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The intestinal epithelial tight junction (TJ) barrier controls the paracellular permeation of
contents from the intestinal lumen into the intestinal tissue and systemic circulation. A
defective intestinal TJ barrier has been implicated as an important pathogenic factor in
inflammatory diseases of the gut including Crohn’s disease, ulcerative colitis, necrotizing
enterocolitis, and celiac disease. Previous studies have shown that pro-inflammatory
cytokines, which are produced during intestinal inflammation, including interleukin-1b (IL-
1b), tumor necrosis factor-a, and interferon-g, have important intestinal TJ barrier-
modulating actions. Recent studies have shown that the IL-1b-induced increase in
intestinal TJ permeability is an important contributing factor of intestinal inflammation.
The IL-1b-induced increase in intestinal TJ permeability is mediated by regulatory signaling
pathways and activation of nuclear transcription factor nuclear factor-kB, myosin light
chain kinase gene activation, and post-transcriptional occludin gene modulation by
microRNA and contributes to the intestinal inflammatory process. In this review, the
regulatory role of IL-1b on intestinal TJ barrier, the intracellular mechanisms that mediate
the IL-1bmodulation of intestinal TJ permeability, and the potential therapeutic targeting of
the TJ barrier are discussed.

Keywords: interleukin-1b (IL-1b), intestinal tight junction (TJ) barrier, myosin light chain kinase (MLCK), microRNA,
intestinal inflammation, NF-kappaB (NF-kB)
INTRODUCTION

The gastrointestinal (GI) tract is lined by a single cell layer of intestinal epithelial cells (IECs) which
serve as a physical barrier against the influx of luminally located noxious substances, large
hydrophilic molecules, and bacterial organisms (1, 2). The epithelial cells are interconnected to
each other at the apex of the basolateral membranes by the tight junctions (TJs), which serve as both
a boundary demarcating apical from basolateral membrane (referred to as the “fence” function) and
as a gate or barrier to paracellular permeation of luminal contents (1, 3–5). The TJs are the apical-
most intercellular junctions that prevent or regulate invasion by microorganisms, diffusion of
toxins, and flux of water soluble molecules between cells, referred to as paracellular permeability (1,
2, 6–9). A complex of transmembrane proteins interact or make contact across the intercellular
spaces to form TJs (1, 2, 10–12). These proteins include occludin, members of the claudin family of
proteins, and the junctional adhesion molecule (JAM) family of proteins (1, 5, 12–14). Occludin
plays a role in the formation and disassembly of the TJ and is involved in the regulation of the “leak
org October 2021 | Volume 12 | Article 7674561
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pathway” or paracellular flux of large molecules (1, 15–17),
whereas claudins have a greater role in controlling the “pore
pathway” or paracellular flux of ions and small molecules, and
JAMs are important for TJ assembly and facilitating leukocyte
adhesion and migration (1, 6, 11, 18–20). The TJ proteins are also
directly linked to cytoskeletal actomyosin fibers via cytoplasmic
TJ proteins, including the zonula occludens (ZO) family (ZO-1,
ZO-2, and ZO-3) (1, 6, 21–23).

A defective intestinal TJ barrier is an important contributing
factor to the pathogenesis of various inflammatory conditions of
the gut including celiac disease, inflammatory bowel disease
(IBD), and necrotizing enterocolitis (NEC) (4–6, 24–26).
Patients with Crohn’s disease have increased intestinal
permeability and associated alterations in TJ proteins (6, 26).
In patients with quiescent Crohn’s disease, increased intestinal
permeability has been identified as an important predictor of
early disease relapse (25). Therapeutic re-tightening of the
intestinal TJ barrier in patients with active Crohn’s disease is
associated with more rapid improvement and prolonged clinical
remission, while the presence of persistently increased intestinal
permeability is associated with early disease relapse (25, 27, 28),
suggesting that therapeutic tightening of the intestinal TJ barrier
could be an important treatment option in IBD. In addition,
alterations in intestinal permeability and TJ proteins have been
shown to be associated with the development of colorectal cancer
(29–32).

Pro-inflammatory cytokines, including interleukin-1b (IL-
1b) and tumor necrosis factor-a (TNF-a), are markedly
elevated in inflammatory conditions of the gut, including IBD
and NEC (33–38). Previous studies from our laboratory and
others have shown that IL-1b and TNF-a at physiological
concentrations cause a marked increase in intestinal epithelial
TJ permeability (39–48). Recent studies suggest that, in addition
to its direct immune activating effects, IL-1b also promotes
intestinal inflammation by disrupting the intestinal TJ barrier
and allowing increased intestinal penetration of luminal antigens
(49). Consistent with such a possibility, it was recently
demonstrated that the inhibition of the IL-1b-induced increase
in intestinal TJ permeability prevented the dextran sodium
sulfate (DSS)-induced intestinal inflammation (49). In this
review, we summarize the published studies as they relate to
the effect of IL-1b on the intestinal epithelial TJ barrier, the
intracellular signaling pathways involved in TJ barrier
modulation, the downstream molecular targets of IL-1b, and
the clinical implications of IL-1b intestinal barrier modulation in
the context of intestinal inflammation.
IL-1b AND ITS RECEPTORS

The IL-1 family consists of 11 distinct members which are
comprised of seven immunomodulatory cytokines, IL-1a, IL-
1b, IL-18, IL-36a, IL-36b, IL-36g, IL-33, and four natural
antagonists, IL-1 Receptor antagonist (IL-1Ra), IL-36Ra, IL-37,
IL-38 (50). The IL-1 subfamily consists of IL-1a, IL-1b, and IL-
33 (50). IL-1a and IL-1b are agonists; IL-1Ra functions as a
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competitive inhibitor of IL-1 (50–52). These three signaling
molecules, IL-1a, IL-1b, and IL-1Ra, share 20-25% amino acid
sequence homology (51). IL-1a and IL-1b are produced by
immune cells such as monocytes and macrophages, but also by
non-immune cells, including endothelial cells and epidermal
cells, in response to different stimuli including microbes and
cytokines (51). Initially produced as precursor proteins, IL-1a
and IL-1b precursors undergo cleavage to generate mature
proteins (51, 52). IL-1Ra can function intracellularly, such as
in keratinocytes and epithelial cells, but in other cell types, such
as mononuclear cells, the IL-1Ra is transported outside of the cell
as secretory IL-1Ra (sIL-1Ra) where it functions to bind to and
inhibit signaling through IL-1 receptors (52, 53).

There are 10 members of the IL-1 family of receptors,
including IL-1 receptor type I (IL-1RI) and IL-1 receptor type
II (IL-1R2) which mediate signaling by IL-1a and IL-1b with
IL-1 receptor type III (IL-1R3) as a co-receptor (50, 51). IL-1R1
also binds IL-1Ra (50). IL-1R2 is released from the cell surface
and binds precursor and mature forms of IL-1b, acting as a decoy
receptor and inhibitor of IL-1b function (51–54), as IL-1R2 binds
IL-1 but does not transduce any signal (51, 52, 54).

IL-1 and IL-1Ra levels have been shown to be elevated in
intestinal inflammatory conditions such as Crohn’s disease and
ulcerative colitis (33, 34). Although the levels of both IL-1 and
IL-1Ra have been shown to be increased in IBD, a shift in the
proportions of these proteins compared to a healthy state has
been shown, with relatively less IL-1Ra compared to IL-1 (33).
This shift in the IL-1Ra:IL-1 ratio correlated with disease severity
(33, 53, 55), suggesting that this imbalance may play a role in the
pathogenesis of IBD. A decrease in the IL-1Ra : IL-1b ratio has
also been observed in canine IBD (56).

Patients with IBD have been further observed to have an
abnormal increase in small intestinal permeability as measured by
intestinal absorption of permeability markers such as lactulose and
mannitol (57–67). Numerous clinical studies examining intestinal
permeability in ulcerative colitis and Crohn’s disease have
consistently shown patients with ulcerative colitis and Crohn’s
disease to have significant increases in small intestinal
permeability (57–67). Although patients with ulcerative colitis
have intestinal inflammation that is limited to the colon, the
studies have shown that these patients, similar to patients with
Crohn’s disease, have significant increase in small intestinal
permeability (57–67). The increase in small intestinal permeability
is likely to represent in part the effect of the circulating
inflammatory mediators, such as IL-1b, TNF-a, IFN-g, and
lipopolysaccharide, which cause an increase in intestinal
permeability. As intestinal permeability markers are hydrophilic
and do not permeate across the bilipid enterocyte plasma
membrane, changes in intestinal permeability are reflective of
relative “tightness” or “leakiness” of the intestinal TJ barrier or the
paracellular pathways (68, 69). The abnormal increase in intestinal
permeability in inflammatory diseases of the gut may be due to the
intrinsic structural defect of the TJ barrier related to the underlying
disease state or secondary to the effects of inflammatory process or
inflammatory mediators, including IL-1b and TNF-a (7, 26, 46, 58,
68, 70, 71). IL-1b at physiologically and clinically relevant
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Kaminsky et al. IL-1 Modulation of Intestinal Barrier
concentrations, as seen in IBD and NEC, has been shown to cause
an increase in intestinal epithelial TJ permeability (33, 34, 38, 72–
74). Interestingly, the inhibition of the IL-1b-induced increase in
intestinal permeability in an animal model of colitis was found to be
protective against the development of colitis (49), suggesting the
possibility that IL-1b-induced disruption of the intestinal TJ barrier
contributes to the intestinal inflammation process. It should also be
noted that in the setting of ischemic injury to the small intestine,
polymorphonuclear leukocytes (PMNs) were shown to enhance
intestinal epithelial barrier function in an IL-1b-dependent manner
(75). In this model system, it was suggested that the PMN
enhancement of intestinal epithelial barrier function was mediated
by IL-1b-induced upregulation of cyclooxygenase-2 (COX-2) (75).
Thus in the setting of ischemic injury of intestine, IL-1b appears to
mediate the PMN-protective effect. In a mouse model of colitis, IL-
1b was shown to be involved in mediating tissue repair during
resolution of colitis (76).

There have been very few published reports related to the role
of IL-1a on the intestinal TJ barrier. In the setting of ischemic-
reperfusion injury secondary to burn, IL-1a was shown to
ameliorate the burn-induced increase in intestinal permeability
(77). In a mouse model of colitis, IL-1a was predominantly
produced by IECs and functioned as an inflammatory mediator
with associated increased colonic inflammation (76). In the
following sections, the intracellular and molecular mechanisms
of the IL-1bmodulation of the intestinal TJ barrier are reviewed.
MECHANISMS OF THE IL-1b-INDUCED
MODULATION OF THE INTESTINAL TJ
BARRIER

Regulatory Role of Canonical and Non-
Canonical Nuclear Factor-kB (NF-kB)
Signaling Pathway in Intestinal TJ Barrier
Regulation
In mouse models of colitis and in IBD patients, NF-kB has been
shown to play an important role in mediating intestinal
inflammation (78, 79). NF-kB activation has been found in
macrophages and in IECs from biopsy samples from patients
with IBD, and the level of activated NF-kB correlated with the
severity of inflammation (78). The NF-kB activity was associated
with production of the pro-inflammatory cytokines IL-1, IL-6, and
TNF-a (79). IL-1 induced nuclear translocation of NF-kBmediated
the activation and transcription of inflammatory genes (80, 81),
with other studies showing that specifically IL-1b induced the
cytoplasmic to nuclear translocation of NF-kB (39, 82–84).

NF-kB signaling for transcriptional activation can occur
through the classical (canonical) or the alternative (non-
canonical) pathway, with both pathways leading to the nuclear
translocation and activation of NF-kB and binding of DNA by
dimers of five proteins: p50, p52, p65 (RelA), RelB, and c-Rel
(85–87). In the canonical pathway, degradation of the inhibitory
IkB protein occurs following phosphorylation of the IkB kinase
(IKK) complex that consists of the catalytic kinases IKKa and
Frontiers in Immunology | www.frontiersin.org 3
IKKb and the regulatory subunit, IKKg (NEMO) (86, 87). IKKb
phosphorylates IkB at specific serine residues to mediate
degradation of this inhibitory protein (86, 87). Phosphorylated
IkB is ubiquitinated and degraded by the proteasome, which
allows NF-kB p50/p65 heterodimers to translocate from the
cytoplasm to the nucleus to activate the inflammatory genes
(86, 87).

Although both the canonical and non-canonical NF-kB
pathways were found to be activated in IECs by IL-1b in the
context of TJ barrier regulation, only the canonical pathway (NF-
kB p50/p65) was involved in the IL-1b-induced dysfunction of
the TJ barrier (88). Supporting the requirement for the canonical
NF-kB pathway, inhibition of NF-kB p50/p65 activation, but not
p52 or p100, prevented the IL-1b-induced increase in intestinal
TJ permeability (39). In regards to the canonical NF-kB pathway,
IL-1b caused a rapid degradation of IkBa leading to the
cytoplasmic-to-nuclear translocation of NF-kB p50/p65 and
activation of the target gene, myosin light chain kinase
(MLCK) gene (39, 88–90). IL-1b rapidly produced a time-
dependent activation of the upstream regulatory protein
kinase, mitogen-activated protein kinase kinase kinase-1
(MEKK-1), and NF-kB-inducing kinase (NIK) (88, 91).
Although IL-1b caused activation of both MEKK-1 and NIK,
the canonical NF-kB pathway (NF-kB p50/p65) activation was
mediated by only MEKK-1 and not NIK activation (88). The
siRNA induced knockdown of MEKK-1, but not of NIK,
inhibited the IL-1b-induced activation of NF-kB p50/p65 (88).
Knockdown of p65 also inhibited the IL-1b-induced dysfunction
of the TJ barrier (88), confirming the requirement for the
canonical NF-kB pathway. IL-1b also caused an activation and
increase in nuclear translocation of the p52 subunit (non-
canonical NF-kB pathway) with binding of p52 to the kB
DNA binding site; however, the p52 subunit was not required
for the IL-1b-induced dysfunction of the TJ barrier (88). These
findings confirmed that the IL-1b-induced increase in intestinal
TJ permeability was mediated by the MEKK-1-dependent
activation of NF-kB p50/p65 (Figure 1).

As an integral component of IL-1b regulation of the canonical
NF-kB pathway, IL-1b caused a rapid activation of IKK catalytic
subunits, IKKa and IKKb, in Caco-2 intestinal epithelial
monolayers and in mouse IECs (88, 92–94). The IL-1b-
induced activation of IEC IKKa and IKKb was dependent on
MEKK-1 activation (88). As for the specific IKK subunit
involved in the NF-kB p50/p65 activation and the increase in
TJ permeability, IKKb was the dominant subunit that was
required for the NF-kB activation and the subsequent increase
in TJ permeability in the intestinal monolayers (88).
Interestingly, IKKa also played a role in the increase in TJ
permeability and the targeted knockdown of IKKa resulted in
partial inhibition of NF-kB activation and an increase in TJ
permeability (88). Thus, the IL-1b-induced increase in intestinal
TJ permeability was mediated by the MEKK-1-induced
activation of IKK catalytic subunits IKKb and IKKa, and
IKKb-induced phosphorylation and degradation of enterocyte
inhibitory kB protein and activation of NF-kB p50/p65
(Figure 1) (88).
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TNF-a is an additional pro-inflammatory cytokine that has
been implicated in IBD and causes increased intestinal epithelial
TJ permeability (40, 95, 96). The TNF-a-induced increase in
intestinal TJ permeability was also dependent on NF-kB p50/p65
activation (40, 97–103). However, important differences are
noted concerning how the enterocyte NF-kB p50/p65 was
activated and how the TJ barrier was regulated. The TNF-a-
induced activation of NF-kB was mediated by the NIK-induced
activation of the IKKa homodimer and not IKKb catalytic
subunit (104); as described above, the IL-1b-induced increase
in TJ permeability was regulated by MEKK-1 activation of IKKb
catalytic subunit (88).

Involvement of MLCK in IL-1b Intestinal TJ
Barrier Modulation
It is well-established that MLCK protein level and activity are
markedly increased in intestinal tissues obtained from patients
with IBD (105). The increase in MLCK protein level was found to
correlate with the severity of intestinal inflammation (105).
Frontiers in Immunology | www.frontiersin.org 4
MLCK is a Ca2+-calmodulin activated serine/threonine kinase
that regulates actomyosin rearrangement and cell contraction in
various cell types including smooth, cardiac, and skeletal muscle
and in non-muscle cells (106–111). Two long non-muscle
isoforms, MLCK1 (full-length long MLCK) and MLCK2
(which lacks a single exon), are predominantly expressed in
intestinal epithelial cells and play a central role in modulating
various cell functions (112–114). MLCK1 is also known to
regulate the intestinal TJ barrier function via phosphorylation
of myosin II regulatory light chain (MLC) at threonine-18 and/or
serine-19 leading to peri-junctional actomyosin ring contraction,
mechanical retraction of apical membrane and pulling apart of
the TJ complex, and opening of the intestinal TJ barrier (109,
115–117). Previous studies have shown that the IL-1b-induced
increase in intestinal epithelial TJ permeability in Caco-2
intestinal epithelial monolayers and mouse small intestine in
vivo was mediated by an increase in MLCK gene activity and
protein expression and an increase in MLCK enzymatic activity
(84) (45, 46, 118–120). In these studies, IL-1b caused a rapid
FIGURE 1 | Schematic diagram depicting the involvement of MEKK-1, IKK-b, p38 kinase, ERK1/2, and NF-kB in the interleukin-1b (IL-1b)-induced increase in
myosin light chain kinase (MLCK) gene activity in intestinal epithelial tight junction (TJ) permeability. (Created with BioRender.com).
October 2021 | Volume 12 | Article 767456

https://biorender.com/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Kaminsky et al. IL-1 Modulation of Intestinal Barrier
activation of MLCK gene activity and increase in MLCK protein
expression; inhibition of MLCK activity by pharmacologic
inhibitors or by siRNA-induced knockdown prevented the IL-
1b-induced increase in intestinal epithelial TJ permeability (84,
121). The IL-1b-induced increase in MLCK gene activity and
protein synthesis was mediated by the activation of NF-kB p50/
p65, involving the MEKK-1/IKKb/NF-kB p65 axis as described
above (Figure 1) (84). In these studies, targeted knockdown of
MEKK-1, IKKb, or NF-kB p65 prevented the IL-1b-induced
increase in MLCK gene activity and increase in intestinal
epithelial TJ permeability, confirming the regulatory role of
MEKK-1, IKKb and the NF-kB p50/p65 axis on MLCK gene
activation (88). Zhai and colleagues recently showed that low-fat
yogurt prevented the IL-1b-induced intestinal barrier disruption
by inhibiting the upregulation of MLCK gene expression in
Caco-2 cells (122). These studies also showed that the IL-1b-
induced increase in NF-kB activation is inhibited by low-fat
yogurt application to Caco-2 cells (122). Collectively, these
studies show that IL-1b-induced increases in MLCK gene
activity and protein synthesis are required for increased
intestinal TJ permeability. The NF-kB p50/p65 signaling
pathway regulates the TJ barrier by targeting MLCK gene
activation (Figure 1).

Role of Mitogen-Activated Protein
Kinases (MAPKs) Signal Transduction
Pathways and Other Transcription
Factors in the IL-1b-Induced Increase
in Intestinal TJ Permeability
MAPKs are serine-threonine protein kinases that mediate cellular
activities including proliferation, differentiation, apoptosis, survival,
inflammation, and innate immune responses (123, 124). There are
at least three groups of MAPKs identified including extracellular
signal-regulated kinases (ERK), the p38MAPKs, and the cJun NH2-
terminal kinases (JNK) (125). It is well-established that IL-1b and
other pro-inflammatory cytokines can activate MAPK signal
transduction pathways. Previous studies have shown that the p38
kinase signaling cascade also contributes to IL-1b-induced increased
MLCK expression and increased intestinal TJ permeability in vitro
and in vivo (46). These studies found that IL-1b induced a rapid
phosphorylation and activation of p38 kinase and downstream
activation of a p38-dependent transcription factor, activating
transcription factor-2 (ATF-2); the activated ATF-2 translocated
to the nucleus and attached to the binding motif on the MLCK
promoter region, leading to MLCK gene activation and protein
synthesis, andMLCK-dependent opening of the intestinal TJ barrier
(46). The targeted knockdown of p38 kinase and ATF-2 inhibited
the IL-1b-induced activation ofMLCK gene and increased intestinal
TJ permeability in Caco-2 monolayers and in mouse small intestine
(46). Thus, in addition to NF-kB, ATF-2 also played an important
role in the regulation of the IL-1b-induced activation ofMLCK gene
and increase in MLCK protein synthesis. Other studies have shown
that p38 kinase activation is required for IL-1b-induced regulation
of the TJ protein claudin-2 in a rat hepatic injury model (126, 127).

In addition to NF-kB and ATF-2, transcription factor Elk-1
has also been shown to contribute to IL-1b-induced increase in
Frontiers in Immunology | www.frontiersin.org 5
intestinal TJ permeability (46, 128). IL-1b has also been found to
cause a rapid activation of Elk-1 in intestinal epithelial cells (128,
129). Upon activation, Elk-1 translocated to the nucleus and
attached to the cis-binding motif on the MLCK promoter region,
leading to the activation of MLCK gene and an increase in TJ
permeability (128). In aggregate, these studies suggest that IL-1b
induces the activation and binding of transcription factors NF-
kB p50/p65, ATF-2, and Elk-1 to the MLCK minimal promoter
region in close proximity to each other, and in concert, activate
the MLCK gene and produce an opening of the TJ barrier
(Figure 1) (128).

Role of TJ Proteins and microRNAs
(miRNAs) and Therapeutic Targeting of the
Intestinal TJ Barrier
Intestinal epithelial TJ barrier function is maintained by
intercellular TJs, including multi-protein complexes that seal
the space between adjacent cells at the boundary of the apical and
lateral membrane surfaces of adjacent epithelial cells (1, 130–
133). TJs, which are the apical-most intercellular junctions,
regulate the paracellular flux of ions and solutes, referred to as
the “gate function” (8, 130–133). Related to the gate function,
disturbances in TJ barrier function result in increased TJ or
paracellular permeability and increased exposure of underlying
intestinal tissue and other organ systems to noxious
luminal antigens.

The TJ complex consists of integral transmembrane proteins
such as occludin, claudins, and JAMs, as well as cytosolic scaffold
proteins, such as ZO-1, ZO-2, and ZO-3, which in turn anchor
the transmembrane proteins to the actin cytoskeleton (5, 11,
134). Previous studies from our laboratory and others have
shown that occludin plays an important regulatory role in
restricting the paracellular flux of large macromolecules via a
non-restrictive or “leak” pathway and that occludin depletion
leads to a preferential increase in paracellular flux of
macromolecules (15, 131–133, 135, 136). In addition to
targeting MLCK gene activation, IL-1b-induced increase in
intestinal TJ permeability has also been found to be dependent
on post-transcriptional degradation of occludin mRNA (49).

IL-1b treatment has been shown to selectively decrease the
occludin level in Caco-2 monolayers and mouse intestinal
epithelial cells in live mice without affecting other
transmembrane TJ proteins (49). In these studies involving
Caco-2 monolayers and live mice, IL-1b caused a rapid
increase in miRNAs which bind to occludin mRNA (49).
MiRNAs are small, single-stranded non-coding RNAs that
bind to miRNA response elements on the 3’ untranslated
region (3’-UTR) of mRNA to induce mRNA degradation or
suppression of translation (49, 137, 138). It was found that IL-1b
caused a rapid and marked increase in miR-200c-3p in IECs (49).
Bioinformatics analysis predicted high probability of miR-200c-
3p binding to the occludin 3’-UTR and post-transcriptional
regulation. These studies also showed that increasing miR-
200c-3p expression in IECs was sufficient to cause an increase
in intestinal TJ permeability in Caco-2 monolayers and mice and
that treatment with antagomirs, which inhibit or silence miR-
October 2021 | Volume 12 | Article 767456
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200c-3p, inhibited the IL-1b-induced decrease in occludin
expression and increase in intestinal epithelial TJ permeability
(49). This work provides support for the cause-and-effect
relationship between post-transcriptional miR-200c-3p
degradation of occludin mRNA and increase in TJ
permeability (Figure 2) (49).

The defective intestinal TJ barrier is an important pathogenic
factor contributing to intestinal inflammatory processes in IBD,
NEC, and celiac disease (57, 139–141). Previous work has also
investigated the potential role of elevated IL-1b present in
intestinal inflammation and its contribution to TJ barrier
disturbance or “leaky gut” through targeting of miR-200c-3p
expression (49). IL-1b expression was shown to be markedly
elevated in colonic tissues of ulcerative colitis patients and
directly correlated with an increase in miR-200c-3p expression
(49). Interestingly, the organoids generated from colonic tissue
from ulcerative colitis patients also showed marked increase in
Frontiers in Immunology | www.frontiersin.org 6
IL-1b and miR-200c-3p expression compared to the organoids
from the healthy control patients (49). These studies indicated
that IL-1b and miR-200c-3p expression was markedly elevated in
colonic tissue and epithelial cells from patients with ulcerative
colitis and also suggested the possibility that miR-200c-3p may
be targeted to inhibit the IL-1b-associated increase in intestinal
TJ permeability and treat intestinal inflammation. This
possibility was tested in proof-of-concept studies using DSS-
induced colitis as a murine model of colitis (49). DSS oral
administration caused a marked increase in intestinal tissue IL-
1b and miR-200c-3p expression and was further associated with
a decrease in occludin expression and increase in colonic
permeability. The oral administration of antogomiR-200c
inhibited DSS-induced increase in intestinal tissue miR-200c-
3p levels, decrease in occludin levels, increase in colonic
permeability, and development of colitis (49). Taken together,
these studies demonstrate that therapeutic targeting of the IL-1b-
FIGURE 2 | Schematic diagram showing the involvement of the microRNA-200c-3p-induced degradation of occludin mRNA in interleukin-1b (IL-1b)-induced
increase in intestinal epithelial tight junction permeability. (Created with BioRender.com).
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induced increase in miR-200c-3p expression and intestinal
permeability is effective in preventing DSS-induced intestinal
inflammation (Figure 3). Additional studies have examined the
impact of IL-1b on intestinal occludin expression using a dog
model of IBD. Ogawa et al. reported an increase in the IL-1b:IL-
1Ra ratio in the colonic mucosa of dogs with IBD; this increase
was correlated with a decrease in occludin mRNA expression,
intestinal barrier dysfunction, and colonic inflammation in a dog
model of IBD (73).

Although dysregulation of different types of claudin proteins
has been linked to the pathogenesis of IBD, the observed effect of
IL-1b on claudin proteins has been shown to be limited and
inconsistent (30, 142–148). Claudins are a transmembrane
protein family comprised of at least 27 members (149). In the
GI tract, only a few of the claudins are expressed and known to
regulate intestinal TJ barrier function, including claudin-1,
claudin-2, claudin-3, claudin-4, claudin-5, claudin-8, claudin-
12, and claudin-18 (150–153). A previous study showed that IL-
1b did not affect the expression or the distribution of claudin-1,
claudin-2, claudin-3, claudin-4, or claudin-5 (39). In contrast,
Maria-Ferreira et al. showed that IL-1b induced an increase in
Caco-2 TJ permeability that was associated with a decrease in
Frontiers in Immunology | www.frontiersin.org 7
claudin-1 expression and disruption in occludin junctional
localization (154). Haines et al. reported that the IL-1b-
induced increase in intestinal TJ permeability was mediated in
part by claudin-3 downregulation and translocation from the
junctional localization into the nucleus; however, expression
levels of ZO-1, occludin, claudin-1, claudin-4, and claudin-15
remained unchanged (121). This study also found that IL-1b
induced an association of b-catenin with the claudin-3 promoter
in an MLCK-dependent manner (121). Consistent with these
findings, other reports have shown that Wnt signaling (and
subsequent b-catenin nuclear accumulation) induced claudin-3
downregulation, and subsequently led to an increase in intestinal
permeability (155). Although Guo and colleagues found that
there was no change in ZO-1 protein level in response to IL-1b,
they found an increase in claudin-1 expression and a decrease in
occludin expression (82). Wang et al. showed that ZO-1, claudin-
1, and claudin-7 junctional localization was also disrupted by IL-
1b treatment in Caco-2 cells, and was associated with an increase
in intestinal TJ permeability (156). The effect of IL-1b-induced
increase in Caco-2 TJ permeability was also proposed to be
mediated by an increase in p38 kinase phosphorylation, leading
to an increase in MLCK gene and protein expression and
FIGURE 3 | Schematic diagram of the potential role of the interleukin-1b (IL-1b)-induced increase in microRNA-200c-3p expression and intestinal tight junction (TJ)
permeability in modulating intestinal inflammation. (Created with BioRender.com).
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indirectly influencing the junctional localization of ZO-1,
claudin-1, and claudin-7 (156). The results of studies
evaluating the effect of IL-1b on claudin proteins have been
inconsistent; some studies suggested that IL-1b has no effect,
while others have suggested that IL-1b downregulates claudin-3
or causes an alteration in ZO-1, claudin-1, and claudin-7
junctional localization in a MLCK-dependent manner.
CONCLUSION AND FUTURE
PERSPECTIVES

IL-1b is a pluripotent pro-inflammatory cytokine that is elevated
in various inflammatory diseases, including NEC, irritable bowel
syndrome, infectious diarrhea, and IBD. Accumulating evidence
has shown that IL-1b plays an important pathogenic role in the
intestinal inflammation process in these diseases (51, 157, 158).
A key hallmark of IBD is intestinal epithelial TJ barrier
disruption manifested by an increase in intestinal permeability
(71, 140, 159); however, the precise factors which contribute to
the defective intestinal TJ barrier and the role IL-1b plays in the
barrier defect remains unclear. In this review, we highlight recent
scientific advances that demonstrate the disruptive influence of
IL-1b on the intestinal TJ barrier. We further provide insight into
the intracellular signaling process, the effector and the TJ
proteins involved, and the potential for therapeutic targeting of
IL-1b-induced disruption of the intestinal TJ barrier to prevent
or treat intestinal inflammation. In summary, IL-1b is markedly
elevated in intestinal inflammation associated with ulcerative
colitis and other inflammatory diseases, IL-1b causes a rapid and
marked increase in intestinal TJ permeability, IL-1b-induced
Frontiers in Immunology | www.frontiersin.org 8
increase in TJ permeability is mediated in part by the activation
of the canonical NF-kB pathway, MLCK gene activation and
post-transcriptional degradation of occludin mRNA, and
therapeutic targeting of the IL-1b-induced increase in
intestinal TJ permeability is effective in preventing colitis in a
murine model of colitis. Thus, IL-1bmodulation of the intestinal
TJ barrier represents an important potential pathogenic
mechanism contributing to the observed increase in intestinal
permeability in various inflammatory conditions of the gut and is
a potent ia l therapeut ic target to prevent or treat
intestinal inflammation.
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