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Introduction
Femoral head separation (FHS) is a skeletal problem that 
affects the proximal femur in broiler chickens and renders 
them lame, compromising their walking ability and well-
being.1,2 The separation of growth plate (GP) from its articular 
cartilage (AC) can lead to femoral head necrosis (FHN).3–6 
A weak adhesion between GP and AC, likely, causes their 
separation in certain population of rapidly growing poultry.4 
Bacterial infection has also been implicated in the pathogen-
esis of FHN.7,8 The diagnosis of FHN is not possible until the 
late stages of the disease when the external symptoms such as 
poor posture and walking abnormality are evident. The current 
methods of diagnosis such as gait assessment are inadequate 
and subjective, whereas the assessment at necropsy is invasive 
and terminal.9,10 Hence, for the genetic selection of breeding 
population, there is a need for minimally invasive identifica-
tion of birds with subclinical problems of FHN. Biomarkers 
such as blood metabolites, proteins, and enzymes have been 
used for the diagnosis of health problems, disease progres-
sion, and genetic selections. Although proteomic methods 
are widely used to explore for biomarkers associated with 
femoral head problems in human beings,11–13 they are seldom 

utilized to determine FHN-affected chickens.3,14,15 Hence, 
the objective of this study is to identify potential biomark-
ers of the disease by comparing the plasma protein profiles 
of healthy and FHN-affected chickens. Here, we employed 
both direct matrix-assisted laser desorption ionization time of 
flight mass spectrometry (MALDI-TOF-MS; top–down pro-
teomics) and liquid chromatography and tandem mass spec-
trometry (LC-MS/MS; bottom–up proteomics) to elucidate 
protein differences to identify possible biomarkers of FHN in 
chickens. The MALDI analysis was used to compare the low 
molecular weight (,10 kDa) proteins that could be masked in 
the total proteome comparison using LC-MS/MS. The results 
of the studies are presented in this report.

Methods
Animals and blood collection. The animal procedures 

were approved and carried out in accordance with the Uni-
versity of Arkansas, Institutional Animal Care and Use Com-
mittee (IACUC) guidelines. Cobb broiler chickens intended 
for genetic selection were grown in farms using Standard 
Industry Practice. A random group of five-week-old chickens, 
were bled through wing vein and the blood was collected in 
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EDTA-coated (BD Vacutainer®) tubes. The birds were killed 
subsequently to verify the separation of GP from AC in their 
proximal femurs.15 The necropsy information was used to clas-
sify the chickens into two groups based on the propensity of the 
femur to separate or remain intact. When the GP showed severe 
damage and/or separation, the samples were classified as FHN. 
The samples from chickens with intact femur were classified as 
healthy (HLTH). Plasma samples obtained by centrifugation of 
blood were pooled in each group mixing in equal volumes from 
three birds/sample and stored at −20 °C until further analyses. 
The workflow of experiments is given in Figure 1.

clinical chemistry. Pooled samples from HLTH and 
FHN were analyzed for their cholesterol (CH), high-density 
lipoprotein (HDL), and triglyceride (TG) concentration using 
an express plus automated clinical chemistry analyzer (Ciba-
Corning Diagnostics Corp.). Low-density lipoprotein (LDL) 
concentrations were calculated using the following formula: 
LDL = TC −HDL − TG/5.0 (mg/dL).16

Plasma protein analysis. The pooled plasma samples 
from HLTH and FHN were depleted of their high-abun-
dance proteins by acetonitrile (ACN) precipitation. ACN 
containing 0.1% formic acid (FA) was added to the individual 
tubes (3 HLTH and 3 FHN) to a final concentration of 60% 
ACN, sonicated for 10 minutes (Branson 3200), and kept at 
−20 °C for 24 hours.17,18 Supernatants containing the high-
abundance protein-depleted (HAPD) fractions were dried 
using a Centri Vap vacuum concentrator (Labconco) and sus-
pended in 50 mM ammonium bicarbonate (AMBIC) solution 
with pH 7.8 for subsequent analyses.

Low molecular weight (1–10 kda) protein analysis 
by direct MALdI. One hundred microliters of HLTH and 
FHN samples (n = 9 each) from previous step were dried, 
reconstituted in the same volume of 0.1% FA, and desalted 
using reverse-phase (RP) C18 tips (NT1C18; Glygen) as per 
the manufacturer’s protocol with some minor modifications. 
The binding and washing steps were repeated five times before 
final elution. One microliter of each sample was spotted on a 
MALDI 384 target plate and dried, and the spots were overlaid 

with an equal volume of sinapinic acid (10 mg/mL in 0.1% 
FA in 50% of ACN) and analyzed using Ultraflex II MALDI-
TOF/TOF instrument (Bruker Daltonics) in positive ion linear 
mode. The instrument was calibrated using a 5–17.5 kDa pro-
tein standard (Bruker Daltonics), and the MALDI spectra were 
collected in a range between 1 and 10 kDa in a fully automated 
mode using Bruker Flex control software with a constant laser 
power and 800 laser shots per spot.

clinProtools analysis. The MALDI-TOF mass spectra 
from HLTH and FHN samples were compared using Clin-
ProTools software™ (CPT, version 2.2, Bruker Daltonics).19 
A quick classifier algorithm was used to automatically pick 
and integrate peaks with a signal to noise ratio $10, and a 
threshold intensity of at least 5%, relative to the largest peak.20 
Anderson–Darling test was used to establish the data distri-
bution, and the statistical differences and significance were 
calculated using t- and Wilcoxon tests. Low molecular weight 
protein peaks with P # 0.05 were considered significant.

HPLc fractionation of differentially expressed low 
molecular weight proteins. To purify the low molecular 
weight proteins, shown as differentially expressed by CPT 
in the previous step, equal volumes of HAPD supernatant 
from HLTH and FHN samples were pooled, dried, and dis-
solved in 0.1% FA. HPLC purification was performed using 
a Supelco C18 column (15 cm × 4.6 mm, 5 µm particle size, 
300 Å pore size; Sigma-Aldrich) attached to a Hewlett 1100 
HPLC system. The HPLC was coupled online to a quadru-
pole ion trap Electrospray ionization (ESI) mass spectrom-
eter (ESI-MS; Bruker Esquire 2000, Bruker) operated in a 
positive ion mode with a dry gas temperature of 300 °C, a 
flow rate of 12 mL/minute, and a nebulizing N2 pressure of 
2.1 × 105 Pa (30 psi). HPLC was operated at a solvent flow rate 
of 0.7 mL/minute using 0%–100% gradient of 0.1% FA (sol-
vent A) and ACN (solvent B) over a 150-minute period simi-
lar to a method described earlier.3 Multiple charged ion ESI 
mass spectra were used to identify the appropriate fractions of 
interest prior to their collection. The mass spectrometer was 
optimized at m/z 1000 with low skimmer voltage to avoid 
ion fragmentation and charge stripping. The HPLC fractions 
were collected and verified by MALDI-TOF-MS. Relevant 
fractions collected from several runs were pooled, dried, and 
reconstituted in 50 mM AMBIC before proceeding to the 
identification step.

MALdI peptide mass fingerprinting. The isolated low 
molecular weight proteins in 50 mM AMBIC were reduced 
with 10 mM dithiothreitol (DTT) for one hour at 60 °C, 
alkylated with 40 mM iodoacetamide (IAA) (MP Biomedi-
cals) for one hour in the dark at room temperature. Excess 
IAA in the samples were neutralized with DTT, the samples 
were digested with trypsin (Promega) at 37 °C for 24 hours 
and desalted using C18 tips (NT1C18; Glygen). One 
microliter of the eluted peptide was mixed with an equal vol-
ume of α-cyano-4-hydroxycinnamic acid matrix (10 mg/mL 
in 0.1% FA in 50% of ACN), and spotted on a MALDI 384 
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Figure 1. A workflow chart.
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target plate for peptide mass fingerprinting (PMF) analysis. 
The instrument was calibrated using Bruker peptide calibra-
tion standard spotted adjacently. Bruker Biotools 3.1 was 
used to combine PMF and LIFT-TOF/TOF (MS/MS) data 
and searched with MASCOT 2.1 search engine (Matrix 
Science). The peptides were identified using the following 
parameters: single miscleavage, fixed carbamidomethyla-
tion of cysteine, variable methionine oxidation, parent ion 
mass tolerance, and fragment ion mass tolerance of 0.6 Da 
in the NCBI Gallus gallus protein database. Peptides with 
fragmentation ion scores of 10 or higher were considered for 
protein identification.

In-solution digestion for Lc-Ms/Ms. The protein 
concentration of HAPD samples were measured by BCA 
protein assay method (Pierce) and adjusted to a concentration 
of 1 µg/µL with 50 mM AMBIC, pH 7.8 (n = 3 samples/
group). The samples were reduced, alkylated as described ear-
lier, and digested with 2 µg of trypsin (Promega) for 48 hours 
at 37 °C.

Lc-Ms/Ms. The trypsin-digested samples were sub-
jected to LC-MS/MS using an Agilent 1200 series microflow 
HPLC coupled to a Bruker Amazon-SL quadrupole ion trap 
ESI mass spectrometer, capable of performing data-dependent 
acquisition. ESI mass spectrometer was operated in a positive 
ion mode with a dry gas temperature of 150 °C, with a flow 
rate of 7 mL/minute, and a nebulizing N2 pressure of ∼105 Pa 
(12 psi). LC-MS/MS data were acquired in the Auto MS(n) 
mode with optimized trapping condition for the ions at m/z 
1000. MS scans were performed in the enhanced scanning 
mode (8100 m/z/second), while the collision-induced disso-
ciation or the MS/MS fragmentation scans were performed 
automatically for top ten precursor ions for one minute in the 
UltraScan mode (32,500 m/z/second). Tryptic peptides were 
separated by reverse-phase high-performance liquid chro-
matography (RP-HPLC) using a Zorbax SB C18 column, 
(150 × 0.3 mm, 3.5 µm particle size, 300 Å pore size, Agilent 
Technologies), with a solvent flow rate of 6 µL/minute, and a 
gradient of 0%–40% consisting of 0.1% FA (solvent A) and 
ACN (solvent B) over a time period of 2000 minutes.

data analysis. The mzXML files exported from Data 
analysis 4.0 (Bruker) were submitted to global proteome 
machine (GPM; http://www.thegpm.org), with the following 
parameters for X!Tandem21: Gallus gallus organism, fragment 
mass error of 0.6 Da, fixed carbamidomethylation, variable 
methionine oxidation, trypsin as enzyme, semistyle cleavage, 
and ion trap as the predefined method. Proteins with at least 
one unique peptide and upto an acceptable e-value and a false 
positive rate ,5%, as displayed in the corresponding results 
page, were considered true for protein identifications. The 
results were downloaded as *.xml files for Skyline software 
and excel files for qualitative comparison.

Qualitative analysis. The common proteins present in 
all three biological replicates of the HLTH and FHN samples 
were selected using an online excel comparison program 

(www.xlcomparator.net). The list of proteins were mapped 
to their ensemble gene ID using Biomart22 and analyzed for 
relative enrichment, clustering, and GO annotations using 
DAVID (www.david.abcc.ncifcrf.gov)23 with a default EASE 
score of 0.1. The proteins unique to FHN or HLTH were 
considered relevant to identify biomarkers for the disease-
affected group.

Label-free quantitation. The spectral files (*.mzXML) 
and the corresponding protein results from GPM, *.xml files, 
were imported into the Skyline software (http://proteome.
gs.washington.edu/software/skyline), and label-free quantita-
tion was performed using an external tool “MSstats”.24 The 
software uses the signal intensities (peak areas) corresponding 
to the precursor ions of the peptides identified by MS/MS 
(MS1 filtering).25 Group comparison function was used for 
the label-free quantitation and to generate the volcano plot 
that shows the differentially expressed proteins. The groups 
HLTH and FHN were analyzed in MSstats as healthy (H) 
and diseased (D) with three biological replicates per group, 
respectively. As indicated in the volcano plot, the candidate 
proteins are distinguished by their significant differences in 
the intensities (x-axis, log scale) and P-values , 0.05 (y-axis, 
log scale).

statistics. Body weight (BW) and serum chemistry data 
were analyzed by GLM procedure using SAS software with 
pooled standard error of mean and significance differenti-
ated by Duncan’s multiple range tests.26 Means were conside-
red significant at P # 0.05. The sample size for the methods 
is given in Table 1. The direct MALDI-TOF-MS profiles 
were analyzed using ClinProTools software™, whereas the 
LC-MS/MS data were analyzed with the Skyline software as 
described earlier.

results
bw and clinical chemistry. The broiler chickens in the 

FHN group were significantly heavier than HLTH birds 
(Fig. 2). The plasma CH and the LDL concentrations of FHN 
birds were lower than those of HLTH chickens, but the HDL 
and TG concentrations were similar (Table 2).

direct MALdI analysis. Of .70 peaks expressed dif-
ferentially (Supplementary Table 1), a peak corresponding to 

table 1. sample size (n) and statistical methods of analysis.

mEtHodS SoFtwaRE tYPE HltH FHN

Body weight sas (statistical 
analysis software)

individual chicken 289 89

Clinical 
chemistry

sas (statistical 
analysis software)

Pooled plasma from 
three individual birds

12 12

maLDi-toF ClinProtools Pooled as above 
and high-abundance 
proteins depleted 

9 9

LC-ms/ms skyline-msstats Pooled as above 
and high-abundance 
proteins depleted 

3 3

Note: hLth and Fhn indicate healthy and Fhn-affected birds, respectively.
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m/z 3671 was isolated and identified as a fragment of α2-HS-
glycoprotein (AHSG) or fetuin (Fig. 3). Similarly, another 
low molecular weight protein corresponding to m/z 4707 
(Fig. 4) was previously identified as fibrinogen beta chain 
(FIBB) peptide.27

Lc-Ms/Ms analysis. LC-MS/MS data and the 
results were deposited in the ProteomeXchange Consor-
tium via PRIDE partner repository with the dataset iden-
tifiers PXD003292 and 10.6019/PXD003292. The number 
of common and unique proteins, identified in the HLTH 
and FHN samples, are represented in Figure 5. Briefly, 
the number of proteins identified in the three samples of 
HLTH groups were 322, 319, and 374, respectively. In FHN 
samples, the number of proteins identified were 380, 329, 
and 356, respectively. The number of common proteins in the 
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Figure 2. BW of hLth and Fhn-affected chickens. hLth and Fhn 
indicate healthy and Fhn-affected birds, respectively.
Note: *indicates significant differences at P , 0.05.

table 2. Plasma lipid clinical chemistry of hLth and Fhn samples 
(n = 12).

vaRiaBlES HltH FHN

Cholesterol (mg/dL) 132.2 ± 6.6a 110.5 ± 7.8b

high Density lipoprotein (mg/dL) 38.6 ± 2.2a 38.9 ± 2.5a

triglycerides (mg/dL) 24.8 ± 2.0a 25.3 ± 5.1a

Low density lipoprotein (mg/dL) 88.6 ± 5.3a 66.6 ± 6.1b

Notes: Values are presented as mean ± sem. Dissimilar superscripts indicate 
significant differences between the groups. HLTH and FHN indicate healthy 
and Fhn-affected birds, respectively.
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Figure 3. (a) ClinProtools comparison of m/z 3671 spectral peaks from hLth (red), Fhn (green) with the average intensities shown in gray. (B) Peptide 
mass fingerprint analysis of the 3671 Da peptide by Flex analysis. (C) tandem mass spectrometry analysis (ms/ms) of peptide m/z 1794 Da showing the 
sequence “VPhPVgFVPPPPLCPgk” corresponding to fetuin protein. hLth and Fhn indicate healthy and Fhn-affected birds, respectively.
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three samples of HTLH and FHN groups were 79 and 76, 
respectively. Qualitative comparison of these common pro-
teins showed only 23 proteins present in the HTLH group 
and 20 proteins present in the FHN group, of which only 
three were unique to the HLTH group and five to the FHN 
group (Table 3).

Gene enrichment analysis. The GO enrichment analyses 
of the HLTH and FHN groups are provided in Supplemen-

tary Tables 2 and 3. A cluster enriched with fibronectin was 
present in the HLTH samples, while a cluster with negative 
regulation of apoptosis was present in the FHN samples.

skyline quantitative proteomic analysis. A volcano 
plot generated using Skyline and the list of proteins differen-
tially expressed is given in Figure 6 and Table 4, respectively. 
Gallinacin-9 (GAL9), two fragments of hemoglobin (HGB), 
and apolipoprotein A-I (APO-A1) were elevated, while the 
α1-acid glycoprotein (AGP), a serine peptidase inhibitor, 
Kazal type (SPINK7), and albumin (ALB) levels were reduced 
in the FHN group.

discussion
The objective of this study is to find the differences in plasma 
proteins of FHN-prone chickens to identify molecular mark-
ers that would distinguish the affected birds from the healthy 
ones. Previously, we explored biomarkers in an avian model of 
FHN induced by glucocorticoid,3 whereas the current study 
involved spontaneously affected chickens. In the previous 
study, we used MALDI-TOF-MS quantitation, and a quali-
tative comparison of LC-MS/MS identified proteins between 
healthy and induced FHN. In the current study, both MALDI 
and LC-MS/MS methods were employed to quantify proteins. 
In the top–down approach, we used direct MALDI profiles of 
HLTH and FHN samples to find the differences in the lev-
els of low molecular weight proteins. Based on these data, the 
differentially expressed proteins were purified by RP-HPLC 
and identified by MALDI-PMF. For the bottom-up method, 
the plasma proteome was subjected to trypsin digestion 
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table 3. Proteins present only in the hLth and Fhn samples based on the qualitative analysis of proteins present either in hLth or in Fhn 
samples.

PRotEiN NamE gRouP FuNCtioN

ensgaLP00000031021 myosinVi hLth Cytoskeleton

ensgaLP00000026627 additional sex combs like 2 (Drosophila) hLth regulation of transcription

ensgaLP00000000545 rna binding motif protein 15 hLth regulation of transcription

ensgaLP00000026921 meprin a, alpha (PaBa peptide hydrolase) Fhn Proteolysis

ensgaLP00000007080 Ubiquitin specific peptidase 34 Fhn Ubiquitin mediated proteolysis

ensgaLP00000001182 myosin, heavy chain 13, skeletal muscle Fhn Cytoskeleton

ensgaLP00000035723 tudor domain containing 3 Fhn rna binding

ensgaLP00000012641 not characterized (golgin) Fhn golgi complex associated

Notes: hLth and Fhn indicate healthy and Fhn-affected birds, respectively. ensgaLP indicates ensemBL gallus protein iD.
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(LC-MS/MS), and the proteins were identified for qualitative 
analyses, DAVID enrichment, and label-free quantitation.

FHN is often attributed to interruption of blood supply 
in the developing femoral head.28 Higher BW in chickens 

can be a contributing factor for the pathogenesis of FHN and 
the prevalence of leg problems in heavy broiler chickens.29–32 
In the present study, we found elevation of both FIBB and 
HGB in the FHN group, which may be associated with 
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vascular problems. FIBB is involved in blood clotting and its 
changes can relate to coagulation and hemostasis.33,34 Simi-
larly, the plasma-free HGB fragments can be released due 
to erythrolysis and vascular damage.35 Fetuin or AHSG has 
been implicated in ectopic mineralization and the change in 
the level of this protein may affect the skeletal strength.36,37 
GO enrichment analyses showed the absence of a fibronec-
tin type III domain, which is related to extracellular matrix 
integrity and adhesion.38,39 The absence of fibronectin type 
III domain in FHN can compromise adhesion and lead to 
apoptosis.40 The presence of proteins associated with apoptosis 
was also evident from GO analysis. Since cell death has been 
implicated in both spontaneous and induced femoral head 
problems,15 the changes in these proteins appear consistent 
with a weaker skeleton and vascular problems.

Qualitative comparison showed the presence of two 
peptidases, meprin-A-alpha and ubiquitin-specific pep-
tidase 34, uniquely present in FHN. At the same time, 
SPINK7 was downregulated in the FHN group as shown 
by quantitative analyses. In human literature, SPINK pre-
vents cancer cell migration.41 Thus, dysregulation of prote-
olysis could alter skeletal homeostasis and can lead to FHN. 
The tudor domain containing 3 (TDRD3) present only in 
FHN has quantitative trait loci, associated with BW, CH 
abnormality, and bone density in mammals.42–44 However, 
its relevance to avian skeletal physiology is not known. 
The increased levels of antimicrobial peptide, GAL9 along 
with dyslipidemia,45 and lower levels of ALB46 can sug-
gest microbial infection of femur.28,47 The elevated Apo-AI 
peptides observed in the current as well as in the previous 

study3 may suggest the breakdown of lipoproteins in the 
FHN-affected birds.

Although several differences were observed in the plasma 
protein profiles, their association with FHN pathology is not 
understood due to limitations. First, the significance of many 
of these proteins is not known in relation to skeletal physi-
ology. Second, although the changes in plasma proteins can 
occur due to health problems, these changes may not be suf-
ficient to explain the underlying pathology of the proximal 
femur, necessitating further explorations. Another limitation 
of our study is that the proteomic results are based on pooled 
samples of nine birds selected randomly from each group.

conclusion
The overall results of this study such as BW, clinical chemis-
try changes, and the proteomic changes suggest the problems 
associated with tissue adhesion, proteolysis, and infection as 
some of the underlying causes of FHN.
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