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Abstract

Thyroid adenomas are common benign human tumors with a high prevalence of about 5% of the adult population even in
iodine sufficient areas. Rearrangements of chromosomal band 19q13.4 represent a frequent clonal cytogenetic deviation in
these tumors making them the most frequent non-random chromosomal translocations in human epithelial tumors at all.
Two microRNA (miRNA) gene clusters i.e. C19MC and miR-371-3 are located in close proximity to the breakpoint region of
these chromosomal rearrangements and have been checked for a possible up-regulation due to the genomic alteration. In
4/5 cell lines established from thyroid adenomas with 19q13.4 rearrangements and 5/5 primary adenomas with that type of
rearrangement both the C19MC and miR-371-3 cluster were found to be significantly overexpressed compared to controls
lacking that particular chromosome abnormality. In the remaining cell line qRT-PCR revealed overexpression of members of
the miR-371-3 cluster only which might be due to a deletion accompanying the chromosomal rearrangement in that case.
In depth molecular characterization of the breakpoint in a cell line from one adenoma of this type reveals the existence of
large Pol-II mRNA fragments as the most likely source of up-regulation of the C19MC cluster. The up-regulation of the
clusters is likely to be causally associated with the pathogenesis of the corresponding tumors. Of note, the expression of
miRNAs miR-520c and miR-373 is known to characterize stem cells and in terms of molecular oncology has been implicated
in invasive growth of epithelial cells in vitro and in vivo thus allowing to delineate a distinct molecular subtype of thyroid
adenomas. Besides thyroid adenomas rearrangements of 19q13.4 are frequently found in other human neoplasias as well,
suggesting that activation of both clusters might be a more general phenomenon in human neoplasias.
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Introduction

Thyroid adenomas are highly frequent human tumors that can

be distinguished from their malignant counterparts i.e. follicular

carcinomas by an encapsulated growth and a lack of invasiveness,

respectively. Even in iodine sufficient areas thyroid adenomas

occur in 4–7% of adults and in iodine deficient areas this number

can rise to about 50%. The pathogenesis of these frequent benign

tumors is only poorly understood but clonal chromosomal

aberrations can be observed in roughly 40% of the nodules and

are likely to pinpoint genomic regions and genes relevant for the

development of the disease [1]. About 20% of the tumors with

clonal cytogenetic aberrations show abnormalities involving

chromosomal band 19q13 [2]. Given the extremely high

prevalence of thyroid adenomas in Europe and the U.S. alone

four to five million people can be estimated to be affected by this

genomic alteration in their thyroid. So far, by positional cloning

and in silico analyses the breakpoints have been found to cluster

within a segment of 150 kb (kilobases) [3] that is located in close

proximity to the genes encoding two miRNA clusters i.e. C19MC

and miR-371-3 (Figure 1). The 100 kb long C19MC cluster with

46 tandemly repeated, primate-specific miRNA genes accounts for

about 8% of all known human miRNA genes making it the largest

human miRNA gene cluster discovered to date [4]. Ren et al. [5]

have predicted 4,691 targets for this cluster. Recent evidence

suggests that its miRNAs are encoded by an intron of a non-

protein coding Pol-II transcript which is mainly expressed in the

placenta [4]. In contrast to that large cluster the miR-371-3 cluster

is much smaller spanning a region of approximately 1,050 bp

where five miRNAs are encoded. The miRNAs of both clusters

belong to a large miRNA family sharing a similar seed sequence

[6]. Of note, several groups recently have linked the expression of

members of the C19MC as well as the miR-371-3 cluster with the

miRNA signature characteristic for human embryonic stem cells

(hESC) [5,6,7]. First evidence for an oncogenic potential of miR-

373 has been obtained in human testicular germ cell tumors where

it was shown to allow tumorigenic growth in the presence of wild-

type p53 [8]. In prostate cancer both miR-373 and miR-520c
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although found to be downregulated stimulated migration and

invasion in vitro [9]. Recently, Huang et al. [10] were able to

demonstrate that miR-373 and miR-520c promote tumor invasion

and metastasis in vivo and in vitro by the suppression of CD44.

Interestingly, qualitative and quantitative changes of CD44

expression have been implicated in the growth and progression

of thyroid tumors. Because invasive behavior is of pivotal

significance in the differential diagnosis of thyroid tumors we

have addressed this study on a possible up-regulation of both

miRNA clusters in thyroid adenomas.

Results

Cell Lines from Thyroid Adenomas with 19q13-
Rearrangement Show Upregulated Expression of miRNAs
of the C19MC Cluster

To evaluate the role of either of the two miRNA clusters located

in close proximity to the breakpoint region as possible targets of

the 19q13 translocations in thyroid adenomas, we have first used

RT-PCR to compare the expression of three members of the

C19MC cluster, i.e. miR-512-5p, miR-517a, and miR-519a in five

cell lines established from thyroid adenomas with 19q13

rearrangements and three cell lines from adenomas with other

clonal abnormalities (Table 1). All cell lines had been established

from primary tumors by using a SV40 derived subgenomic

fragment. The three miRNAs chosen were spread over the whole

cluster and served as examples for the more than 46 different but

similar cluster members. Four of the five cell lines with 19q13

rearrangements expressed detectable levels of the three miRNAs

whereas in the remaining cell line (S121, Table 1) and all cell lines

with other aberrations no expression of any of the three miRNAs

was noted (Figure 2).

We have then used these cell lines to quantify the expression of

another member of the C19MC cluster i.e. miR-520c by real-time

PCR (qRT-PCR). Akin to the results obtained for the other

members of that cluster high expression was noted only in the

same four cell lines with 19q13 rearrangements expressing miR-

512-5p, miR-517a, and miR-519a (Figure 3a) whereas a

significantly lower expression was seen in the remaining cell lines

(p = 0.001659; for details see Table 2). Most likely, the exception-

ally low expression of all examined members of the C19MC

cluster in cell line S121 may result from a deletion of that part of

the breakpoint region resulting from the chromosomal transloca-

tion the breakpoint of which had previously been mapped at a

Figure 1. Scheme of the chromosomal region 19q13.4 with the two miRNA clusters C19MC and miR-371-3. Protein coding genes are
represented by gray bars whereas genes of miRNA clusters are given as blue (C19MC cluster) and green (miR-371-3 cluster) lines, respectively. The
common breakpoint cluster (BPC) of benign thyroid tumors of about 150 kb is indicated by a vertical arrow. miR-512-1 (pre-miR) is coding for mature-
miR-512-5p, miR-371 (pre-miR) is coding for mature-miR371-3p. Gene symbols refer to the following protein coding genes: ZNF331 = zinc finger
protein 331, DPRX = divergent-paired related homeobox, NLRP12 = NLR family, pyrin domain containing 12.
doi:10.1371/journal.pone.0009485.g001

miRNA-Activation in Thyroid

PLoS ONE | www.plosone.org 2 March 2010 | Volume 5 | Issue 3 | e9485



position between the C19MC and the miR 371-3 cluster. Thus, in

all cell lines with breakpoints upstream of the C19MC cluster

evidence for an upregulation of four cluster members was

obtained. Because of a common regulation of that cluster, no

further members were examined.

Thyroid Adenomas with 19q13 Rearrangements Show
Upregulation of miRNAs of the C19MC Cluster and the
miR-371-73 Cluster

To see if comparable results can be obtained for primary tumors

as well we have characterized 70 thyroid nodules by interphase

Table 1. Used tissue samples and cell lines.

sample no. thyroid material cytogenetic subtype/FISH karyotype

S40.2* cell line 46,XX,t(1;19)(p35 or p36;q13)[19]

S121* cell line 46,XX,t(5;19)(q13;q13)[52]

S141.2* cell line 46,XX,t(2;19)(p12 or p13;q13)[59]

S211# cell line 46,XX,inv(4)(p15.2q12),t(5;19)(p14 or 15.1;q13),t(9;18)(q12;q22)[25]

S270.2 cell line 46,XX,t(2;3)(q21;q27 or q28)[13]

S290.1 cell line 46,XX,t(11;19)(q23;q13)[19]

S325p cell line 46,XX,t(2;20;3)(p21;q11.2;p25)[17]

S533p cell line 46,XX,t(2;7)(p21;p15)[16]

S805 adenoma 46,XX

S806 adenoma 46,XX

S889 adenoma 46,XX

S920 adenoma 46,XX

S925 adenoma 46,XX

S801 adenoma 46,XY,t(2;4),t(2;14;19)

nuc ish(59-tbpc19,39-tbpc19)x2(59-tbpc19 sep 39-tbpc19x1)

S814 adenoma 46,XX,del(6)(q21,22)

nuc ish(59-tbpc19,39-tbpc19)x2(59-tbpc19 sep 39-tbpc19x1)

S842 adenoma 46,XX,t(1;19)(q32;q13)[8]/46,XX[24]

nuc ish(59-tbpc19,39-tbpc19)x2(59-tbpc19 sep 39-tbpc19x1)

S846 adenoma 46,XY

nuc ish(59-tbpc19,39-tbpc19)x2(59-tbpc19 sep 39-tbpc19x1)

S849 adenoma not evaluable by cc

nuc ish(59-tbpc19,39-tbpc19)x2(59-tbpc19 sep 39-tbpc19x1)

Cytogenetic details of the analyzed samples from follicular thyroid tumors and the cell lines used with their genetic subgroups determined by conventional
cytogenetics and/or by interphase fluorescence in situ hybridization (I-FISH) with break-apart, dual-color rearrangement probe (tbpc-19). In case of the cell lines only the
clonal aberrations found in the original tumors the cell lines have been established from are given.
Ref.: (*) [30]; (#) [2]; (p) [31].
doi:10.1371/journal.pone.0009485.t001

Figure 2. Expression analysis of miR-517a by RT-PCR. PCR reactions were performed and then analyzed in 4% small DNA Agarose. The
expected DNA-fragment has a size of 62 bp, Ultra low range Ladder (Fermentas) was used as Marker (M). Lane 1: S40.2, 2: S40.2 without reverse
transcriptase (–RT), 3: S121, 4: S121–RT, 5: thyroid (normal), 6: thyroid–RT, 7: placenta, 8: placenta-RT, 9: S270.2, 10: S270.2–RT, 11: S290.1, 12: S290.1–
RT, 13: S141.2, 14: S325, 15: S211, 16: S211–RT, 17: fetal RNA, 18: adult testis, 19: fetal RNA-RT, 20: S141.2-RT, 21: adult testis-RT, 22: S325-RT (for details
of the cell lines and tumor samples see Table 1).
doi:10.1371/journal.pone.0009485.g002
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fluorescence in situ hybridization (I-FISH) on cytologic samples

obtained prior to cell culturing. The results were usually

supplemented by conventional cytogenetics. FISH screening/

conventional cytogenetic analysis of the nodules detected five

tumors with clonal rearrangements of chromosomal band 19q13

(Figure 4). Akin to the cell lines semi-quantitative RT-PCR

revealed an upregulation of 3 miRNAs and again, as further

example of that cluster, results were supplemented with qRT-PCR

analyses for miR-520. We have shown that all thyroid adenomas

with 19q13 rearrangements express significantly higher levels

(p#0.003133) of miR-520 than samples without 19q13 rearrange-

ments (adenomas and surrounding thyroid tissue; for details see

Table 1) (Figure 3b).

To see if the 19q13 rearrangements also activate the expression

of the miR-371-3 cluster we have studied the expression of three

members of this cluster in the same samples used before. All

tumors with 19q13 rearrangements were shown to express

significantly higher levels of miR-371-3p, miR-372, and miR-

373 than three samples of surrounding histologically normal

thyroid tissue (p#0.02236) and the five cytogenetically normal

adenomas (p#0.01428) (Figure 3c). We then quantified the

expression of miR-371-3p, miR-372, and miR-373 in the cell

lines where comparable results were obtained (Figure 3d).

Interestingly, cell line S121 with absent or very low expression

of the C19MC cluster members showed a high expression of the

miR-371-3 cluster thus further strengthening the idea that in this

cell line part of the C19MC cluster is deleted.

In a Thyroid Adenoma Cell Line the C19MC Cluster
Becomes Part of a Pol-II Fusion mRNA

In order to further understand the mechanisms involved in the

activation of the miRNA clusters one cell line of the 19q13 group

has been investigated in more detail. This cell line shows a

rearrangement of chromosomal band 19q13.4 resulting from an

apparently balanced translocation t(1;19)(1p35.2;q13.4) (Figure 5).

By appropriate FISH analyses using BAC (bacterial artificial

chromosome) probes the breakpoint on chromosome 1 was

mapped within pumilio homolog 1 (PUM1) (Figure 6). PUM1 encodes

a RNA-binding protein and shows a widespread expression in

adult tissues. It has 22 exons and spans about 150 kb on

chromosomal band 1p35.2 [11,12]. To further characterize the

breakpoint region at the molecular level additional FISH studies

were performed allowing to narrow down the 1p35.2 breakpoint

to the 6,144 kbp intron 10 of PUM1. By the translocation the

Figure 3. Expression of miR-520c, miR-371-3p, miR-372 and miR-373 in cell lines and primary tumors. Relative expression of miRNAs
was determined by real-time PCR (mean s.d. from three independent experiments). Values of miRNA were normalized to RNU6B (RNA, U6 small
nuclear 2) (A) miR-520c expression in thyroid cell lines, five cell lines derived from adenomas with 19q13.4 rearrangements (S141.2, S290.1, S121,
S211, S40.2) (red bars) and three cell lines derived from thyroid adenomas with other structural rearrangements (S533, S325, S270.2) (light red bars).
(B) miR-520c expression in three samples of non-neoplastic thyroid tissues (Th1, Th2, Th3) (light red bars), five adenomas with 19q13.4 rearrangement
(S801, S849, S842, S846, S814) (red bars) and five adenomas without cytogenetically detectable aberrations (S805, S806, S889, S920, S925) (light red
bars). (C) miR-371-3 expression in three samples of non-neoplastic thyroid tissues (gray (miR-371-3p), light green (miR-372) and light blue (miR-373)),
five adenomas with 19q13.4 rearrangement (black (miR-371-3p), green (miR-372) and blue (miR-373)) and five adenomas without cytogenetically
detectable aberrations (gray, light green and light blue bars) (for case numbers refer to Table 1). (D) miR-371-3 expression in thyroid cell lines, five cell
lines derived from adenomas with 19q13.4 rearrangements (black (miR-371-3p), green (miR-372) and blue (miR-373)) and three cell lines derived from
thyroid adenomas with other structural rearrangements (gray (miR-371-3p), light green (miR-372) and light blue (miR-373)) (for case numbers refer to
Table 1).
doi:10.1371/journal.pone.0009485.g003
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proximal part of PUM1 including exons 1–10 was found to be

juxtaposed to the miRNA clusters (Figure 7). In addition, we have

therefore used 39RACE-PCR to detect possible fusion transcripts

between the proximal part of PUM1 and sequences from

chromosome 19. Among several aberrant transcripts a fusion

transcript consisting of exon 1–10 of PUM1 followed by an ectopic

sequence of the chromosome 19 breakpoint region was detected

(Figure 8) and sequenced (Genbank Accession number

GQ334687). This transcript further confirms that the chromo-

somal break in this cell line is indeed located within intron 10 of

PUM1. Accordingly, we have performed RT-PCR experiments

using a sequence within exon 10 as the forward primer by which

we were able to detect part of one fusion transcript (Figure 8)

(Genbank Accession number GQ334688) with a border clearly

extending the distal border of C19MC (Figure 7). The 59 splice site

of intron 10 is not completely homologous to the consensus

sequence of human introns (Figure 9c)[13]. But the 39splice sites

on either site of the fusion are in line with the conserved consensus

sequence and a upstream region known as the polypyrimidine

tract (Figure 9a,b). However, from these results it seems reasonable

to assume that in the cell line S40.2 both clusters become part of

large Pol-II transcript driven by the PUM1 promoter. An in silico

analysis of intron 10 of PUM-1 as well as the chromosome 19

breakpoint region did not reveal obvious sequence homologies

pointing to homologous recombination as a mechanism underly-

ing the chromosomal rearrangement seen in that cell line.

Discussion

Specific structural chromosome abnormalities have turned out to be

valuable signposts indicating the position of protein-coding genes with

oncogenic potential. Recently, in addition some evidence for a causal

association of some chromosomal rearrangements with the activity of

microRNA coding genes has been presented [14,15,16]. Herein, we

were able to show that a highly frequent translocation in benign thyroid

tumors i.e. the 19q13.4 rearrangement targets and activates two

microRNA clusters in close proximity to the chromosomal breakpoint

cluster the expression of which is otherwise almost exclusively confined

to embryonic and fetal development. Activation by an ectopic Pol-II

promoter may generally be the mechanism by which the translocations

activate both miRNA clusters and fits with the apparent ‘‘natural’’

generation of the miRNAs of the C19MC cluster from a large Pol-II

driven transcript as witnessed by the results of a recent study [4]. From

the histologic analyses performed herein no evidence for invasiveness of

the corresponding tumors has been found that by definition would lead

to the diagnosis of a follicular carcinoma but this does not rule out a

higher risk of these tumors to become malignant. Generally, members

of both clusters have been implicated in malignant growth. In human

testicular germ cell tumors evidence for an oncogenic potential of miR-

373 has been obtained. In these tumors the expression of miR-373 was

shown to allow tumorigenic growth in the presence of wild-type p53

[8]. As another example in a recent paper hsa-miR-518c and hsa-miR-

373 were among the microRNAs associated with the tumorigenesis of

retinoblastomas [17]. In breast cancer, miR-373 and miR-520c

promote tumor invasion and metastasis in vivo and in vitro by the

suppression of CD44 [10]. Interestingly, the expression of a miRNA of

the C19MC cluster i.e. miR-516-3p recently has been linked to higher

aggressiveness of breast cancer as well. Based on a large-scale screen for

miRNA expression patterns associated with distant metastasis Foekens

et al. [17] were able to show that miR-516-3p belongs to four miRNAs

the expression of which is associated with an adverse prognosis in

estrogen receptor-positive, lymph node-negative primary breast cancer

[18]. Moreover, forced expression of miR-373 leads to a reduction in

the nucleotide excision repair (NER) protein, RAD23B, as well as in

RAD52 [19] thereby possibly contributing to a higher genome

instability.

Based on these data it may be hypothesized that activation of

both clusters by chromosomal rearrangements might be not

restricted to thyroid tumors. Balanced translocations involving

19q13.4 have also been described in mesenchymal hamartoma of

Table 2. Statistical analysis of the qRT-PCR data.

19q translocation without 19q translocation microRNA p-value d.f. t

Adenoma normal thyroid and adenoma mir371-3p 0.005355 4.48 5.0446

mir372 2.232e-06 10.996 8.9445

mir373 0.006122 8.522 3.6176

mir520c 1.722e-09 10.977 17.9765

Adenoma adenoma mir371-3p 0.004623 5.203 4.745

mir372 0.0001681 7.043 7.2279

mir373 0.01428 7.9 3.128

mir520c 4.312e-08 7.978 19.941

Adenoma normal thyroid mir371-3p 0.005471 4.159 5.2956

mir372 0.008832 2.826 6.5061

mir373 0.02236 4.122 3.5632

mir520c 0.003133 2.573 10.9875

adenoma cell line adenoma cell line mir371-3p 0.004041 4.446 5.4488

mir372 0.1121 2.4893 2.344

mir373 0.08229 2.311 2.9573

mir520c 0.001659 4.029 7.4811

Statistical analysis (t-test, two-tailed) of the expression of miRNAs from the cluster C19MC and miR-371-3 in tissues or cell lines containing 19q13 rearrangements
compared to normal thyroid tissue and/or adenomas without 19q13 rearrangements. The data were obtained using statistical software R (www.r-project.org). (d.f. =
degrees of freedom, t = Student’s t-value)
doi:10.1371/journal.pone.0009485.t002
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the liver (MHL), a rare benign tumor-like lesion of childhood [20].

Of note, quite recently, genomic amplifications including the

C19MC cluster have been detected by array CGH and FISH as

recurrent genomic imbalances in an aggressive subgroup in

primitive neuroectodermal brain tumors. Functional studies

implicated two miRNAs of the cluster i.e. miR-517c and 520 g

as oncogenes causally linked to the development of the disease

[21]. More generally, breaks of chromosomal band 19q13 have

been reported in a variety of human neoplasms. Furthermore,

according to the CancerChromosomes/Mitelman database

(NCBI) chromosomal band 19q13 belongs to the areas most

frequently targeted by chromosomal aberrations at all in the

Figure 4. Fluorescence in situ hybridization (FISH) with dual-color, break-apart rearrangement probe (tbpc19). (A)–(E) I-FISH showing
19q13 rearrangements detected using touch-preparations of five thyroid adenomas (A: S801, B: S814, C: S842, D: S846, E: S849) indicated by
separated green (39-tbpc19) and red signals (59-tbpc19); (F) Metaphase of case S842 with a t(1;19)(q32;q13) after FISH with tbpc19. The 19q13
rearrangement is indicated also by separated signals on der(1) and der(19).
doi:10.1371/journal.pone.0009485.g004
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genome. Thus, it remains to be determined whether or not some

of these do also target either of the two or both miRNA clusters

investigated herein. However, there is ample evidence that within

the thyroid epithelium the clonal re-expression of two important

‘‘embryonic’’ miRNA clusters with thousands of potential targets is

causally linked to the development of a large subgroup of thyroid

adenomas. Effects of individual of these miRNAs with single

targets have been associated with human tumors but mechanis-

tically the effects observed are more likely to result from global

changes of gene expression than from the de-regulation of single

targets of the corresponding miRNAs.

Methods

Ethics Statement
The use of human thyroid tumors for this study (including the

preparation of the cell lines S270.2 and S290.1) was approved by

the local medical ethics committee and followed the guidelines of

the declaration of Helsinki. Only samples that were initially taken

for diagnostic purposes were secondarily used for the present

study. Because the samples were de-identified and were considered

as samples normally discarded, the committee felt that there was

no specific patient consent necessary.

Tissue and Cell Lines
All samples were obtained from patients undergoing thyroid

resection in the Department of General and Visceral Surgery of

the St. Joseph Stift, Bremen (Germany). One piece of each tumor

was stored in Hank’s solution for cell culture and a second piece

was stored in liquid nitrogen for gene expression studies. The cell

lines were derived from thyroid adenoma cells as reported

previously [22]. Archival RNAs from fetal, placental and testicular

tissue were used as controls.

Cell Culture and Cytogenetic Analyses
Tissue digestion, cultivation of primary cell lines, and

cytogenetic analyses were performed according to previously

described methods [2,23]. Before digestion, each sample was

touched onto slides to get samples for FISH screening.

Isolation of RNA, Reverse Transcription and Real-Time
PCR (qRT-PCR) Quantification

Total RNA was extracted from tissue as well as from

immortalized cell lines using TRIzol (Invitrogen, Karlsruhe,

Germany) reagent, or mirVana (Ambion, Woodward, USA)

Figure 5. Partial karyotype of cell line S40.2. Partial G-banded
karyotype showing chromosome 1 and 19 as well as their derivatives
resulting from t(1;19)(p35.2;q13.4).
doi:10.1371/journal.pone.0009485.g005

Figure 6. Delineation of PUM1 breakpoint by metaphase FISH. Part
of metaphase of cell line S40.2 after FISH with two overlapping BAC clones
RP11-201O14 (green) and RP11-1136E4 (red) both spanning the whole
genomic sequence of PUM1 in 1p35.2. The breakpoint in 1p35.2 is located
within PUM1 indicated by a separation of RP11-201O14 and RP11-1136E4.
Because of weak signals of RP11-1136E4 remaining on the der(1) the
breakpoint is located within RP11-1136E4 distal to RP11-201O14.
doi:10.1371/journal.pone.0009485.g006

Figure 7. Genomic organization of the fusion gene on the derivative chromosome 1 resulting from a translocation
t(1;19)(p35.2;13.4) in cell line S40.2. Detailed schematic overview illustrating the origin of the fusion transcripts PUM1-FUS-19q-I (Genbank
Accession number GQ334687) and PUM1-FUS-19q-II (Genbank Accession number GQ334688) identified in cell line S40.2. The genomic region of
PUM1 in 1p35.2 (horizontal gray bar) fuses after exon 10 of PUM1 (exons: vertical light gray bars) to the genomic region of C19MC in 19q13.4
(horizontal red bar). The two vertical yellow bars indicate 39-sequences located after exon 1–10 of PUM1 in PUM1-FUS-19q-I and PUM1-FUS-19q-II,
respectively, both originating from alternative splicing. The fusion transcripts were detected either by 39-RACE-PCR (PUM1-FUS-19q-I) or RT-PCR
(PUM1-FUS-19q-II) experiments. The quantified miRNAs have been highlighted by their names.
doi:10.1371/journal.pone.0009485.g007
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miRNA isolation kit according to the manufacturer’s instructions.

miRNA (miR-371-3p, miR-372, miR-373 and miR-520c) and

RNU6B (RNA, U6 small nuclear 2; internal control for relative

quantification)-specific cDNA were generated from 10 ng of total

RNA using the TaqMan microRNA RT Kit and the gene-specific

RT primers from the TaqMan microRNA Assays (Applied

Biosystems, Foster City, CA, USA) according to the manufactur-

er’s instructions. The reactions were incubated in a thermal cycler

for 30 min at 16uC, 30 min at 42uC, 5 min at 85uC and then

stored at 4uC. All reverse transcriptions included no-template

controls and minus RT controls (–RT).

Real-time PCR was performed using an Applied Biosystems

7300 Fast Real Time PCR system with miRNA and RNU6B-

specific probes and TaqMan Universal PCR Master Mix (Applied

Biosystems, Foster City, CA, USA). The reactions were incubated

in 96-well plates at 95uC for 10 min followed by 40 cycles of 15 s

at 95uC and one min at 60uC. All reactions were run in triplicate.

Relative quantification (RQ) was calculated using Applied

Biosystems SDS software based on the RQ = 2_DDCt 2(–Delta

Delta C(T)) method [24]. Ct data were normalized to the internal

control, RNU6B [25].

Detection of Fusion Transcripts via 39RACE-PCR
39RACE-PCR was performed on cell line S40.2. Total RNA

was isolated using RNeasy Mini Kit (Qiagen, Hilden,

Germany). cDNA syntheses were carried out with slight

modifications following the instructions for the M-MLV

reverse transcriptase using oligo(dT) primer as anchor primer

(Invitrogen, Karlsruhe, Germany). 39RACE-PCRs and Nested

39RACE-PCRs were performed as described in the Gene

Racer Kit (Invitrogen, Karlsruhe, Germany) adjusted to the

conditions for GoTaq Flexi DNA Polymerase (Promega,

Mannheim, Germany). Southern Blots were carried out as

mentioned by Fehr et al. [26] with PUM1-specific probe

labelled with digoxigenin-11-dUTP (Roche Diagnostics, Penz-

berg, Germany). Fragments of interest were excised and

extracted with the QIAquick Gel Extraction Kit (Qiagen,

Hilden, Germany) and were then cloned into the pGEM-T

Easy Vector (Promega, Mannheim, Germany). The plasmid

DNA from the clones of interest was isolated via QIAprep Spin

Miniprep Kit (Qiagen, Hilden, Germany) and sequenced by

Eurofins MWG, Ebersberg, Germany.

Detection of Fusion Transcripts via RT-PCR
With the program polyadq [27], the possible PolyA-site of the

C19MC-cluster was detected. Nearby a primer was designed

which was later used together with a PUM1-specific primer. Total

RNA of S40.2 isolated via TRIzol reagent (Invitrogen, Karlsruhe,

Germany) was used for cDNA syntheses as previously described.

PCR was done with the GoTaq Flexi DNA-Polymerase (Promega,

Mannheim, Germany) followed by a semi-nested PCR. Fragments

of interest were excised and extracted as described above and

sequenced by Eurofins MWG, Ebersberg, Germany.

Validation of the Fusion Transcript
To confirme the former results, different primers localized

within the fusion transcript were utilized. The PCRs were carried

out as described above. Fragments of the expected size were

excised, extracted and sequenced (see above).

RT-PCR
miRNA-specific-primers for miR-512-5p, miR-517a and miR-

519a were designed, as described by Chen et al. [28]. cDNA was

generated from 1 mg total RNA according to Chen et al. [28] with

small modifications in stem-loop-primer concentration (5 nM), as

well as the PCR-reactions that were modified in annealing-

temperature (68uC) and -duration (10 s). The RT-PCR was

performed with GoTaq Flexi DNA-Polymerase (Promega GmbH,

Mannheim, Germany). Elongation was run at 72uC for 15 s.

Primers
See Table 3.

Figure 8. Cloning of fusion transcripts PUM1-FUS-19q-I and
PUM1-FUS-19q-II. Fusion transcripts resulting from the t(1;19) in cell
line S40.2 were detected by RT-PCR and analyzed by gel electropho-
resis. M = Marker DNA (1 kb+, Fermentas). S40.2 = Thyroid adenoma
cell line S40.2. The arrows point to the corresponding bands that were
excised. Isolated DNA was sequenced and analyzed. Weak bands above
may represent splice variants. A) Transcript PUM1-FUS-19q-I generated
with primers Ex9_up and 19_2. B) Transcript PUM1-FUS-19q-II
generated with primers Ex9_up and 500_Cluster_polyA_I.
doi:10.1371/journal.pone.0009485.g008
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Fluorescence In Situ Hybridization (FISH)
Interphase FISH (I-FISH) analyses were performed on touch-

preparations of thyroid tumors. For detection of 19q13.4

rearrangements a dual-color, break-apart rearrangement probe

(PanPath, Budel, Netherlands) referred to as tbpc19 (thyroid

breakpoint cluster 19q13) was used. The rearrangement probe is

a mixture of two probes located distal (39-tbpc19; labeled by

Alexa Fluor 488) and proximal (59-tbpc19; labeled by Alexa-

Figure 9. Sequence analysis of the genomic structure of PUM1-FUS-19q. Genomic organization of part of FUS-19q. Blue double arrows
indicate exon 11 of PUM1-FUS-19q. The green arrow marks the final part of the fusion protein. The underlying ruler shows the final amino acid
sequence. The bases ag (red) correspond to the intron 10 (chromosome 19 part) splice site. Solid blue double arrows indicate the polypyrimidine tract
(PPT). A) Chromosome 19 derived part of the genomic sequence of PUM1-FUS-19q-I. B) Chromosome 19 derived part of the genomic sequence of
PUM1-FUS-19q-II. Black line indicates the Alu–repeat. Site of Primer 500-Cluster_PolyA_I is shown by a black arrow. Red line (PS) and red box (P)
indicates predicted poly (A) signals. C) Intron 10 splice sites of the two PUM1-FUS-19q variants.
doi:10.1371/journal.pone.0009485.g009
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Fluor 555), respectively, of the common breakpoint-cluster

region in 19q13.4 in benign thyroid lesions. 10 ml of the break-

apart probe were used per slide. Co-denaturation was

performed on a Mastercycler gradient (Eppendorf, Hamburg,

Germany) for 3 min at 80uC followed by overnight hybridiza-

tion in a humidified chamber at 37uC. Post-hybridization was

performed at 61uC for 5 min in 0.1xSSC. Interphase nuclei

were counterstained with DAPI (0.75 mg/ml). Slides were

examined with a Axioskop 2 plus fluorescence microscope (Carl

Zeiss, Göttingen, Germany). Images were captured with an

AxioCam MRm digital camera and were edited with AxioVi-

sion (Carl Zeiss, Göttingen, Germany). For each case 200 non-

overlapping nuclei were scored. Co-localized signals (green/red)

indicate a non-rearranged breakpoint region, whereas separated

green and red signals indicate a rearrangement of the

chromosomal region 19q13.4. Metaphase-FISH with tbpc-19

on case S842 was performed as described above for I-FISH on

touch-preparations. Treatment of metaphases was carried out as

described by Kievits et al. [29].

For determination of the breakpoint on chromosome 1 FISH

was performed on metaphase preparations of the cell line S40.2.

As probes two overlapping clones RP11-1136E4 (Genbank

Accession number AQ707626 and AQ733864) and RP11-

201O14 (Genbank Accession number AL356320.8) (imaGenes,

Berlin, Germany) both spanning the whole genomic sequence of

PUM1 were used. DNA was isolated using Qiagen Plasmid Midi

Kit (Qiagen, Hilden, Germany). 1 mg of isolated plasmid DNA

was labeled by nick translation (Roche, Mannheim, Germany)

either with digoxigenin-11-dUTP (RP11-201O14) or biotin-16-

dUTP (RP11-1136E4). Treatment of metaphases and subse-

quent FISH experiments were carried out as described

previously by Kievits et al. [29] with exception for co-

denaturation and post-hybridization which were performed as

described above.

Statistical Analysis
Results are presented as the mean 6 standard error (SE).

Statistical comparisons were performed by a nonpaired Student’s t

-test. A p-value of less than 0.05 was considered significant.

Data Deposition
The complete fusion transcript sequences has been deposited

in GenBank, PUM1-FUS-19q-I (Genbank Accession number

Table 3. Used Primers.

PUM 1

Primer (Exon) sequence (59 -39) company

Ex1_Up (Exon 2) CCCTCAAGAACCAGCTAATCCCAACA Invitrogen

Ex3_Up (Exon 4) TTCCTGGGTGATCAATGGCGAGA Invitrogen

Ex4_Up (Exon 5) TCCCCGGGCGATTCCTGTCT Invitrogen

Ex5_Lo (Exon 6) TCCATCACATCACCCTCCTCCTTCAA Invitrogen

Ex7_Up (Exon 8) ACCTAATGCGCTTGCTGTCCA Invitrogen

Ex8_Up (Exon 9) GCTCCCGCTGCGTTTGTCC Invitrogen

Ex9_Up (Exon 10) CAACAGACCACCCCACAGGCTCAG Invitrogen

Ex11_Lo (Exon 12) ATTTCTCGCGCCTGCATTCACTAC Invitrogen

Ex12_Up (Exon 13) CCAGTTCTTTCTACGGCAACAACTCTCTG Invitrogen

Ex14_Up (Exon 15) AACTGCGGGAGATTGCTGGACATA Invitrogen

Ex14_Lo (Exon 15) CCATTATATGTCCAGCAATCTCCCGC Invitrogen

Ex17_Lo (Exon 18) CGATGATAAATTGCAAAGACTGGGGC Invitrogen

Ex19_Up (Exon 20) TGAGGATAAAAGCAAAATTGTAGCAGAA Invitrogen

Ex20_Up (Exon 21) GGAGCCAGGCCAGCGGAAGATC Invitrogen

Ex21_Lo (Exon 22) GCCAGTGAGGTCAGCGGGAATG Invitrogen

39UTR_Lo (Exon 22) AATCCAGTAGGCAGTAAACAATCACACC Invitrogen

59UTR_Up (Exon 1) AGAGAGAAGATCGGGGGGCTGAAAT Invitrogen

cDNA/39RACE

AP2 AAGGATCCGTCGACATC(T)17 Invitrogen

Oligo dT GCTGTCAACGATACGCTACGTAACGGC Invitrogen

ATGACAGTG(T)24

UAP2 CTACTACTACTAAAGGATCCGTCGACATC Invitrogen

Gene Racer 39 GCTGTCAACGATACGCTACGTAACG Invitrogen

Gene Racer 39Nested CGCTACGTAACGGCATGACAGTG Invitrogen

GAPDH2_Up GTGAAGGTCGGAGTCAACG Invitrogen

GAPDH5_Lo AGGAGGCATTGCTGATGAT Invitrogen

Chromosome 19 miRNA cluster C19MC

19_1 GGCTGCCCAGGGAGTTGCT Invitrogen

19_2 GCAGAAGCTCCCAGCCAGATCTT Invitrogen

19_3 CTAGGGTTCGCTGTCCTCACACTGC Invitrogen

500-Cluster_PolyA_I CAACCGTTGGGGATTACAAAATAGA Invitrogen

Stem-loop-Primers

miR-371-5p a sl GTCGTATCCAGTGCAGGGTCCGAGGTAT Invitrogen

TCGCACTGGATACGACACACTC

miR-371-5p sl GTCGTATCCAGTGCAGGGTCCGAGGTAT Invitrogen

TCGCACTGGATACGACAGTGCC

miR-372 sl GTCGTATCCAGTGCAGGGTCCGAGG Invitrogen

TATTCGCACTGGATACGACACGCTC

miR-373 sl GTCGTATCCAGTGCAGGGTCCGAGGTAT Invitrogen

TCGCACTGGATACGACACACCC

miR-512-5p sl GTCGTATCCAGTGCAGGGTCCGAGG Invitrogen

TATTCGCACTGGATACGACGAAAGT

miR-517a sl GTCGTATCCAGTGCAGGGTCCGAGG Operon

TATTCGCACTGGATACGACACACTC

miR-520c-3p sl GTCGTATCCAGTGCAGGGTCCGAGGTAT Invitrogen

TCGCACTGGATACGACACCCTC

miR-520c-5p sl GTCGTATCCAGTGCAGGGTCCGAGGTAT Invitrogen

TCGCACTGGATACGACCAGAAA

Table 3. Cont.

Forward and Reverse Primers (PCR)

miR-371-3p fw ACCGCTAAGTGCCGCCATCTTTTG Invitrogen

miR-371-5p fw GCCGCCACTCAAACTGTGGGG Invitrogen

miR-372 fw GGTCATAAAGTGCTGCGACATTTG Invitrogen

miR-373 fw TTCATGAAGTGCTTCGATTTTGG Invitrogen

miR-512-5p fw AGTCTACACTCAGCCTTGAGGGCA Invitrogen

miR-517a fw CGGCGGATCGTGCATCCCTTTA Operon

miR-519a fw CCGGCTAAAGTGCATCCTTTTAG Invitrogen

miR-520c-3p fw GCCGCCAAAGTGCTTCCTTTTAG Invitrogen

miR-520c-5p fw ACCGCTCTCTAGAGGGAAGCAC Invitrogen

Reverse Primer GTGCAGGGTCCGAGGT Operon

Primer sequences for PCR and cDNA synthesis.
doi:10.1371/journal.pone.0009485.t003
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GQ334687) and PUM1-FUS-19q-II (Genbank Accession number

GQ334688).
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