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Purpose: We propose and evaluate a hybrid model composed of two convolutional
neural networks (CNNs) with different architectures for automatic segmentation of
retina layers in spectral domain optical coherence tomography (SD-OCT) B-scans of
retinitis pigmentosa (RP).

Methods: The hybrid model consisted of a U-Net for initial semantic segmentation and
a sliding-window (SW) CNN for refinement by correcting the segmentation errors of U-
Net. The U-Net construction followed Ronneberger et al. (2015) with an input image size
of 256 × 32. The SW model was similar to our previously reported approach. Training
image patches were generated from 480 horizontal midline B-scans obtained from 220
patients with RP and 20 normal participants. Testing images were 160 midline B-scans
froma separate groupof 80patientswith RP. The Spectralis segmentation of B-scanswas
manually corrected for the boundaries of the inner limiting membrane, inner nuclear
layer, ellipsoid zone (EZ), retinal pigment epithelium, and Bruch’s membrane by one
grader for the training set and two for the testing set. The trained U-Net and SW, as well
as the hybridmodel, were used to classify all pixels in the testing B-scans. Bland–Altman
and correlation analyses were conducted to compare layer boundary lines, EZ width,
and photoreceptor outer segment (OS) length and area determined by the models to
those by human graders.

Results: The mean times to classify a B-scan image were 0.3, 65.7, and 2.4 seconds for
U-Net, SW, and the hybrid model, respectively. The mean ± SD accuracies to segment
retinal layers were 90.8% ± 4.8% and 90.7% ± 4.0% for U-Net and SW, respectively. The
hybrid model improved mean ± SD accuracy to 91.5% ± 4.8% (P < 0.039 vs. U-Net),
resulting in an improvement in layer boundary segmentation as revealed by Bland–
Altman analyses. EZ width, OS length, and OS areameasured by themodels were highly
correlatedwith thosemeasured by the human graders (r> 0.95 for EZwidth; r> 0.83 for
OS length; r> 0.97 for OS area; P< 0.05). The hybridmodel further improved the perfor-
mance of measuring retinal layer thickness by correcting misclassification of retinal
layers from U-Net.

Conclusions:While the performances of U-Net and the SW model were comparable in
delineating various retinal layers, U-Net wasmuch faster than the SWmodel to segment
B-scan images. The hybrid model that combines the two improves automatic retinal
layer segmentation from OCT images in RP.

Translational Relevance: A hybrid deep machine learning model composed of CNNs
with different architectures can be more effective than either model separately for
automatic analysis of SD-OCT scan images, which is becoming increasingly necessary
with current high-resolution, high-density volume scans.
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Introduction

Retinitis pigmentosa (RP) is an inherited retinal
disease involving the loss of photoreceptors. One of
the hallmarks of the disease progression of RP is
the concentric constriction of the visual field, result-
ing in so-called tunnel vision at more advanced stages
of photoreceptor degeneration. Advanced imaging
techniques, such as spectral domain optical coherence
tomography (SD-OCT), allow us to visualize and assess
the change of retinal structure, in particular the ellip-
soid zone (EZ) or photoreceptor inner segment/outer
segment junction, associated with the change of visual
field in RP. It has been shown that the visual field sensi-
tivity loss in the EZ transition zone between relatively
healthy and relatively affected areas is more rapid than
it is elsewhere in the retina.1 The loss of local visual field
sensitivity is also associated with photoreceptor outer
segment (OS) length.2 OCT image analysis revealed
that structural defects in RP mainly occur in the outer
retina as the disease progresses,3–5 including the early
decrease of OS length.6 It has been suggested that EZ
metrics, including width and area, may be effective
biomarkers for assessing disease progression in RP.7–10

With high-resolution OCT scan images, EZ metrics
(width and area) and OS metrics (thickness, area, or
volume) can be measured quantitatively once EZ line
and retinal pigment epithelium (RPE) are accurately
delineated. EZ and OS dimension metrics obtained
from OCT scans could be potential biomarkers for
detecting disease progression and as outcomemeasures
in prospective clinical trials for RP. However, accurate
delineation of retinal layers often requires the work of
human graders. It is well known that manual segmen-
tation of retinal layer boundaries from OCT images is
very time-consuming and costly, especially when high-
resolution, high-density volume scans are involved.
Hence, automated retinal layer segmentation methods
are needed to reduce the burden of human graders.

Significant work has been carried out in an effort
to develop effective tools for automatic segmenta-
tion of retinal layers in OCT scan images. Most
earlier efforts were focused on the application of
graph-based image-processing methods for segmenta-
tion.11–16 Garvin et al.11 reported a general graph-
theoretic method for the simultaneous segmentation
of six retinal layers from three-dimensional SD-OCT
images. Carass et al.13 developed an improved graph-
search based algorithm to segment eight retinal layers
from three-dimensional macular cube scans. Image
processing–based methods have also been employed
for automatic segmentation of outer retinal layers
in RP.12,15,17 While conventional image processing–

based automated segmentation methods demonstrated
their capability and potential, one of the limitations
is that such a method relies on predefined rules
or constraints that could apply well to the layers
with consistent features but may not work well for
varying types of retinal defects and lesions for a given
retinal disease. For instance, the general automated
OCT image analysis software currently implemented
in Heidelberg Spectralis (Heidelberg Engineering, Inc,
Heidelberg, Germany) can correctly identify the inner
limiting membrane (ILM) for the most cases but often
incorrectly identifies the EZ transition zone and the
layer boundaries in the regionwhere EZ ismissing, thus
still requiring a large number of manual corrections by
human graders to obtain accurate EZ or OS metrics.18

Recent advances in deep machine learning and
convolutional neural networks (CNNs)19 offer new
tools to classify and segment OCT scan images of
the retina.20–27 For instance, Fang et al.21 adopted
a sliding window (SW)–based CNN combined with
graph-search postprocessing for automatic identifica-
tion of retinal layer boundaries in OCT images of dry
age-related macular degeneration (AMD). Roy et al.20
proposed a fully convolutional framework similar to
U-Net28 for semantic segmentation of retinal OCT B-
scans and validated their model against three graph-
based as well as two deep learning–based approaches.
Deep neural networks have been trained for automatic
identification of drusen in OCT scan images of
dry AMD,25 for automated segmentation of macular
edema in OCT,29 for quantification of EZ defects
on OCT images of macular telangiectasia type 2,30
and for retinal boundary segmentation in Stargardt
disease.31 Unlike conventional graph-search automatic
OCT image segmentation software, a deep CNNmodel
learns from a data set through training to extract
features so it can perform a classification task without
a specific set of predefined instructions.

Recently, we demonstrated the capability of a SW-
based deep machine learning method for automatic
segmentation of retinal layer boundaries and measure-
ments of EZ width and OS length from SD-OCT B-
scan images in RP.18 However, the SWmodel is a single
pixel classifier32 and only predicts the class for one pixel
at a time. A semantic segmentation CNN model such
as U-Net28 should take much less time than the SW
model to segment a B-scan image. As we showed in our
preliminary study, while the SWmodel andU-Net were
comparable in delineating various retinal layers, U-Net
was more than 200 times faster than the SW model to
segment B-scan images.33 However, classification errors
remain for both models. It has been suggested that
combining the outputs of multiple CNNs with differ-
ent architectures trained on the same datamay perform
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better than a single CNN.32 In this study, we imple-
mented a hybrid model that consisted of a U-Net for
fast segmentation and a SWmodel for refinement. The
capability of this hybrid model, as well as the compo-
nent U-Net and the SWmodels, for automatic segmen-
tation of retinal layers and measurement of EZ width
and layer thickness from SD-OCT scan images in RP
was evaluated by comparing to human graders (gold
standard).

Methods

OCT Scan Images for CNNModel Training
and Testing

The data set for training and validation of CNN
models was the same as that used in our previous
study.18 In summary, the training data set was gener-
ated from 480 horizontal, 9-mm (30-degree) midline
B-scan images obtained using a Heidelberg Spectralis
(HRA-OCT; Heidelberg Engineering) from 20 normal
participants and 220 patients (one scan per eye) with
various types of RP who had EZ transition zones
visible in themacula. Themidline B-scan images from a
separate group of 80 patients withRPwho hadmeasur-
able EZ in the macula were used for model testing (one
scan per eye). Line B-scans were a mix of SD-OCT
high-speed (768 A-scans) or high-resolution (1536 A-
scans) B-scans with an automatic real-time tracking
(ART) setting of 100.

The Spectralis automatic segmentation of 480 B-
scan images in the training data set was manually
corrected by one grader using Spectralis software
(version 1.9.10) for the following five layer boundary
lines: ILM, distal (basal) inner nuclear layer (dINL),
center of the EZ, proximal (apical) retinal pigment
epithelium (pRPE), and Bruch’s membrane (BM). All
160 B-scan images in the test data set were manually
corrected by two graders for ILM, dINL, EZ, pRPE,
and BM to serve as the gold standard for evaluating
the performance of CNN models. Manually corrected
OCT scans were exported as XML files, which were
then imported into MATLAB (MathWorks, Natick,
MA, USA) to extract B-scan images and correspond-
ing layer segmentation data.

U-Net Model Architecture

The construction of U-Net followed Ronneberger
et al.28 Specifically, the U-Net consists of an encod-
ing (down-sampling) subnetwork to extract features
and a decoding (up-sampling) subnetwork to achieve
semantic segmentation (Fig. 1). The encoding and

decoding subnetworks contain multiple stages that
form the depth of the network. Each encoding stage
consists of two sets of convolutional + rectified linear
unit (ReLU) layers, then followed by a 2 × 2 max
pooling layer for down-sampling, which compresses
the features extracted by convolution to reduce the
size of the feature maps and the number of param-
eters in the network. The deeper the encoding stage,
the more the features channels and the more complex
features from the image are extracted. Each decoding
stage consists of a 2× 2 transposed convolutional layer
with learnable parameters for up-sampling, followed
by two sets of convolutional + ReLU layers to reduce
checkerboard artifacts that might be introduced by up-
sampling. The encoder and decoder are connected by
a bridge component consisting of two sets of convo-
lutional + ReLU layers, which doubles the number of
channels to result in symmetric U-Net structure (i.e.,
equal number of encoding and decoding stages).

A key component of the U-Net architecture is the
depth concatenation (or skip connection) in which
features (or channels) after up-sampling are combined
with the features generated at the corresponding stage
of encoding convolution. These concatenations allow
the network to retrieve and restore the spatial informa-
tion lost bymax pooling operations to achieve semantic
segmentation so that every pixel in the original image
can be classified.

The “same” padding method (add edges with zeros)
is used in convolutional layers so that output image
has the same size as the input, which enables the use
of a wide range of image sizes. A tile-based approach
is employed to segment large images, that is, the U-
Net was trained using image patches generated from a
larger image. When doing segmentation, a large image
is divided into smaller patches for classification, and
then the classified patches are stitched together to
obtain the segmentation of the larger image. In this
study, the image patch size processed by the U-Net
model was 256× 32 (height×width) pixels. TheU-Net
model was implemented in MATLAB using its built-
in Deep Learning Toolbox, with encoding depth of
4, convolution filter (kernel) size of 5 × 5, and initial
feature channels of 8.

The SWModel Architecture

The same sliding-window CNN model used in our
previous study18 was adopted here. This SW model
is based on the framework developed for classifying
tiny images34 and has shown promising results for
automatic segmentation of retinal layer boundaries
in OCT images of patients with dry AMD21 as well
as patients with RP.18 The SW model has a total of
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Figure 1. The structure of U-Netmodel28 for semantic segmentation of image patches extracted fromOCT B-scans. In this illustration of U-
Net architecture, the input to themodel is an imagepatch of 256 (height)× 32 (width). Themodel has four encoding units and four decoding
units, with a bridge unit in between. The number of initial encoding channels is 8. The convolution kernel size is 5 × 5. The output is the
classification of all pixels in the input. The input image patch in this figure is a sample extracted from a test B-scan image shown in Figure
4a, and the output classification image was generated by the trained U-Net reported in this study. Refer to the Methods for details of this
model.

Table 1. Comparison of the Time Needed to Classify a B-scan Image by the U-Net Model, the SWModel, and the
Hybrid Model

Time, s

Characteristic U-Net SW Hybrid Model

B-scan width = 768 (n = 106) 0.20 ± 0.07 40.87 ± 0.72 2.52 ± 2.50
B-scan width = 1536 (n = 54) 0.39 ± 0.22 90.55 ± 1.64 2.33 ± 1.14

13 layers, including three convolutional layers, three
max pooling layers, four ReLU layers, two fully
connected layers, and a final softmax classification
layer. The architecture and the parameters of the SW
model can be found in Table 1 of Wang et al.18 Instead
of employing MatConvNet toolbox35 as in previous
studies, the SW model in this study was implemented
using MATLAB’s built-in Deep Learning Toolbox.

Create Labeled Image Data Sets for U-Net
and the SWModel Training and Validation

The U-Net model (Fig. 1) employed in this study
was designed for semantic segmentation of small image
patches of size 256 × 32 pixels. These small image
patches are considered building blocks for B-scan

images. With the limit number of training B-scan
images used in this study, hundreds of thousands train-
ing image patches can be extracted with data augmen-
tation.

Figure 2 illustrates examples of image patches
and their pixel labels for U-Net training and valida-
tion. Figure 2a shows the labeling of five bound-
ary lines in a B-scan image: ILM, dINL, EZ, pRPE,
and BM, and Figure 2c shows five areas separated
by these lines, labeled as 0, 1, 2, 3, and 4 for
background, ILM-dINL, dINL-EZ, EZ-pRPE, and
pRPE-BM, respectively. A rectangular window of 256
× 32 pixels was shifted across the B-scan image to
extract image patches (Fig. 2b) and corresponding
pixel labels (Fig. 2d) for U-Net training. To increase
the number of training patches, data augmentation
was applied, which included overlapping rectangular
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Figure 2. Image patches and their pixel labels for U-Net training and validation. (a) B-scan imagewith fivemanually corrected layer bound-
aries, ILM, dINL, EZ, pRPE, and BM. (b) Examples of training image patches (256-by-32 pixels) extracted at the locations indicated by thewhite
rectangular boxes in (a) four patches, each centered at a boundary line, extracted at the left white box, while five patches were extracted at
the right white box since it contained EZ. (c) The B-scan image divided into five areas based on the boundary lines defined in (a) as 0, 1, 2, 3,
and 4 for background, ILM-dINL, dINL-EZ, EZ-pRPE, and pRPE-BM, respectively. All pixels in the B-scan image were labeled according to the
area they were in. (d) Examples of pixel label patches corresponding to (b).

window by 28 pixels horizontally and centering the
window at each boundary line (vertical shift). In the
examples of Figure 2a, four patches, each centered at
a boundary line, were extracted at the left white rectan-
gular box, while five patches were extracted at the right
white rectangular box since it contained EZ. In this
way, a total of 527,746 labeled patches were extracted
from 480 B-scans as the training data set for U-Net.
The patch height of 256 was chosen so that most train-
ing patches would contain all five area classes.

For the SWmodel, the training data were tiny image
patches of 33× 33 pixels extracted fromB-scan images.
These patches were centered at the pixels on five bound-

ary lines. The labeling of each patch was defined by
the class of its center pixel. The pixels on ILM, dINL,
EZ, pRPE, or BM boundary lines in a B-scan image
were labeled as 1, 2, 3, 4, or 5, respectively. Any pixels
in a B-scan image not on these five lines was labeled
as 0. The method to generate training data set for
the SW model was described in detail previously.18 A
total of 2.88 million classified patches were extracted
from 480 B-scans as the training data set for the SW
model.

Unlike previous studies,18,21 no preprocessing of B-
scan images was conducted before the extraction of
training patches for both U-Net and the SW model.
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U-Net and the SWModel Training and
Testing

Model Training and Validation
The model training was carried out on an iMac

Pro desktop computer (3.2-GHz 8-core Intel Xeon
W, 64 GB RAM, macOS 11.5.2; Apple, Cupertino,
CA, USA). All classified image patches were randomly
divided into the training set (80%) and the validation
set (20%). The randomization was performed to the A-
scans at the centers of patches so that there was no
intersection between the training and validation data
sets when data augmentation of horizontal overlap-
ping between adjacent patches was not applied. The
training batch size was 128 patches. Before the training
started, all filter weights were set to random numbers.
The training stopped after the model was trained for
45 epochs. The initial learning rate was 0.01 for U-Net
and 0.05 for the SW model. The learning rate reduced
by 10 times every 10 epochs. To accelerate convolu-
tional neural network training and reduce the sensitiv-
ity to network initialization,36 a batch normalization
layer was inserted between convolutional layers and
ReLU layers for the SW model training and between
convolutional layers and ReLU layers in the encoding
subnetwork for U-Net training.

Model Testing
The trained CNNmodel was tested using a separate

data set consisting of 160 B-scans from 80 patients with
RP, one scan per eye. There was no patient overlap-
ping between the training and the test groups. For
U-Net, each test B-scan image was first divided into
multiple patches of size 256 × 32. Then each patch was
classified by the U-Net for five classes or areas (four
retinal areas as ILM-dINL, dINL-EZ, EZ-pRPE, and
pRPE-BM and background). After that, all classified
patches were combined together to obtain the semantic
segmentation of all pixels in the B-scan image. A simple
postprocessing employing local connected area search-
ing algorithm (LCASA)18 was performed to eliminate
isolated classification noises above and below larger
local areas, which most likely contained the true classes
given the high classification accuracy of the model.
From there, pixels on five boundary lines and in four
retinal areas were obtained.

For the SW model, every pixel, except for 16 pixels
on each side, in a B-scan image was classified using
a sliding window of 33 × 33 centered at the targeted
pixel. Our previous study18 showed that a band of
pixels could be classified as the same boundary class.
To obtain a single-pixel line for each layer boundary,
the LCASA previously developed for postprocessing18

was applied. Once layer boundary lines were extracted,
the pixels in five areas were determined.

The time needed to classify B-scan images by U-
Net and the SW model was compared. Accuracies of
the model to segment four retinal areas were obtained
by comparing the model-classified area to that of
the gold standard (human graders). The models were
also assessed by the pixel-wise comparison of model-
generated boundary lines to that by the gold standard
using Bland–Altman analysis.

The Hybrid Model That Combines U-Net and
the SWModel

It was observed that CNNs with different architec-
tures trained on the same data set can exhibit signif-
icant output differences for many image parts, and
averaging the outputs of multiple CNNs may improve
the performance of image segmentation.32 In this
study, we constructed a hybrid model that combined
U-Net and the SW model and assessed its potential
to improve the segmentation of B-scan images. In this
hybrid model, U-Net was first employed for semantic
segmentation of B-scans. Then single-pixel boundary
lines were obtained from the semantic segmentation.
Specifically, the ILM boundary line was defined as the
top pixel of the area of ILM-INL, the dINL bound-
ary line was defined as the top pixel of dINL-EZ or
dINL-pRPE for the parts where EZ was missing, EZ
was defined as the top pixel of EZ-RPE, and pRPE
and BM were defined as the top and bottom pixels of
pRPE-BM, respectively.

Among five boundary lines, ILM, dINL, pRPE,
and BM were then checked for discontinuation or
breaks using the SW model, assuming the actual ILM,
dINL, pRPE, and BM lines were continuous. Similar
to the locally connected area searching algorithm
we developed for the SW model,18 we employed a
locally connected line component searching algorithm
to identify and process line breaks and gaps. For each
boundary line, locally connected line components were
first identified using MATLAB’s Image Toolbox. Then
the search for breaks and gaps started with the largest
line component as the initial reference, assuming that
the largest locally connected line component belonged
to the true line. This assumption was based on the
high accuracy of the U-Net model to classify pixels
(see the Results). The row and column separations in
pixels between the edges of the reference component
and the edges of the neighboring test line compo-
nents closer to the reference were obtained. For any
horizontal (column) separation of two pixels ormore, a
linear function connecting the edges of the test and the
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reference components was generated as the center of
a region to be reclassified by the SW model. The row
(vertical) search range was ±10 pixels from the center
of the region. Additional rows of search were added if
there was also a vertical line break or jump of 2 pixels
or more. The number of rows added to the region of
search was two times of vertical separation in pixels in
the direction from the test to the reference. The SW
model was then employed to reclassify the pixels in
the regions surrounding the breaks or gaps as defined
above in an attempt to repair any discontinuation along
a boundary line. For the EZ line, isolated small pieces
of EZ were reexamined using the SWmodel for confir-
mation or elimination.

The time needed to classify B-scan images by the
hybrid model was the sum of the time of U-Net classi-
fication plus the time of the SW model to classify the
pixels in the search regions. Once refined boundary
lines were obtained, the pixels in five areas were deter-
mined for the hybrid model. Similar to the U-Net and
the SW model test, accuracies of the hybrid model to
segment four retinal areas were obtained by comparing
the model-classified area to that of the gold standard
(human graders). The model was also assessed by the
pixel-wise comparison of model-generated boundary
lines to that by the gold standard using Bland–Altman
analysis.

Measurements of EZWidth and
Photoreceptor OS Length and Area

The evaluation of the effectiveness of U-Net, the
SW model, and the hybrid model for automatic
segmentation of retinal layers was conducted on the
test B-scan images from a separate group of 80 patients
with RP. EZ width, OS length (EZ-pRPE thick-
ness), OS area, and mean retinal (ILM-BM) thickness
determined by the models were compared with those
obtained frommanual segmentation by human graders
using correlation and Bland–Altman analyses.

Results

Training and Validation Accuracies of U-Net
and the SWModel

Figure 3 plots percent training accuracy (symbols
and dashed lines) and validation accuracy (solid lines)
as a function of number of training epochs for the
U-Net model (red) as well as the SW model (blue).
Open symbols represent the training accuracies for
the data sets without data augmentation of horizon-
tal pixel overlapping between adjacent patches, while

Figure 3. Percent training accuracy (symbols and dashed lines) and
validation accuracy (solid lines) as a function of number of train-
ing epochs for the U-Net model (red) as well as for the SW model
(blue).Open symbols and solid lines represent the training and valida-
tion accuracies, respectively, where there was no pixel overlapping
between training and validation data sets. Solid red circles repre-
sent the training accuracies for U-Netwhere adjacent image patches
had a horizontal overlap of 28 pixels (data augmentation). Solid blue
squares represent the training accuracies of the SWmodel where the
training data set was generated with the sliding window shifted 1
pixel at a time.Dash-dottedblue line represents the training accuracy
of the SW model implemented using MatConvNet toolbox as previ-
ously reported (Wang et al., 2020).

solid symbols represent the training accuracies with
the data sets having data augmentation of horizon-
tal overlapping of 28 pixels and 32 pixels between
adjacent patches for the U-Net (solid red circles) and
the SW model (solid blue squares), respectively. While
only validation accuracies (solid lines) for the condition
where there was no pixel overlapping between train-
ing and validation data sets were plotted in Figure 3,
no validation results showed any signs of overfitting
during the model training.

It is evident that the training accuracy with data
augmentation was higher than that without. Hence, the
results obtained with the CNNs trained on the data
sets with data augmentation were reported here. As
shown in Figure 3, after the completion of the train-
ing at 45 epochs, the overall accuracy of the U-Net
model to correctly classify all pixels in the validation
image patches was 98.5%, while the overall accuracy of
the SWmodel to correctly identify the classes of image
patches in the validation set was 96.5%. Figure 3 also
suggests that for U-Net training, about 20 epochs were
needed to reach the plateau of validation accuracy.
As a comparison, Figure 3 also shows a dash-dotted
line representing the training accuracy of the SW
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model implemented using the MatConvNet toolbox35
as previously reported.18

It seems that U-Net might have higher accuracy
than the SW model when trained on the same data
set. However, the training and validation accuracies
of these two models should not be compared directly,
since U-Net performs semantic segmentation that
classifies all pixels in the input image patch, while the
SW model only classifies a single pixel in the input
image patch. A more appropriate way to compare the
performance of these two models is to examine the
accuracy of the models to segment either retinal layers
(area) or boundary lines (pixel position) of a test set of
B-scan images as described in the next section.

B-Scan Image Classification: Time and Layer
Segmentation Accuracy

U-Net, the SW model, and the hybrid model were
employed to classify all pixels of 160 test B-scan images
from a separate group of 80 patients with RP. When
applying U-Net, a B-scan image was first divided into
consecutive patches of 256 × 32 for semantic classi-
fication, and then the classified patches were stitched
together to obtain the segmentation of the full B-scan
image. For the SW model, a 33 × 33 window was
sliding through all pixels (except for 16 pixels on the
edge of each side) of the image to obtain their classes.
For the hybrid model, U-Net was first employed for
semantic segmentation, and then the SW model was
used to correct layer boundary segmentation errors of
U-Net. Figure 4 presents several examples of B-scan
image classification by U-Net (left column) and the
hybrid model (right column). The examples of B-scan
image classification by the SW model can be found in
our previous work.18 The cases illustrated in Figure
4 included both successful and failed repairs by the
hybrid model in an attempt to correct classification
errors generated from the U-Net segmentation.

The left of Figure 4a shows a typical sematic
segmentation of a high-resolution B-scan image by
U-Net, only with minor classification errors at the
top of the central ILM, as indicated by the dashed
white circle. The refinement step of the hybrid model
corrected the U-Net segmentation errors (Fig. 4a,
right). Figure 4b left shows a case of U-Net segmen-
tation of a high-speed B-scan image with errors at the
center and on the left edge of the scan. The hybrid
model corrected some of the classification errors on
the left edge but not the errors at the center, where
ILM presented a steep-sided depression. Because such
depression rarely occurred in the training data set, the
model was not adequately trained to handle it. The case

in Figure 4c shows the impact of scan noises on U-
Net classification and the ability of the hybrid model
to correct these types of U-Net segmentation errors. In
general, themore the background scan noises, themore
classification errors made by U-Net. Nevertheless, the
hybrid model (Fig. 4c, right) corrected most of the
U-Net classification errors presented in Figure 4c (left).
The fourth example (Fig. 4d, left) shows other types
of U-Net segmentation errors, that is, the displace-
ment of layers between adjacent patches (indicated
by the dashed white circle), resulting in breaks/gaps
of boundary lines. The hybrid model (Fig. 4d, right)
was able to correct such discontinuations of bound-
ary lines. Figure 4e shows an example of a B-scan with
subfoveal fluid/deposit that was not correctly classified
by the current models, most likely due to the lack of
such instances in the training data set. Finally, Figure
4f presents an example of a B-scan having thicker inner
retina than usual on one side, which led to a significant
amount of segmentation errors by U-Net (left). While
most of these errors were corrected by the hybridmodel
(right), some of EZ classification errors due to RPE
disruptions were not fixed.

Classification Time
Table 1 lists the average time needed to classify a

B-scan image using U-Net, the SW model, and the
hybrid model. These times were obtained under
the condition where the iMac Pro was restarted,
and MATLAB was the only user-launched appli-
cation. For U-Net, the mean ± SD time was
0.20 ± 0.07 seconds to classify a high-speed
B-scan (width = 768 pixels) and 0.39 ± 0.22 seconds
to classify a high-resolution B-scan (width = 1536
pixels). In comparison, the time needed was 40.87
± 0.72 seconds and 90.55 ± 1.64 seconds for the SW
model to classify a high-speed and a high-resolution B-
scan image, respectively. The time for the SW model to
classify high-resolution B-scans was more than double
the time to classify high-speed B-scans, which could
be due to the patches being classified were slightly
more than double and the increased total number
of patches might slow down the classification by the
SW model (341,504 patches for high-speed B-scan
vs. 697,856 patches for high-resolution B-scan). The
U-Net was more than 200 times faster than the SW
model to segment a B-scan image. While it took a
longer time for the hybrid model to classify a B-scan
image than U-Net, the hybrid model was still much
faster than the SW model. Since the runtime for the
hybrid model to classify a B-scan image was the sum
of U-Net to classify the full B-scan image and the time
of the SW model to classify the regions surrounding
the breaks and gaps of boundary lines resulted from



Deep Machine Learning for Retinal Layer Segmentation in RP TVST | November 2021 | Vol. 10 | No. 13 | Article 9 | 9

Figure 4. Examples of B-scan image classification by the U-Net (left column) and the hybrid model (right column). B-scan images were
segmented by U-Net for four layers (ILM-dINL, dINL-EZ, EZ-pRPE, pRPE-BM) and the background. The hybrid model consists of a U-Net for
initial segmentation and a SW model for the refinement of the segmentation. (a) Left: U-Net classification of a high-resolution B-scan only
with minor classification errors at the top of the central ILM (indicated by the dashed white circle). Right: The refinement step of the hybrid
model corrected the U-Net segmentation errors. (b) Left: U-Net segmentation of a high-speed B-scan image with errors at the center and
the edge of the scan. Right: The hybrid model corrected the classification errors on the edge but not at the center. (c) Left: A case showing
the effect of scan noises on U-Net classification: the more the scan noises, the more classification errors made by U-Net. Right: The hybrid
model correctedmost of the U-Net classification errors. (d) Left: An example showing U-Net classification errors of the displacement of layers
between adjacent patches (indicated by the dashed white circle), resulting in breaks/gaps of boundary lines. Right: These breaks and gaps
were corrected by the hybrid model. (e) An example of a B-scan with subfoveal fluid/deposit that was not correctly identified by the current
models. (f ) An example of a B-scan showing thicker inner retina than usual on one side, resulting in a significant amount of segmentation
errors by U-Net (left). Most of these errors were corrected by the hybrid model (right).
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U-Net classification, the slightly longer time in Table 1
for the hybrid model to classify high-speed B-scans
indicated that there were more classification errors by
U-Net for high-speed B-scans in our test data set.

Layer Area Segmentation Accuracy
To access the accuracies of the trained CNN

models to segment retinal layers, the area segmentation
obtained using the models was compared with human
graders. For each of four area classes (ILM-dINL,
dINL-EZ, EZ-pRPE, and pRPE-BM), the segmen-
tation by the human graders was used as a mask
applied to the model classification. The number of
pixels labeled as the target class by the model in the
mask area was calculated and then divided by the total
number of pixels of themask to obtain the accuracy for
that class. This analysis was carried out for the central
6 mm as well as the full-scan width, and the percent
accuracy results are listed in Table 2.

When compared to human graders, the mean
± SD accuracy to identify pixels of ILM-dINL
(inner retina), dINL-EZ, EZ-pRPE (OS), and
pRPE-BM (RPE thickness) within the central 6
mm of B-scans was 96.0% ± 4.0%, 93.5% ± 5.4%,
85.9% ± 13.6%, and 87.7% ± 4.5%, respectively, for
U-Net; 94.8% ± 7.1%, 93.3% ± 6.8%, 88.5% ± 9.0%,
and 86.2% ± 6.4%, respectively, for the SWmodel; and
97.0% ± 1.1%, 94.1% ± 5.3%, 87.0% ± 10.3%, and
87.9% ± 4.5% for the hybrid model, respectively. The
average accuracy of U-Net was comparable to that of
the SWmodel (90.8%± 4.8% vs. 90.7%± 4.0%, respec-
tively). The average accuracy of the hybrid model was
91.5% ± 4.8%, improved by 0.7% when compared

Table 2. Accuracy of CNN Models to Segment Retinal
Layers Compared to Human Graders

Central 6 mm Full B-Scan
of B-Scan, Width (9 mm),
% Accuracy % Accuracy

Characteristic Mean SD Mean SD

U-Net ILM-dINL 96.0 4.0 94.8 4.1
dINL-EZ 93.5 5.4 93.1 5.1
OS (EZ-pPRE) 85.9 13.6 85.4 13.6
RPE (pRPE-BM) 87.7 4.5 86.8 4.7

SW ILM-dINL 94.8 7.1 92.8 7.7
dINL-EZ 93.3 6.8 91.8 7.0
OS (EZ-pPRE) 88.5 9.0 87.9 9.6
RPE (pRPE-BM) 86.2 6.4 83.5 7.1

Hybrid model ILM-dINL 97.0 1.1 95.7 3.2
dINL-EZ 94.1 5.3 93.7 5.4
OS (EZ-pPRE) 87.0 10.3 86.4 10.4
RPE (pRPE-BM) 87.9 4.5 86.7 5.4

Mean accuracy was obtained by averaging all individual
accuracy across all 160 test B-scan images and two graders.

to U-Net only, and a paired t-test conducted using
Statistica (StatSoft, Inc., Tulsa, OK, USA) to compare
two sets of accuracies suggested that this improvement
was significantly different from zero (P < 0.039, t =
3.525). The average accuracy difference betweenU-Net
and the SW model was not significant. The accuracy
decreased slightly (about 1% on average) when the
segmentation extended to the full B-scan width (P <

0.036, t > 3.660). The mean accuracy for full B-scan
width (9 mm) was 90.0% ± 4.6%, 89.0% ± 4.2%, and
90.6 ± 4.8% for U-Net, the SW model, and the hybrid
model, respectively.

Layer Boundary Segmentation Deviation
To further evaluate the performance of the trained

CNN models, we examined the deviation of model-
generated boundary lines from that of the human
graders by comparing the pixel locations of the
boundary lines along each A-scan. Figure 5 shows
Bland–Altman plots comparing the central 6-mm ILM
segmentation by the CNN models to that by human
graders (Fig. 5b, U-Net versus graders; Fig. 5c, the SW
model versus graders; and Fig. 5d, the hybrid model
versus graders), as well as by two graders for refer-
ence (Fig. 5a) for all 160 test B-scans. In each plot,
the horizontal axis is the mean position of the corre-
sponding boundary line points along the same A-scan
obtained by the two comparing segmentationmethods.
This position was referenced to the top of B-scan as
1, ranged from 1 to 496 (B-scan height) pixels. The
vertical axis of the plot is the difference of correspond-
ing pixel positions. Dashed horizontal lines represent
±95% limit of agreement (mean ± 1.96 * SD of the
difference).

For ILM, there was a small positive bias (0.311,
0.102, and 0.135 pixels for U-Net, the SW model, and
the hybrid model, respectively) for all models when
compared to the human graders, suggesting that the
model-generated ILM line was slightly below that by
the graders. However, this bias was trivial since it was
only a fraction of a pixel. When compared to the
graders, the coefficient of repeatability (CoR) was 8.11,
2.24, and 1.66 pixels for U-Net, the SW model, and
the hybrid model, respectively. It is apparent the SW
model was more consistent than U-Net to segment the
ILM line. With the addition of the SW model, the
hybrid model improved the CoR to a level closer to
that between two graders (Fig. 5a, CoR = 1.11 pixels)
for segmenting ILM. It is worth noting that the smaller
mean bias and smaller CoR for ILM between grader 1
and grader 2 (Fig. 5a) were in large part due to minimal
manual correction needed for automatic segmentation
by Spectralis since the built-in software of Heidel-
berg OCT correctly classified ILM for the most part.
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Figure 5. Examples of Bland–Altman plots of central 6-mm ILM boundary line segmentation by the CNNmodels to human graders for all
160 test B-scans. In each plot, the horizontal axis is the mean pixel position of the corresponding points on the boundary lines obtained by
the two comparing segmentation methods. This position is referenced to the top of a B-scan (i.e., it is an A-scan pixel position). The vertical
axis is the difference of corresponding pixel positions. (a) Comparison of two human graders. (b) U-Net segmentation versus the average of
two human graders. (c) The SWmodel segmentation versus human graders. (d) The hybridmodel segmentation versus human graders. CoR
is defined as 1.96 times the standard deviation of the difference. Dashed horizontal lines represent ±95% limit of agreement (mean ± CoR).

While the hybrid model corrected most of the ILM
segmentation errors of U-Net, it failed to correct the
segmentation errors at the steep-sided depression illus-
trated in Figure 4b, so the pixel deviations (the largest
deviations in Fig. 5d) associated with the steep-sided
depression remained.

Similar to Figure 5, the Bland–Altman plots
in Figure 6 were for the comparison of central 6-mm
EZ line segmentation by the CNN models to human
graders, as well as between two graders. The data
points were from all 160 B-scans. The dashed horizon-
tal lines represent ±95% limit of agreement (mean ±
1.96 * SD of the difference). It is evident that the
CoR between a model and graders was similar to that
between two graders, suggesting that the performance
by the models was comparable to human graders to
segment the EZ line. While the hybrid model showed
some improvement of CoR over U-Net for segment-
ing EZ, such improvement was much less noticeable

than that for segmenting ILM. The largest deviations
shown in Figure 6d were from the case of a subfoveal
fluid/deposit illustrated in Figure 4e, where the hybrid
model failed to correct the segmentation errors of
U-Net for the elevated photoreceptor layer at the
center.

Table 3 summarizes the results of Bland–Altman
analysis of comparing the segmentation by the CNN
models to that by human graders for all five bound-
ary lines. In addition to the central 6-mm scan width,
the comparison was also conducted for the full B-
scan width (9 mm). The CoR between U-Net or
the SW model and the human graders was compa-
rable to that between grader 1 and grader 2 for all
boundary lines, except for ILM. It is evident that,
while CoR improved for all boundary line segmenta-
tion when using the hybrid model, ILM segmentation
benefited most from combining U-Net with the SW
model.
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Figure 6. Examples of Bland–Altman plots of central 6-mm EZ line segmentation by the CNN models to human graders for all 160 test
B-scans. In each plot, the horizontal axis is the mean pixel position of the corresponding points on the boundary lines obtained by different
segmentation methods. This position is referenced to the top of a B-scan image (i.e., it is an A-scan pixel position). The vertical axis is the
difference of corresponding pixel positions. (a) Comparison of twohumangraders. (b) U-Net segmentation versus the average of twohuman
graders. (c) The SW model segmentation versus human graders. (d) The hybrid model segmentation versus human graders. CoR is defined
as 1.96 times the standard deviation of the difference. Dashed horizontal lines represent ±95% limit of agreement (mean ± CoR).

EZWidth, OS Length and Area, and Retinal
Thickness Measurements

EZWidth Measurements
The method employed in our previous study18 was

adopted here to determine EZ width in millimeters.
First, the number of pixels that represented EZ line
was counted to obtain the EZ width in pixels, which
was then converted to millimeters by multiplying the
pixel width by the scanning scale (mm/pixel) along the
B-scan axis. Figure 7 plots the EZ width measured by
U-Net (Fig. 7b), the SWmodel (Fig. 7c), and the hybrid
model (Fig. 7d) versus the average EZ width measured
by two graders from the test B-scan images with full-
scan width. EZwidths obtained by two graders are also
compared in Figure 7a. The equation in each subplot
of Figure 7 was the linear fit (red solid line) to the data.
The correlation between the EZ width measured by all

models and that by two graders was higher than 0.96
(P < 0.0001).

Bland–Altman analysis (text in each subplot of Fig.
7) revealed that when the models were compared to the
graders, the CoRwas around 1.0 mm, which was about
two times that of the CoR between the two graders.
There was a small bias in EZ width measurements
by all CNN models when compared with the human
graders. The EZ width estimated by the models was
slightly (about 0.15 mm on average) shorter than by
the graders. It is apparent from Figure 7 that the bias
seemed to increase with the increase of EZ width.

Average Photoreceptor OS Length Measurements
OS length was measured by first counting the total

number of pixels between EZ (inclusive) and pRPE
(exclusive) for all points on the EZ line, and then the
length in pixels was converted to micrometers using
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Table 3. Comparison of Segmentation of Layer Boundary Lines by the CNNModels to Human Graders

Central 6 mm of B-Scan, Pixels Full B-Scan Width (9 mm), Pixels

Bland–Altman Analysis Mean Difference SE CoR (1.96 * SD) Mean Difference SE CoR (1.96 * SD)

U-Net vs. graders ILM 0.311 0.012 8.107 0.499 0.013 9.827
dINL −0.020 0.010 6.545 −0.161 0.008 6.184
EZ −0.130 0.006 2.891 −0.131 0.006 2.870

pRPE 0.433 0.003 2.058 0.444 0.003 2.150
BM 0.372 0.003 1.786 0.343 0.003 1.937

SW vs. graders ILM 0.102 0.003 2.241 0.136 0.006 4.777
dINL −0.378 0.010 6.720 −0.451 0.008 6.146
EZ −0.578 0.007 3.327 −0.599 0.007 3.333

pRPE 0.369 0.003 1.938 0.365 0.003 1.948
BM 0.226 0.003 1.721 0.278 0.003 2.591

Hybrid model vs. graders ILM 0.135 0.003 1.663 0.146 0.003 2.260
dINL 0.030 0.009 6.168 −0.096 0.008 5.763
EZ −0.143 0.006 2.629 −0.152 0.006 2.631

pRPE 0.451 0.003 1.881 0.469 0.003 1.954
BM 0.392 0.002 1.611 0.374 0.002 1.748

Grader 2 vs. grader 1 ILM −0.021 0.002 1.106 −0.019 0.002 1.300
dINL −0.427 0.010 6.266 −0.379 0.008 5.746
EZ 0.213 0.006 2.861 0.201 0.006 2.896

pRPE −0.769 0.004 2.476 −0.747 0.003 2.491
BM −0.408 0.003 1.992 −0.389 0.003 2.052

the scanning scale (μm/pixel) along the A-scan axis.
Average OS length was obtained by taking the mean
of all OS lengths across the EZ line. Figure 8 plots
average OS length measured by U-Net (Fig. 8b), the
SW model (Fig. 8c), and the hybrid model (Fig. 8d)
versus the average OS length measured by two graders
for the full B-scan width. As a comparison, average
OS length by grader 2 was also plotted against that of
grader 1 in Figure 8a. The equation in each subplot was
the linear fitting result (red solid line) of the data.

The results showed that the OS length measured
by all models was highly correlated with the gold
standard (P < 0.0001). In addition, it is evident that
a few outliers by U-Net in Figure 8b were corrected
in Figure 8d by the hybrid model, resulting in improved
correlation between the model measurements and the
gold standard. The R2 improved from 0.70 for U-
Net only to 0.77 for the hybrid model. The Bland–
Altman analysis (text in each subplot of Fig. 8) revealed
comparable CoR values between all measurements
compared, suggesting that the difference between the
model-measured OS length and the gold standard was
equivalent to that between the measurements of two
graders.

The average OS length estimated by the CNN
models was about 1.88 μm longer than that by the

graders, which is consistent with the findings in Table 3,
in which the model-generated EZ line was slightly
above that of the graders while the model-generated
pRPE line was slightly below that of the graders,
generating about a 0.5-pixel difference in OS length
estimation between the models and the human graders.
Given an A-scan resolution of 3.87 μm/pixel, a half-
pixel difference resulted in a 1.9-μm difference in OS
length.

OS Area Measurements
OS area was measured by first counting the total

number of pixels within the area of the photorecep-
tor outer segment (between EZ and pRPE), and then
OS area in square millimeters was obtained by multi-
plying the total number of pixels by the single pixel
area defined as the product of the B-scan x-axis scale
and y-axis (A-scan) scale in mm/pixel. Figure 9 plots
OS area measured by U-Net (Fig. 9b), the SW model
(Fig. 9c), and the hybrid model (Fig. 9d) versus that
measured by two graders for the full B-scan width. As
a comparison, OS area measured by individual graders
is also compared in Figure 9a. The equation in each
subplot was the linear fitting result (red solid line)
of the data. The results showed that OS area deter-
mined by the CNN models was in close agreement
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Figure 7. Comparison of EZ width measurements by the CNN models to human graders. (a) Comparison of two human graders. (b) EZ
width measured by the U-Net model versus the average of two human graders. (c) EZ width measured by the SWmodel versus the human
graders. (d) EZ width measured by the hybrid model (U-Net + SW) versus the human graders. The equation in each plot is the linear fitting
result (red solid line) to the data. Dotted line has a slope of 1. Bland–Altman analysis results are also shown in text in each plot.

with the average OS area of two graders (r > 0.97, P
< 0.0001). The slope of linear fitting for U-Net and
the hybrid model was close to 1. Bland–Altman analy-
sis revealed minimal difference of OS area measure-
ments between the U-Net model and the human
graders.

Total Retinal Thickness Measurements
The same method used to obtain OS length

measurement was used to determine total retinal thick-
ness. The number of pixels between ILMandBM, both
inclusive, was counted and then converted to millime-
ters using the scanning scale along the A-scan axis.
Average total retinal thickness was obtained by taking
the mean of ILM-BM thickness at all A-scans across
the B-scan width. Figure 10 compares the retinal thick-

nesses measured by U-Net (Fig. 10b), the SW model
(Fig. 10c), and the hybrid model (Fig. 10d) to that
by the average of two graders. The retinal thickness
determined by two graders is also compared in Figure
10a. It is clear that the average total retinal thickness
measured by the models was highly correlated with
the graders (P < 0.0001). The results of both corre-
lation and Bland–Altman analyses indicated that the
hybridmodel further improved the agreement of retinal
thickness measurements between the deep machine
learning-based method and the gold standard. It is
worth noting that the largest error of total retinal
thickness estimation by U-Net for the test B-scans, as
indicated by the black arrow in Figure 10b, was the case
reported in Figure 4f (left), which was corrected by the
hybrid model.
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Figure 8. Comparison of average photoreceptor OS length measurements by the deep machine learning models to human graders. (a)
Comparison of two human graders. (b) OS length measured by the U-Net model versus the average of two human graders. (c) OS length
measured by the SWmodel versus the human graders. (d) OS lengthmeasured by the hybridmodel versus the human graders. The equation
in each plot is the linear fitting result (red solid line) to the data. Dotted line has a slope of 1. Bland–Altman analysis results are also shown in
text in each plot. The black arrow in (b) points to the data point corresponding to the case in Figure 4d, where U-Net misclassified a part of
the EZ, but this segmentation error was corrected by the hybrid model.

Discussion

In this study, we proposed a hybrid deep machine
learning model for automatic segmentation of retinal
layers from OCT B-scan images in RP to test the
hypothesis that a model that combines CNNs with
different architectures trained on the same data set
could improve the performance of retinal layer segmen-
tation. Our hybrid model was composed of two
CNNs for a two-step process of segmentation. The
first step involved a U-Net for initial fast seman-
tic segmentation, and the second step employed a
sliding-window CNN model for the refinement of the
segmentation through correcting segmentation errors

of U-Net. Our approach of employing a second
CNN model to address U-Net segmentation errors is
different from those based on a graph-search image-
processing algorithm for postprocessing. Our results
demonstrated that the hybrid model improved the
accuracies of layer segmentation over individual CNN
models, which in turn improved the repeatability of
delineating layer boundary lines when compared to
the gold-standard human graders. In addition, EZ
width, OS length, and OS area measured by the models
were highly correlated with those measured by the
human graders, and the hybridmodel further improved
the performance of measuring retinal layer thickness
with the correction of segmentation errors of U-Net.
Our finding suggest that the hybrid model is a more
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Figure 9. Comparison of OS area measurements by the CNNmodels to human graders. (a) Comparison of two human graders. (b) OS area
measured by the U-Net model versus the average of two human graders. (c) OS area measured by the SWmodel versus the human graders.
(d) OS area measured by the hybrid model versus the human graders. The equation in each plot is the linear fitting result (red solid line) to
the data. Dotted line has a slope of 1. Bland–Altman analysis results are also shown in text in each plot.

effective approach for automatic segmentation of SD-
OCT scan images.

Among the two component CNNmodels employed
by the hybrid model, U-Net is more efficient than the
SW model. As a semantic image segmentation CNN
model, U-Net labels every pixel in an input image with
a corresponding class of what is represented, while the
SW model only classifies the center pixel of the input.
According to Table 1, the U-Net employed in this
study is more than two log units faster than the SW
model to segment a B-scan image. The efficiency of
U-Net really stands out when it is used to segment
high-resolution, high-density volume scans. For
instance, based on the classification time in Table 1, it
will take about 47 seconds for U-Net to segment a 121-
line, high-resolution (B-scan width 1536 pixels) volume
scan. If the SWmodel is used, it will take about 3 hours

to segment such a volume scan. Furthermore, U-Net
requires minimal or no postprocessing, while the SW
model needs a complex postprocessing algorithm18,21

to obtain the segmentation of layer boundary lines.
Different postprocessing methods may involve differ-
ent predefined rules, which can affect the results of
boundary line segmentation.

Even though the SW model is less efficient and
requires postprocessing to classify a full B-scan image,
it has a few advantages over the U-Net. From the
methods to generate training image patches for these
two models in this study, the SW model is trained
with a more balanced data set than the U-Net, that is,
all classes in the training data set for the SW model
had equal representation, except for the EZ class,
which had a smaller number of training patches due
to varied EZ width in B-scan images from patients
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Figure 10. Comparison of the average retinal (ILM-BM) thickness across the B-scanwidthmeasured by the CNNmodels to human graders.
(a) Comparison of two human graders. (b) Retinal thickness measured by the U-Net model versus the average of two human graders. (c)
Retinal thickness measured by the SW model versus the human graders. (d) Retinal thickness measured by the hybrid model versus the
human graders. The equation in each plot is the linear fitting result (red solid line) to the data. Dotted line has a slope of 1. Bland–Altman
analysis results are also shown in text in each plot.

with RP. In comparison, due to the training patch
size chosen in this study for the U-Net model, a large
number of pixels in a training image patch were in
the class of background, and naturally outer retinal
layers (e.g., photoreceptor outer segment) had a much
smaller number of pixels to represent them than the
inner retina layer (ILM-dINL). An imbalanced train-
ing data set may result in poorer predictive accuracy
for the minority classes,37 which may help explain
in part the lower layer segmentation accuracies for
OS and RPE shown in Table 2. It may also explain
slightly lower accuracy to classify theOS area byU-Net
than by the SW model (85.9% vs. 88.5%, respectively),
since the imbalance of OS class in U-Net was more
severe than the EZ class in the SW model. The much
higher number of pixels in the class of background for
U-Net training may also be responsible for its higher

training/validation accuracy than the SWmodel shown
in Figure 3.

The results of Figure 5 also demonstrated that the
SW model was more consistent than U-Net for classi-
fying the ILM boundary line. U-Net showed more
cases of a larger deviation of pixel position from
the gold standard (Fig. 5b) than the SW model (Fig.
5c). Further examination revealed that these devia-
tions were from misclassification of a small number of
individual patches of 256 × 32 pixels. A few examples
are shown in Figure 4, including a case in Figure 4a
where a small dent was present at the top of ILM
(as indicated by a dashed white circle) due to U-Net
misclassification of the top of the patch at the location;
a case in Figure 4b showed the U-Net classification
error on the left side of the noisy B-scan image; and
a case in Figure 4f indicated that U-Net segmentation
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errors occurred in the area with much thicker inner
retina. As detailed in the Methods, U-Net in this study
was constructed to process image patches of 256 ×
32 pixels. This design allows a large number of train-
ing patches to be generated from a limited number of
B-scans with the intention that these training patches
could be building blocks for other B-scans beyond the
training B-scan images. However, if an individual patch
extracted from a test B-scan image contains a layer
structure quite different from those in the training data
set, U-Net may misclassify that patch. For instance,
the classification error in Figure 4a could be due to
central edema that is too large to be covered by the
training data set, resulting in a downward shift of ILM
classification in this case. In comparison, the SWmodel
correctly classified ILM for this B-scan image (Fig.
4a, right) and most other ILM classification errors, as
shown in the right column of Figure 4.

It has been suggested that CNNs with differ-
ent architectures trained on the same data set can
have different outputs for some parts of an input
image, and integrating the output of these models may
improve the performance of image segmentation.32 If
the SW model can correctly classify the parts of the
image where U-Net fails, then a hybrid model that
combines theU-Net and the SWmodel should improve
the performance of retinal layer segmentation. The
constructed hybrid model in this study consists of two
parts. First, U-Net was employed for fast semantic
segmentation to obtain retinal layer boundary lines.
The only criterion for a failed U-Net classification is
the discontinuation of a boundary line. Given the high
accuracy of U-Net to classify retinal layers, it is reason-
able to assume that most of a boundary line is correctly
segmented and continuous. Then the SW model was
used to reclassify the pixels in a region surround-
ing the part of discontinuation to attempt to repair
the line breaks or gaps. Any successful repairs would
improve the performance by the combined model. As
we observed in this study, the hybrid model did indeed
outperform U-Net or the SW model for segmenting
retinal layers, including the improved accuracies of
segmenting retinal layers (Table 2); less deviation of the
layer boundary lines from the gold standard (Table 3),
especially for ILM (Fig. 5d); and improved correlation
of model-determined OS length (Fig. 8d) and retinal
thickness (Fig. 9d) with that of the human graders.

The CNN models implemented in this study have
their limitations. For instance, the EZ width measured
by the models appears shorter than that by the human
graders, especially when EZ extended farther away
from the center of B-scans, as indicated by the linear
fit in Figure 7. A possible explanation for this bias
of EZ width could be the imbalance in the training

data set for the class associated with EZ, either the
OS area for U-Net or the EZ line for the SW model,
resulting in not having enough instances in the training
data set to represent the varying structural relationship
between neighboring layers surrounding the EZ line in
RP. Because the EZ width in the B-scan images of the
training data set varied from less than 0.5 mm to more
than 9mm, the farther away from the center of the scan
(fovea), the smaller the number of training instances for
the EZ class. Although the training data set included
40 B-scans from normal observers, it is likely that there
are cases where the layer structures surrounding EZ in
patients with RP are different from normal observers.
Adding more training data from patients with the EZ
covering the full-scan width may improve the models’
performance of measuring EZ width, as well as the
models’ accuracy to segment the OS area.

Another contributing factor for the shorter EZ
width estimation by the CNN models when compared
to the graders is the data type of the boundary lines.
Themanual correction of Spectralis automatic segmen-
tation generates the boundary lines in real data type
(up to one decimal point), while the boundary lines
generated by U-Net are pixelized (i.e., integer data
type). When the training data set was created, the EZ
transition zone with OS length less than 0.5 pixels
was rounded to pRPE, which effectively shortened the
manually corrected EZ width. Although the SWmodel
can generate boundary lines in real data type by averag-
ing row pixels along A-scans,18 the training data set for
the SW model was also pixelized. The comparison of
EZ width estimated by U-Net to that by the graders
where EZ transition zone tails were rounded revealed
a mean EZ width shortened by 0.036 mm, which was
about one-third of the results shown in Figure 7b
(shortened by 0.1 mm). Hence, the other two-thirds of
EZ shortening could be due to the imbalanced training
data set for the EZ line and OS area. In the future, in
addition to includingmore training data for EZ, wewill
also consider incorporating the methods such as the
one proposed by He et al.38 for nonpixelized segmen-
tation to obtain a smooth and continuous retinal
boundary.

On the other hand, we observed that there were
more structural changes occurring in the area near the
EZ transition zone when EZ was small, which may
be associated with the variability of measuring small
EZ shown in Figure 7. Additional data from B-scan
images with small EZ should also be added to the train-
ing data set to further improve the reliability of the
models to measure EZ width and OS length for more
advanced disease conditions of RP. Furthermore, the
hybrid model will benefit from improved U-Net and
the SWmodel. Given that theremight bemultiple small
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localized EZ areas present in B-scan images, the current
hybrid model only rechecks the isolated EZ area using
the SW model but does not deal with the discontinua-
tion of the EZ line. In the future, the hybrid model can
be refined by expanding the search of the SW model
to cover a larger area surrounding local EZs to assess
any potential misclassification by the U-Net model.
Accurate measurement of EZ width is important since
it determines the accuracy of EZ area estimation for
evaluating disease progression.

In addition to EZ width or area, photoreceptor OS
length is also associated with the disease progression in
RP39 and could potentially be a biomarker for evalu-
ating RP progression. However, one of the limitations
to retinal layer thickness measurement is the OCT A-
scan axial resolution, which determines the number of
pixels representing a layer thickness. For total retinal
layer (ILM-BM), the mean thickness in the testing
group of this study was 260 μm, corresponding to
67 pixels with an A-scan resolution of 3.87 μm/pixel.
One pixel change in total thickness measurement
represents 1.5% change of thickness. In compari-
son, the mean OS length in the testing group was
23 μm, only corresponding to about 6 pixels, and
a pixel change in OS measurement would represent
a 17% change of OS length. Thus, there are not
enough pixels or resolution to cover the varying range
of OS length across the spectrum of the disease.
Furthermore, lower accuracy to segment the OS layer
or increased classification errors for the EZ line
when compared to that for ILM and BM (Tables
2 and 3) exacerbate the variability of OS length
measurements.

Oneway tomitigate the impact of A-scan resolution
is to measure OS area instead of average OS length.
As demonstrated in Figure 9, the OS area measured by
the CNN models had a higher correlation and a closer
agreement with the graders than the average OS length.
This result also suggests that OS area was not affected
by the shortening of the EZ width measurement by the
CNN models. The comparison of the manual segmen-
tation with and without rounding EZ transition tails
revealed a difference of 0.1% for the OS area, much
smaller than the average OS length difference of 2.4%,
suggesting that the rounding of EZ transition tails
had a minimal impact on the OS area measurement.
The effect of shortened EZ width estimation by the
CNN models due to the imbalanced training data set
for the EZ line on the OS area measurement was
further compensated by the slight overestimation of
OS length by the CNN models, resulting in closer
agreement between the model measurements and the
human graders and minimizing the impact of A-scan
resolution.

Apart fromOS length and area, OS volume can also
be determined from a volume scan. The advantage of
OS volume versus length or area is that the volume
measurement can provide amuch larger dynamic range
to represent disease progression. With the help of
well-trained deep machine learning models, accurate
and efficient automatic segmentation of high-density,
high-resolution volume scans in RP could become
reality. Our preliminary results suggested that the CNN
models trained in this studywith line B-scan images can
be used for segmenting volume scans for the measure-
ments of both EZ area and OS volume.40 We showed
that both EZ area and OS volume determined by the
U-Net model implemented in this study had compara-
ble high correlation with the gold standard (r = 0.98
or higher). While there was a bias of EZ area estima-
tion by U-Net when compared to the gold standard
(mean ± SE difference of −1.55 ± 0.25 mm2 and CoR
of 2.98 mm2), U-Net had a much closer agreement
with the gold standard formeasuringOS volume (mean
± SE difference of 0.0004 ± 0.004 mm3 and CoR of
0.05 mm3). It is apparent that underestimating EZ
width has much less effect on OS volume than on EZ
area, suggesting that the tails of EZ at both ends had a
minimum contribution to OS volume.

There are limitations of this study. For instance,
the deep machine learning models were trained and
tested on SD-OCT B-scan images with EZ transition
zone in the macula obtained from a single instru-
ment. Further work needs to be done to assess if the
trained CNNs in this study can be applied to segment
B-scan images obtained from other commercial OCT
devices or if additional training is needed. Some of
the strategies adopted in our method may render it
easier for the application of our trained CNN models
to segment B-scans obtained with other instruments.
For example, since the small patch size (256 × 32
pixels) is used as the input of U-Net, the model can
handle B-scans with various sizes. Another advantage
of our model is that no preprocessing is applied to
gray-scale scan images. A main consideration would
be the A-scan axial resolution difference for different
instruments since it determines the thickness relation-
ship between neighboring layers. If number of pixels
representing the thickness of various layers in the B-
scan images obtained with other instruments is signif-
icantly different from that of Spectralis, especially for
the layers represented by smaller number of pixels
(such as OS and RPE), U-Net trained in this study
could potentially make more segmentation errors. On
the other hand, the axial resolution differencemay have
less impact on the pixel classification of the SW model
since the SW model only classifies a patch of 33 × 33
pixels. Figure 11 shows a couple examples of 9-mm
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Figure 11. Examples of applying the CNNmodels trained in this study on themidline B-scan images obtained with other instruments. Top
row: 9-mm B-scan image obtained with Zeiss Cirrus HD-OCT 5000 (HD 1 Line scan protocol) and its segmentation by U-Net and the hybrid
model. Bottom row: 9-mm B-scan image obtained with Zeiss Plex Elite 9000 (HD Spotlight 1 scan protocol) from the same participant and its
segmentation by U-Net and the hybrid model. The B-scan images were exported directly to JPEG files and scaled to 768× 512 pixels before
classification by the CNNmodels.

midline B-scan images obtained with two other OCT
scan instruments (Zeiss Cirrus HD-OCT 5000 on the
top row and Zeiss Plex Elite 9000 on the bottom; Zeiss,
Dublin, CA, USA) as well as their segmentations by
U-Net and the hybrid model trained in this study. The
B-scan images were scaled to 758 × 512 pixels so that
they appeared comparable visually to the high-speed
B-scans of Spectralis used in this study. The results
of Figure 11 suggest that our trained model may work
well if B-scan images obtained with other instruments
are proportionally scaled to the range of Spectralis, and
the hybrid model can correct most of the errors by U-
Net. However, some classification errors, such as those
related to INL, to lower image quality or to increased
scan noise, aswell as to the scan areas extending beyond
central 9 mm, remain and may not be corrected by the
hybrid model, which could prompt retraining of both
U-Net and the SW model with new data from other
instruments using the method of transfer learning.

Other limitations include that the size of image
patches processed by the U-Net model was 256 ×
32. While the selection of this window size was
based on our preliminary work on various window
sizes (e.g., 256 × 32, 256 × 64, and 256 × 128),
detailed analyses could be conducted to investigate the
effects of the varied window size and other model
parameters on the performance of semantic segmen-
tation. Furthermore, while the training data set in
this study included some B-scan images with cystoid
macular edema (CME) secondary to RP, it is appar-

ent from Figures 4a and 4e that more images with
CME and subretinal fluid could be added in the
future for U-Net training to improve the performance
of the model. Last but not least, the labeling by
human graders is often used as the gold standard
(or ground truth) in deep machine learning. However,
there are variabilities among different graders, and
their manual segmentation may not be 100% accurate.
To mitigate this limitation, the average results of two
graders were used in this study for the testing data
set.

In summary, the results of this study demonstrated
the capability of a hybrid deep machine learning
model for efficient and effective automatic segmen-
tation of retinal layers from OCT B-scan images
in RP. With further improvement of the individual
CNN models, we anticipate that the hybrid model can
provide a useful tool for obtaining EZ metrics (width
and area) and OS metrics (length, areas, volume)
from OCT volume scans in RP. These metrics can
help facilitate future studies on the structure and
function relationship in RP for identifying potent
biomarkers to detect disease progression. With poten-
tial new and emerging treatment trials for inherited
retinal diseases, especially RP, on the horizon,41 these
biomarkers will be important for assessing treatment
outcomes. Furthermore, the methods employed in this
study may be adopted for retinal layer segmenta-
tion of OCT scan images obtained from other retinal
diseases.
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