a minor allele frequency greater than 1%, 

with excellent imputation quality (R2 ≥ 90%). Although the BDR outcomes were normally 

distributed, minimal skewing could result in false positive associations especially among 

variants with low minor allele frequency. In order to test our assumption of normality, we 

performed inverse normal transformation of the BDR outcomes and tested for variants for 

association with this transformed outcome. The order of SNPs was preserved with this 

transformed outcome, suggesting that our assumption of normality was correct. We 

confirmed imputation accuracy through direct genotyping. Furthermore, animal studies 

provide good evidence that CDH13 is biologically plausible as a gene potentially involved in 

the bronchodilator pathway. Although the top variants associated with BDR in the AA 

population were monomorphic in the Caucasian populations, several other CDH13 variants 

were nominally associated with BDR. In addition, the gene-based test identified this gene as 

nominally associated with bronchodilator responsiveness even though the top SNPs in the 

AA analysis were not included in the gene-based test.

In summary, in the largest COPD pharmacogenetics GWAS to date, we demonstrated that 

variants upstream from the gene KCNJ2 are associated with response to an inhaled short 

acting β2 -agonist bronchodilator. In addition, several SNPs in the genes CDH13 and SGCD 
were significantly associated with BDR in African Americans. These results may point to 

novel assessments or potential novel therapeutic pathways for COPD. Future studies will 

require larger COPD populations to identify genome-wide significant variants, and 

functional studies will help to identify a role for the SNPs and genes highlighted in the 

GWAS.
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Figure 1. 
Manhattan plots for meta-analysis results for each bronchodilator responsiveness outcome
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Figure 2. 
Regional association plot for KCNJ2 variants associated with the outcome BDRABS
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