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Abstract: Most of the current complex network studies about epilepsy used the electroencephalo-
gram (EEG) to directly construct the static complex network for analysis and discarded the dynamic
characteristics. This study constructed the dynamic complex network on EEG from pediatric epilepsy
and pediatric control when they were asleep by the sliding window method. Dynamic features
were extracted and incorporated into various machine learning classifiers to explore their classifi-
cation performances. We compared these performances between the static and dynamic complex
network. In the univariate analysis, the initially insignificant topological characteristics in the static
complex network can be transformed to be significant in the dynamic complex network. Under most
connectivity calculation methods between leads, the accuracy of using dynamic complex network
features for discrimination was higher than that of static complex network features. Particularly
in the imaginary part of the coherency function (iCOH) method under the full-frequency band,
the discrimination accuracies of most machine learning classifiers were higher than 95%, and the
discrimination accuracies in the higher-frequency band (beta-frequency band) and the full-frequency
band were higher than that of the lower-frequency bands. Our proposed method and framework
could efficiently summarize more time-varying features in the EEG and improve the accuracies of the
discrimination of the machine learning classifiers more than using static complex network features.

Keywords: dynamic complex network; feature extraction; sliding window analysis; EEG; pediatric epilepsy

1. Introduction

Epilepsy is a chronic non-communicable brain disease. According to WHO’s esti-
mation, approximately 50 million people worldwide are affected [1]. It is also one of the
most common neurological diseases in children, with an incidence of 33.3–82 cases per
100,000 per year [2]. The incidence of pediatric epilepsy (PE) is highest in the first year of
life (infancy) and then gradually decreases [3]. The potential causes of seizures in children
include fever, meningitis, metabolic imbalances, exposure to toxins, head injuries, tumors,
or other uncertain triggers. The frequency of epileptic seizures ranges from less than once a
year to several times a day. Additionally, the misdiagnosis rate of epilepsy in children is
at least 25% [2]. Population-based studies have shown that after regular treatment, nearly
two-thirds of epileptic children become seizure-free within 3 to 5 years [4], and almost half
of the patients can successfully stop anti-epileptic drugs [5]. Therefore, timely diagnosis
and treatment for children with epilepsy are crucial.

An electroencephalogram (EEG) captures the changes in the brain’s electric field to
obtain the activities of the nervous system, which has significant reference value in clinical
diagnosis and research. Clinicians widely use EEG in auxiliary diagnosis because of its non-
invasive simple operation, low cost, and high time resolution characteristics. In diagnosis,
EEG can be used to detect the possibility of increased risk of epilepsy, ongoing seizures,
or areas of potential cerebral dysfunction [6]. After the patient is diagnosed, EEG can also
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assist in diagnosing epilepsy syndrome, determining whether to undergo surgery, choosing
proper anti-epileptic drugs or time to stop them, assessing the compliance, and predicting
the prognosis [7].

In clinical practice, EEG is usually observed with human eyes and assisted in diagnosis
by identifying characteristics. However, this procedure inevitably contains subjectiveness.
Doctors with different comprehensive abilities to EEG, artifacts in EEG caused during
signals collection, or fatigue caused by the monotonous task of perpetual EEG reading,
etc., may lead to errors in EEG manual reports, which consumes a lot of time and work-
force. In addition, as the brain is a complex and non-linear dynamic system [8], it is
challenging to discover the complex information contained in the EEG through human
eyes’ discrimination.

In recent years, with the progress and development of brain science, more and more
scholars have used graph theory and complex network theory supported by brain science to
analyze the structure and function of the brain’s neural networks and define the relationship
with brain activities through graph theory [9]. The vertexes and edges of the network are
formed and quantified to provide a basis for discovering brain functions, structures, and
abnormal activities’ characteristics, to have a deeper understanding of various diseases
related to the brain and their underlying mechanism of changes. At the same time, with the
support of machine learning theory, a variety of machine learning classifiers can be used to
automatically distinguish and classify features found in complex networks without manual
intervention [10–12]. In the research on the brain’s networks of patients with epilepsy,
various studies have used complex network theory. It can distinguish between epilepsy
patients’ (ictal phase, depth electrodes were implanted symmetrically into the hippocampal
formations) EEG and healthy controls’ (HCs’) EEG using the visual graph (VG) method
with an accuracy of more than 95% [13], which can also differentiate between epilepsy
patients’ (interictal phase) and HCs’ EEG with an accuracy of more than 85% [14].

In previous studies on various brain diseases, there were few studies focused on the
construction of dynamic complex networks using EEG [15,16]. Most studies have directly
constructed the static complex brain network for analysis using a period of EEG time series,
discarding brain networks’ time-varying dynamic characteristics. At the same time, the
network construction methods and the dynamic feature extraction methods under each
window are also different and need further research for comparison. This research used
the functional connectivity calculation methods between EEG leads to construct the brain’s
dynamic complex network by sliding window. Additionally, we calculated the topological
features of the networks under each window to form multiple time series of characteristics,
extracted the characteristics of each time series as the features of the dynamic brain complex
network, and incorporated them into a variety of machine learning classifiers to explore
their discrimination performance in the classification models.

2. Materials and Methods
2.1. Research Participants

From January 2019 to June 2021, 36 participants were enrolled in the Pediatric Depart-
ment of Shenzhen People’s Hospital, and we collected their raw EEG data. This project was
approved by the ethics committee of the School of Public Health in Sun Yat-sen Univer-
sity (2021-No.081) and obtained the research participants’ agreements. The participants
included two groups: the first group (pediatric control, PC) consisted of 20 healthy children
(7 females, 7.05 ± 3.53 years old). They came to the hospital with the symptoms of convul-
sions, abdominal pain, and limb shaking and underwent an EEG examination but were
not diagnosed with any disease. The second group (PE) consisted of 16 patients (6 females,
7.75 ± 4.92 years old) diagnosed with epilepsy by clinicians.
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The diagnosis of epilepsy was based on the International League Against Epilepsy
(ILAE) [17]. The inclusion criteria were: (1) at least two unprovoked (or reflex) seizures
occurring >24 h apart; (2) one unprovoked (or reflex) seizure and a probability of further
seizures such as the general recurrence risk (at least 60%) after two unprovoked seizures;
(3) diagnosis of an epilepsy syndrome. The exclusion criteria were: (1) other infectious
diseases, cerebrovascular diseases, poisoning, or metabolic encephalopathy; (2) nervous
system tumors, myelopathy, peripheral neuropathy; (3) primary mental disorders, brain
trauma, brain tumors, or other neurological diseases; (4) have ever taken any anti-seizure
medication.

All participants were homogeneous for gender and age. The hypothesis test did not
show any statistically significant difference between the sex of the two groups (χ2 = 0.024,
p = 0.877). In addition, the hypothesis test did not find any statistically significant difference
in the average age between the two groups (U = 163.00, p = 0.923). See Table 1.

Table 1. The demographic characteristics of participants.

Factor PE PC

Age (years) 7.75 ± 4.92 7.05 ± 3.53
Gender n (%)

Female 6 (37.5) 7 (35.0)
Male 10 (62.5) 13 (65.0)

2.2. EEG Signals and Preprocessing

Each participant could perform routine long-term EEG recording. We used the Nicolet
EEG machine to record the EEG at a sampling rate of 500 Hz. The scalp electrodes were
placed under the international 10–20 montage system, and the A1 and A2 electrodes were
used as references. EEG was performed in the same recording room using the same system,
and the same EEG technician used conventional measurement techniques to determine
the electrodeposition. We collected EEG for at least 15 h with the subjects relaxed, asleep,
and their eyes closed to avoid disturbance. All EEG records contained 19 scalp electrodes
(Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, and O2) and a visual
inspection by EEG technician was performed.

We extracted the ictal phase data from raw EEG of PE group under the guidance
of professional neurology clinicians; as a result, we had only various ictal phases linked
together of each PE participant in the EEG data. To reduce data volume and speed up
computation, we down-sampled the data to 100 Hz. Then, the data was filtered with band-
pass at frequencies of 0.5 and 45 Hz. Finally, automated artifact removal was performed on
the manually processed dataset using the independent components algorithm (ICA). These
preprocessing steps were operated using EEGLab toolbox [18] in MATLAB (MathWorks).

2.3. The Construction of the Brain’s Static and Dynamic Complex Networks
2.3.1. Constructing the Original EEG Dataset and the Split-Fragment EEG Dataset

Due to the relatively small number of participants included in this research (16 partici-
pants of the PE group and 20 participants of the PC group), while using the original EEG
(each EEG signal included in the discriminate model came from a different participant)
to construct the models, we divided some more prolonged original EEG into multiple
segments (to obtain more EEG fragments and ensure that each fragment had enough length
for sliding window analysis, the signal length of each segment we chose was at least 100 s).
Finally, 61 segments in the PE group and 72 segments in the PC group were formed as the
split-fragment EEG dataset. Model training and discrimination were performed separately
on the two kinds of datasets mentioned above.
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2.3.2. Frequency Filtering

We used a band-pass filter to extract the signals in the specified frequency band and
decomposed the pre-processed EEG signals into the following six frequency bands: Delta
(0.5–4 Hz), Theta (4–8 Hz), Alpha-1 (8–10 Hz), Alpha-2 (10–12 Hz), Beta (12–30 Hz), and
full-frequency band signals (0.5–45 Hz). In this step, we used the pop_eegfiltnew function
of the EEGLab toolbox in MATLAB.

2.3.3. The Calculation of the Connectivity and Connectivity Strength between EEG Leads

Assume that X(t) and Y(t) represent the EEG electrodes X and Y, respectively. We
proposed using the following four methods to calculate the connectivity and connectivity
strength between EEG leads:

A. Based on coherence: magnitude square coherence (MSC), imaginary part of the
coherency function (iCOH).

a. MSC is used to find the dependency between two signals [19], the calculation is as
follows:

The fast Fourier-transform method is used to convert the time domain signals X(t) and
Y(t) to the frequency domain. Then, for each frequency f, its respective frequency power
density Sxx(f ) and Syy(f ) and their cross power spectral density Syy(f ) are estimated. We
used Equation (1) to calculate the coherence function Kxy(f ):

Kxy( f ) =
Sxy( f )√

Sxx( f )Syy( f )
(1)

Finally, Equation (2) is used to calculate the coherence value (MSC) at frequency f :

MSC = COHxy( f ) =
∣∣Kxy( f )

∣∣2 (2)

The value range of MSC is 0~1, MSC = 0 means that X(t) and Y(t) have no linear
dependence on frequency f. The larger the coherence value, the stronger the statistical
dependence between the two signals, and vice versa.

b. iCOH is the imaginary part of the coherence function Kxy(f ). It can not only find the
dependence between the two signals but also avoid the influence caused by the volume
conduction in the EEG signals [20].

B. Based on phase synchronization: phase lag index (PLI), which is used to measure
the degree of phase synchronization between two signals, and it can also better exclude the
influences of volume conduction in EEG signals [21]; the calculation is as follows:

Obtain the instantaneous phase time series of X(t) and Y(t) signals through Hilbert
transform, P.V. is the Cauchy principal value:

XH(t) =
1
π

P.V.
∫ +∞

−∞

X(τ)

t − τ
dτ (3)

YH(t) =
1
π

P.V.
∫ +∞

−∞

Y(τ)
t − τ

dτ (4)

Additionally, the analytical signals Xan(t) and Yan(t) of X(t) and Y(t) can be obtained:

Xan(t) = X(t) + iXH(t) (5)

Yan(t) = Y(t) + iYH(t) (6)
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Using analytical signals, the instantaneous amplitude Ax(t), Ay(t) and instantaneous
phase ∅x(t), ∅y(t), can be calculated:

Ax(t) =
√

Xan(t)
2 + XH(t)

2 (7)

Ay(t) =
√

Yan(t)
2 + YH(t)

2 (8)

∅x(t) = tan−1 XH(t)
Xan(t)

(9)

∅y(t) = tan−1 YH(t)
Yan(t)

(10)

We calculate ∆∅xy(t), which is their phase difference at time t:

∆∅xy(t) =
∣∣∅x(t) −∅y(t)

∣∣ (11)

In actual analysis, the phase difference needs to be converted to [0, 2π):

∆∅rel(t) = ∆∅xy(t)mod2π (12)

The formula of PLI is:

PLI =

∣∣∣∣∣ 1
N

N

∑
n=1

sign(∆∅rel(t))

∣∣∣∣∣ (13)

The value range of PLI is 0–1. If the value of PLI is 0, it means that there is no
connectivity; if the value of PLI is 1, it means that there exists a complete phase lock value.

C. Pearson’s correlation: it is used to evaluate the correlation between two signals.

2.3.4. The Construction of the Brain’s Static Complex Network

In the process of constructing the brain’s complex network with frequency-filtered
EEG signals, each lead was regarded as a node. We used the following method to establish
a complex network of the brain: if connectivity existed between leads, it was regarded as
the existence of edges between nodes, and the connectivity strength between leads was
regarded as the weight of the edges. EEGLAB Toolbox and FCLAB Toolbox functions were
used for analyzing the static complex networks of the brain [22], and some self-edited
MATLAB scripts were needed to build. The schematic diagram of the brain’s complex
network (full connection) is shown in Figure 1.

2.3.5. The Construction of the Brain’s Dynamic Complex Network

We used the sliding window method [23], selected a window whose width was 3 s,
and used the window to shift repeatedly with the overlap 2/3 method (the step length is
1 s), on the frequency-filtered EEG signals to cut out multiple chronological time series
(each time series was regarded as a snapshot of the brain activity). Then, we calculated
the connectivity and connectivity strength between the EEG leads to construct a complex
brain network under each snapshot point. We arranged all the brain’s complex networks in
chronological order and realized the construction of the brain’s dynamic complex networks.

2.3.6. Selection of the Threshold in the Complex Network

After using the above methods to construct a brain network, we must determine a
threshold to remove weak connections [24]. In complex network research related to the
brain, there was no universally accepted threshold selection principle, and most researchers
determined the thresholds based on their own experience [16]. Some scholars also believed
that the process of selecting the threshold should not destroy the graph’s connectivity.
There should not be a situation where a node is not connected to any other node [25].
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This research superimposed the brain’s average complex networks constructed by PEs
or PCs to form two averaged complex networks. In the static complex network model, we
averaged the complex network formed by multiple participants; in the dynamic complex
network model, we averaged the complex network formed by multiple participants and
multiple snapshot points. Then, we arranged each edge’s weight in the network from low
to high. Then, we used the ratio of 0~100% to remove edges with the lowest weights and
determine whether the network was connected under this ratio simultaneously. We kept
the threshold when the proportion of removed edges was the largest. At the same time, the
network was still connected to achieve the purpose of removing weak connections while
ensuring the graph was connected. The averaged complex network mentioned here was
only used for the selection of the threshold, rather than establishing the models as below.

1 

 

 

  
Figure 1. Schematic diagram of the brain’s complex network (full connection).

2.4. Feature Extraction under the Brain’s Static and Dynamic Complex Network
2.4.1. Feature Extraction under the Brain’s Static Complex Network

In graph theory, we usually use the following topological features to describe the
characteristics of a graph. In a weighted graph, the vertex strength represents the sum
of the weights of all edges connected to a node. The distance between two nodes in a
graph is defined as the length of the shortest path between nodes. The diameter is the
longest distance between all node-pairs in a graph. The average path length is defined as
the average distances between all node-pairs in a graph.
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The clustering coefficient (also called transitivity) is defined as the ratio of 3 times the
number of the triangle in the graph to the number connected triples (3 nodes connected by
2 edges) to compare the group’s tightness.

Many complex networks in the real world are highly clustered, while the distance
between most nodes is very short. The network with this characteristic is called a “small-
world” network model [26]. The small-world index is defined as a random graph randomly
generated for a known network and the number of nodes and edges that are the same as
the known network, and we compare the clustering coefficient (C/Crand) and the average
path length (L/Lrand). If the clustering coefficient of the network is greater than the random
graph and the average path length remains approximately the same, it is considered that

the known network exhibits a small-world characteristic. That is, S =
C

Crand
L

Lrand

, if S > 1, we

consider that the network has the “small-world” characteristic.
Except for the calculation of small-world index, in which the self-write function was

used, other topological features were calculated using functions in the “igraph” package
in R.

2.4.2. Feature Extraction under the Brain’s Dynamic Complex Network

Under each snapshot point, according to the mentioned brain’s complex network
feature extraction methods, we analyzed the topological features of each constructed brain
complex network, and we arranged the multiple features, formed by the snapshot points,
in the time sequence to form multiple topological feature time series. For each formed
topological feature time series, we calculated the mean, standard deviation, median, and in-
terquartile range, respectively, as the features under the brain’s dynamic complex network.

2.5. Feature Selection, Machine Learning Classifier and Evaluating
2.5.1. Feature Selection and Machine Learning Classifier

For the multiple features extracted from the static or dynamic complex network,
we used the univariate analysis (t-test or Wilcoxon’s rank-sum test) method to compare
the epilepsy patient group and the healthy control group and eliminated the insignificant
features in the univariate analysis (p > 0.05). There were many features (≤20) in the dynamic
complex network, and the principal component analysis (PCA) method was used to reduce
the dimensionality, and the number of principal components was selected according to
the results of the scree map. We incorporated features into classifiers of various machine
learning models for discrimination. These classification models included logistic regression,
decision tree, support vector machine, random forest, naïve bayes network, and bp neural
network. We used default parameters in the above model.

2.5.2. Evaluating the Classification Performances

We used the leave-one-out cross-validation (LOOCV) framework to calculate the total
accuracy and the area under the ROC curve (AUC) of a model. Finally, we compared the
result between the models without PCA and after PCA; the best result of each evaluation
index was retained as the final evaluation result of a model.

This research constructed a static brain complex network model, and at the same time,
used the sliding window method to form a dynamic brain complex network model. We
extracted the static features (the multiple topological features in the brain complex network)
from the static brain complex network model and extracted the dynamic features from the
dynamic brain complex network. Then, we incorporated features into the above machine
learning models, and the total accuracy and AUC of the above two types of models under
LOOCV were compared and analyzed. We aimed to evaluate the performance of the brain’s
static and dynamic complex network models. The roadmap of this research is shown in
Figure 2.
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Figure 2. The roadmap of this research.
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3. Results
3.1. Threshold Selection

In the two average networks formed by the superposition of the brain networks
constructed by all PEs or PCs, the weight of each edge in the network was arranged from
low to high and we used the ratio of 0~100% to remove edges with the lowest weights and
determined whether the network was connected under this ratio at the same time. Take
the PLI method in the full-frequency band as an example. As we can see from Figure 3,
the network was disconnected when 65% of the edges were removed in the PC group,
and the network was disconnected when 82% of the edges were removed in the PE group.
Therefore, in both the PE group and the PC group, 64% of the edges of each network were
removed while ensuring the connectivity of the graph.
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3.2. Univariate Analysis Results

Here, we take the analysis under the full-frequency band as an example. As we can
see, comparing with Tables 2 and 3 or Tables 4 and 5, the initially insignificant topological
characteristics between the PE and the PC group in the brain static complex network
could be transformed to significance, using the method of feature extraction under the
brain’s dynamic complex network. See the Supplementary Parts S1–S4 for all results of six
frequency bands with four connectivity methods.

Table 2. Univariate analysis of static network characteristics.

Item P50_PC IQR_PC P50_PE IQR_PE W p

Small-world index 1.21 0.21 1.33 0.28 106.0 0.089
Average vertex strength 0.59 0.16 1.03 0.62 53.0 <0.001 *
Average path length 1.63 0.04 1.64 0.05 136.0 0.453
Transitivity 0.44 0.04 0.47 0.07 111.0 0.124
Diameter 0.22 0.07 0.36 0.27 67.0 0.002 *

(Original sequence EEG signals dataset; PLI as the connectivity method in full-frequency band, rank-sum test was
used to compare the difference as normality was not satisfied, * p < 0.05).

Then, in the process of established machine learning classifiers mentioned above,
under the connectivity calculation methods of MSC and iCOH between leads, the accuracies
of using dynamic complex network features for discrimination were higher than that of
static complex network features. Particularly in the iCOH method under the full-frequency
band (in the original sequence EEG signals dataset), the discrimination accuracies of most
machine learning classifiers were higher than 95%. Even in the expanded dataset (in the
split segment EEG signals dataset), the discrimination accuracies of most machine learning
models were higher than 90%. Furthermore, in the iCOH method under the full-frequency
band, most models’ AUC were higher than 0.95 (in the original sequence EEG signals
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dataset or the split segment EEG signals dataset). Under the two data sets, the ROC curves
at the highest AUC value are shown in Figure 4.
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segment EEG signals dataset; support vector machine method; AUC = 0.981.

Table 3. Univariate analysis of dynamic network characteristics.

Item P50_PC IQR_PC P50_PE IQR_PE W p

Mean-Small-world index 1.13 0.03 1.16 0.05 84.0 0.015 *
Standard Deviation-Small-world
index 0.18 0.02 0.18 0.01 117.0 0.178

P50-Small-world index 1.12 0.05 1.14 0.04 83.0 0.014 *
IQR-Small-world index 0.24 0.05 0.25 0.05 132.0 0.386
Mean-Average vertex strength 2.60 0.23 2.91 0.33 65.0 0.002 *
Standard Deviation-Average vertex
strength 0.38 0.12 0.49 0.22 53.0 <0.001 *

P50-Average vertex strength 2.59 0.26 2.82 0.17 63.0 0.002 *
IQR-Average vertex strength 0.51 0.18 0.66 0.30 43.0 <0.001 *
Mean-Average path length 1.64 0.01 1.64 0.01 75.0 0.006 *
Standard Deviation-Average path
length 0.03 0.01 0.04 0.01 84.0 0.015 *

P50-Average path length 1.63 0.01 1.64 0.01 44.0 <0.001 *
IQR-Average path length 0.04 0.01 0.05 0.02 86.5 0.019 *
Mean-Transitivity 0.44 0.01 0.45 0.02 60.0 0.001 *
Standard Deviation-Transitivity 0.04 0.01 0.05 0.00 55.0 0.001 *
P50-Transitivity 0.44 0.01 0.45 0.02 62.5 0.002 *
IQR-Transitivity 0.06 0.01 0.07 0.01 71.0 0.004 *
Mean-Diameter 0.96 0.09 1.09 0.14 57.0 0.001 *
Standard Deviation-Diameter 0.19 0.05 0.26 0.10 60.0 0.001 *
P50-Diameter 0.94 0.08 1.04 0.12 55.5 0.001 *
IQR-Diameter 0.23 0.08 0.32 0.11 44.0 <0.001 *

(Original sequence EEG signals dataset; PLI as the connectivity method in full-frequency band, the rank-sum test
was used to compare the difference as normality was not satisfied, * p < 0.05).
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Table 4. Univariate analysis of static network characteristics.

Item P50_PC IQR_PC P50_PE IQR_PE W p

Small-world index 1.22 0.23 1.29 0.29 1977.0 0.324
Average vertex strength 0.64 0.24 0.97 0.72 912.0 <0.001 *
Average path length 1.64 0.04 1.64 0.05 2487.5 0.188
Transitivity 0.44 0.06 0.46 0.08 1864.0 0.134
Diameter 0.24 0.10 0.36 0.26 1031.5 <0.001 *

(Split segment EEG signals dataset; PLI as the connectivity method in full-frequency band, the rank-sum test was
used to compare the difference as normality was not satisfied, * p < 0.05).

Table 5. Univariate analysis of dynamic network characteristics.

Item P50_PC IQR_PC P50_PE IQR_PE W p

Mean-Small-world index 1.14 0.03 1.15 0.05 1658.0 0.015 *
Standard
Deviation-Small-world index 0.17 0.02 0.18 0.03 1421.0 <0.001 *

P50-Small-world index 1.13 0.05 1.14 0.05 1642.0 0.012 *
IQR-Small-world index 0.23 0.04 0.24 0.05 1638.0 0.012 *
Mean-Average vertex strength 2.60 0.22 2.84 0.39 1008.0 <0.001 *
Standard Deviation-Average
vertex strength 0.39 0.11 0.49 0.18 897.0 <0.001 *

P50-Average vertex strength 2.55 0.23 2.80 0.29 1030.5 <0.001 *
IQR-Average vertex strength 0.52 0.11 0.65 0.30 843.5 <0.001 *
Mean-Average path length 1.64 0.01 1.64 0.01 1751.0 0.045 *
Standard Deviation-Average
path length 0.04 0.01 0.04 0.01 1143.0 <0.001 *

P50-Average path length 1.63 0.01 1.64 0.01 1503.5 0.001 *
IQR-Average path length 0.04 0.01 0.05 0.01 1540.0 0.003 *
Mean-Transitivity 0.44 0.01 0.45 0.01 1072.0 <0.001 *
Standard
Deviation-Transitivity 0.05 0.01 0.05 0.01 1354.0 <0.001 *

P50-Transitivity 0.44 0.01 0.45 0.01 1100.0 <0.001 *
IQR-Transitivity 0.06 0.01 0.06 0.01 1576.0 0.005 *
Mean-Diameter 0.96 0.09 1.06 0.17 947.0 <0.001 *
Standard Deviation-Diameter 0.20 0.05 0.24 0.09 934.0 <0.001 *
P50-Diameter 0.93 0.09 1.03 0.14 903.5 <0.001 *
IQR-Diameter 0.25 0.07 0.31 0.11 898.0 <0.001 *

(Split segment EEG signals dataset; PLI as the connectivity method in full-frequency band, the rank-sum test was
used to compare the difference as normality was not satisfied, * p < 0.05).

In addition, the results in different frequency bands found that the discrimination
accuracies of each machine learning model in the higher-frequency band (beta-frequency
band) and the full-frequency band were higher than that of the lower-frequency bands.
It means that the higher-frequency band of the EEG in PE patients may contain more
useful information. Figures 5 and 6 compare the accuracies of machine learning classifiers
in the full-frequency and beta-frequency bands. See the Supplementary Part S5 for the
comparisons of the accuracies in other frequency bands.
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Figure 6. The accuracy of machine learning classifier with significant features under the beta-
frequency band. (S: static network; D: dynamic network; L: split segment EEG signals dataset; R:
original sequence EEG signals dataset; PLI: phase delay index; MSC: amplitude squared coherence;
iCOH: coherence function Imaginary part; CORR: Pearson correlation coefficient).

4. Discussion
4.1. Constructing the Brain’s Dynamic Complex Network and Extracting Its Characteristics Has a
Better Performance than the Brain’s Static Complex Network

In this research, we used the sliding window method to construct the brain’s complex
network, topological characteristics were calculated under multiple windows to form a
time series, and the features of the time series were calculated as the characteristics of the
dynamic network. As we incorporated the above dynamic characteristics into a variety of
machine learning classifiers, it could be seen from the results that in most methods which
involve the connectivity between leads, the accuracies of using dynamic characteristics
for discrimination were higher than those of using static characteristics. Additionally,
from the results of direct comparison of the features between the PC and PE groups, the
initially insignificant topological characteristics between the PE and the PC group in the
brain static complex network could be transformed to significant, using the method for
feature extraction under the brain’s static complex network. In the iCOH method, the
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discrimination accuracies of most machine learning models were higher than 95%. This
method has reached or even surpassed the level of the latest reports on the use of EEG
signals in the framework of machine learning models to discriminate epilepsy patients
and healthy controls in recent years [13,27,28], and it is a simple and intuitive feature
extraction method compared with VG or recurrence network (RN) [29,30]. The time-
varying characteristics existing in the EEG could be better explored [16,31,32]; compared
with the results under the static complex network [27], the discrimination accuracies of the
machine learning classifiers were also improved.

4.2. The Impact of EEG Frequency Band Splitting on the Discriminant Effect of Machine
Learning Models

From the discriminant results under the six frequency bands, the discriminant accura-
cies of the higher-frequency band and the full-frequency band were the highest, indicating
that the functional connection features contained in the EEG during epileptic seizures in
patients with epilepsy were primarily concentrated in higher-frequency bands. This result
is consistent with some previous studies [14,33]. Nevertheless, other epilepsy studies found
that the alpha-band may play an important role [34,35]. In the research of using EEG signals
to construct complex brain networks and to research functional connectivity, according to
our results, the higher-frequency band’s characteristics may be considered to distinguish
epilepsy patients and HCs.

4.3. Changes in the Topological Characteristics of PE in the Brain Network

It can be seen from the univariate analysis of characteristics that compared with the
PC, the PE group had a larger small-world index, clustering coefficient, vertex strength,
and transitivity in multiple dimensions (mean, standard deviation, median, interquartile
range), indicating that the brain’s network of PE patients had a centralized tendency
during the ictal phase. It can be considered that the connection between some leads
becomes stronger, forming a closely connected community structure, the electrical activity
is conducted rapidly, and in the brain, there may exist a closely connected region. This may
be related to the conduction of abnormal discharge through neurons and the synchronous
discharge of peripheral and distant neurons during epilepsy; this result is consistent with
previous studies on the topological characteristics of the brain’s function connections with
epilepsy [16,36,37].

4.4. Shortage of This Research

In this research, the sample size used was relatively small. As we enriched the
sample size and avoided over-fitting in the machine learning model, this research split the
signals with longer EEG records in the two groups (PE and PC) to make the sample size
larger. However, after this step, there were multiple fragments from the same subject to
be correlated. We would consider a larger sample size to establish a more robust machine
learning classifier in further research. In addition, only simple features (mean, variance,
median, interquartile range) were considered in the process of character extraction of the
time series formed by topological features. In further research, we would consider other
time series features to classify and discriminate by various machine learning methods.
Under the sliding window method, our research’s determination of window width was still
subjective. A shorter window width may be more affected by noise, while a more extended
window width may conceal the rapidly changing information in the EEG [38]. However,
scholars have only advised the window widths for dynamic networks constructed with the
sliding windows method under fMRI [39]. In the following research, we will try a variety
of window widths and step length combinations to determine the most suitable parameters
under EEG for discovering dynamic features.
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5. Conclusions

This research proposed a framework applied to the EEG of pediatric epilepsy during
the ictal phase. We used the sliding window method and multiple functional connection
indicators to construct the dynamic complex network of the brain and extract dynamic
features into various machine learning classifiers for discrimination. The results showed
that, compared with the static features extracted under the traditionally constructed brain’s
static complex network, this research can successfully summarize more time-varying
features in the EEG and improve the accuracy of the discrimination of the machine learning
classifier, solely using static features. This framework is worthy of its expected higher
efficiency in its application on other diseases.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/s22072553/s1, Supplementary Part S1: Univariate analysis of static net-
work characteristics (Original sequence EEG signals dataset). 24 tables (a combination of 4 con-
nectivity methods with 6 frequency bands); Supplementary Part S2: Univariate analysis of static
network characteristics (Split segment EEG signals dataset). 24 tables (a combination of 4 connectivity
methods with 6 frequency bands); Supplementary Part S3: Univariate analysis of dynamic network
characteristics (Original sequence EEG signals dataset). 24 tables (a combination of 4 connectivity
methods with 6 frequency bands); Supplementary Part S4: Univariate analysis of dynamic network
characteristics (Split segment EEG signals dataset). 24 tables (a combination of 4 connectivity methods
with 6 frequency bands); Supplementary Part S5: The accuracy of machine learning classifiers with
significant features. 6 figures (under 6 frequency bands).
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